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Jupyter Basics
extracted from: https://www.dataquest.io/blog/jupyter-notebook-tutorial/ 

https://www.dataquest.io/blog/jupyter-notebook-tutorial/


Jupyter Notebook
Notebook documents (or “notebooks”, all lower case) are documents produced by 
the Jupyter Notebook App, which contain both computer code (e.g. python) and 
rich text elements (paragraph, equations, figures, links, etc…). 

From Jupyter Notebook Beginner Guide 

https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html


Build the first Notebook
● Run Jupyter by typing on the console: jupyter-notebook or jupyter 

notebook
● Jupyter Notebook opens in the browser, with the URL like 

http://localhost:8888/tree
● An app opens



Build the first Notebook
Create the first notebook, click the “New” 
button in the top-right and select “Python 
3”

The notebook opens

Its name is Untitled.ipynb



The Notebook Interface
● A kernel is a “computational engine” that executes the code contained in a 

notebook document.
● A cell is a container for text to be displayed in the notebook or code to be 

executed by the notebook’s kernel.
○ A code cell contains code to be executed in the kernel. When the code is run, the notebook 

displays the output below the code cell that generated it.
○ A Markdown cell contains text formatted using Markdown and displays its output in-place 

when the Markdown cell is run.

To run a cell: Ctrl + Enter / Shift + Enter 



Commands
● Toggle between edit and command mode with Esc and Enter, respectively.
● Once in command mode:

○ Scroll up and down your cells with your Up and Down keys.
○ Press A or B to insert a new cell above or below the active cell.
○ M will transform the active cell to a Markdown cell.
○ Y will set the active cell to a code cell.
○ D + D (D twice) will delete the active cell.
○ Z will undo cell deletion.
○ Hold Shift and press Up or Down to select multiple cells at once. With multiple cells selected, 

Shift + M will merge your selection.



Data Cleaning



Python Pandas
pip install pandas

pip3 install pandas

DataFrame is a 2-dimensional labeled data structure with columns of potentially 
different types. You can think of it like a spreadsheet or SQL table, or a dict of 
Series objects. It is generally the most commonly used pandas object.

(Definition from https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html) 

https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html


DataFrame - basic operations

import pandas as pd

df = pd.DataFrame() # empty dataframe

# load a csv file into a dataframe

df = pd.read_csv(‘input_file.csv’) 

# show the first 10 lines of the dataframe

df.head(10)



Data Cleaning Definition (from Wikipedia)

Data cleansing or data cleaning is the process of detecting and 
correcting (or removing) corrupt or inaccurate records from a 
record set, table, or database and refers to identifying incomplete, 

incorrect, inaccurate or irrelevant parts of the data and then 
replacing, modifying, or deleting the dirty or coarse data.



Data Cleansing involves the following aspects:

● missing values
● data formatting
● data normalization
● data standardization
● data binning
● remove duplicates



Missing Values
No data value is stored for the variable in an observation

from Wikipedia

https://en.wikipedia.org/wiki/Missing_data


Name Surname Email Count

John Wild 5

Marc Wales m.wales@gmail.com

Maria Zack m.zack@live.it 7

Kate Zack k.zack@live.it

Example of Missing Values



Identify Missing Values
In order to check whether our dataset contains missing values, we can use the 
function isna() which returns if an cell of the dataset if NaN or not. 

Then we can count how many missing values there are for each column.

df.isna().sum()

Name 0

Surname 0

Email 1

Count 2



Missing Values Management

● check the source, for example by contacting the data source to 
correct the missing values

● drop missing values
● replace the missing value with a value
● leave the missing value as it is



Drop Missing Values
Dropping missing values can be one of the following alternatives:

● remove rows having missing values
● remove the whole column containing missing values 

We can use the dropna() by specifying the axis to be considered. 

If we set axis = 0 we drop the entire row, 

if we set axis = 1 we drop the whole column



Examples

df.dropna(axis=1)

Name Surname

John Wild

Marc Wales

Maria Zack

df.dropna(axis=0)

Name Surname Email Count

Maria Zack m.zack@live.it 7

Name Surname Email Count

John Wild 5

Marc Wales m.wales@gm
ail.com

Maria Zack m.zack@live.it 7

Kate Zack k.zack@live.it

Original table



Examples (cont.)
As an alternative, we can specify only the column on which the dropping operation 
must be applied.

df.dropna(subset=['Email'],axis=0,inplace=True)

Name Surname Email Count

Marc Wales m.wales@gmail.com

Maria Zack m.zack@live.it 7

Kate Zack k.zack@live.it



inplace=True
We can use the argument inplace=True to store changes in the original 
dataframe df.



Dropping by percentage
Another alternative involves the dropping of columns where a certain percentage 
of not-null values is available. This can be achieved through the thresh parameter. 

In the following example we keep only columns where there are at least the 75% 
of not null values.

df.dropna(thresh=0.75*len(df),axis=1,inplace=True)
Name Surname Email

John Wild

Marc Wales m.wales@gmail.com

Maria Zack m.zack@live.it

Kate Zack k.zack@live.it



Replace Missing Values
A good strategy when dealing with missing values involves their replacement with 
another value. Usually, the following strategies are adopted:

● for numerical values replace the missing value with the average value of the 
column

● for categorical values replace the missing value with the most frequent value 
of the column

● use other functions, such as linear interpolation



fillna() - numerical values
fillna() function replaces all the NaN values with the value passed as 
argument. For example, for numerical values, all the NaN values in the numeric 
columns could be replaced with the average value.

df[‘Count’].fillna(df[‘Count’].mean())

Name Surname Email Count

John Wild 5

Marc Wales m.wales@gmail.com 6

Maria Zack m.zack@live.it 7

Kate Zack k.zack@live.it 6



fillna() - categorical values
For categorical values, the missing values can be replaced with the most frequent 
value.

df[‘Car’].fillna(df[‘Car’].mode())

Car

Ferrari

Lamborghini

Ferrari

Car

Ferrari

Lamborghini

Ferrari

Ferrari



interpolate() - linear interpolation 
We could replace a missing value over a column, with the interpolation between 
the previous and the next values. 

We set Limit direction = forward so that the linear interpolation is applied starting 
from the first row until the last one.



Example
df[‘Count’] = df[‘Count’].interpolate(method ='linear', 
limit_direction ='forward')

Count

0

4

12

Count

0

4

8

12



Data Formatting
Transforming data into a common format, which helps 

users to perform comparisons.



Not formatted table

City Value

New York 3

Chicago 5

N.Y. 6

New York (USA) 7

Chicago (U.S.A.) 3



Data Formatting

● transform data in the correct format
● make data homogeneous 
● use a single value to represent the same concept 



Correct Format
Make sure that every column is assigned to the correct data type. 

This can be checked through the property dtypes.



Example
df.dtypes

Name Value

John 3.2999

Mary 2.3

Name string
Value float64

Correct Data Types

Name string
Value int64

Wrong Data Type



astype()
We can convert the column Value to int64 by using the function astype()

df['Value'] = df['Value'].astype(‘float64’)

The astype() function supports all datatypes described at this link.

https://www.pytables.org/usersguide/datatypes.html


Make data homogeneous - categorical data
Categorical data should have all the same formatting style:

- lower case 
- df['Name'] = df['Name'].str.lower()

- remove white space everywhere:
- df['Name'] = df['Name'].str.replace(‘ ‘, ‘’)

- remove white space at the beginning of string:
- df['Name'] = df['Name'].str.lstrip()

- remove white space at the end of string:
- df['Name'] = df['Name'].str.rstrip()

- remove white space at both ends:
- df['Name'] = df['Name'].str.strip()



Make data homogeneous - numeric data
Numeric data should have for example the same number of digits after the point.

- Round to specific decimal places
- df['Value'] = df['Value'].round(2) # 2 decimal points 

- Round up – Single DataFrame column
- df['Value'] = df['Value'].apply(np.ceil)

- Round down – Single DataFrame column
- df['Value'] = df['Value'].apply(np.floor)



Single Value for the same concept
We can use the unique() function to list all the values of a column.

City Value

New York 3

Chicago 5

N.Y. 6

New York (USA) 7

Chicago 3

df[‘City’].unique()

[ ‘New York’, 
‘Chicago’, ‘N.Y.’, 
‘New York (USA)’ ] 



set_pattern()
We must manage each issue separately.

We define a function, called set_pattern() which receives as input a cell and 
manipulates it according to our needs.

import re
def set_pattern(x):
    pattern = "(?=New York \(USA\)|N.Y.)\\w+"
    res = re.match(pattern, x)
    if res:
        x = x.replace(x, 'New York')
    return x

Put here all the values which must 
be represented by the same value



set_pattern() - cont.
Now we can apply the function the specific column:

df['City'] = df['City'].apply(lambda x: set_pattern(x))

City Value

New York 3

Chicago 5

New York 6

New York 7

Chicago 3



Data Normalisation
Adjusting values measured in different scales to a common 

scale. Normalization applies only to columns containing 
numeric values.



Techniques for Normalisation

● single feature scaling
● min max
● z-score
● log scaling
● clipping



Single Feature Scaling

Single Feature Scaling converts every value of a column into a number between 0 
and 1. 

The new value is calculated as the current value divided by the max value of the 
column.



Example
df['Value'] = df['Value']/df['Value'].max()

Value

1

3

4

Value

0.25

0.75

1MAX



Min Max
Min Max converts every value of a column into a number between 0 and 1. 

The new value is calculated as the difference between the current value and the 
min value, divided by the range of the column values.



Example
df['Value'] = (df['Value']-df['Value'].min()) / 

(df['Value'].max()-df['Value'].min())

Value

1

3

4

Value

0

0.67

1MAX

MIN



z-score
Z-Score converts every value of a column into a number around 0. 

Typical values obtained by a z-score transformation range from -3 and 3. 

The new value is calculated as the difference between the current value and the 
average value, divided by the standard deviation.



Example
df['Value'] = (df['Value']-df['Value'].mean()) / 

df['Value'].std()

Value

1

3

4

Value

-1.34

0.26

1.07

MEAN: 2.66 STD: 1.25



Log scaling
Log Scaling involves the conversion of a column to the logarithmic scale. 

If we want to use the natural logarithm, we can use the log() function of the 
numpy library.

We must deal with log(0) because it does not exist



Example
df['Value'] = df['Value'].apply(lambda x: np.log(x) if x != 

0 else 0)

Value

1

3

4

Value

0

1.09

1.39



Clipping
Clipping involves the capping of all values below or above a certain value. Clipping 
is useful when a column contains some outliers. 

We can set a maximum vmax and a minimum value vmin and set all outliers 
greater than the maximum value to vmax and all the outliers lower than the 
minimum value to vmin.



Example
vmax = 35

vmin = 2

df['Value'] = df['Value'].apply(lambda x: vmax if x > vmax 
else vmin if x < vmin else x)

Value

1

30

40

Value

2

30

35



Data Standardization
Standardization transforms data to have a mean of zero 

and a standard deviation of 1.



Techniques for standardization

● z-score
● z-map



z-score
The new value is calculated as the difference between the current value and the 
average value, divided by the standard deviation.

We can use the zscore() function of the scipy.stats library.



Example
from scipy.stats import zscore
df['Value'] = zscore(df['Value'])

Value

1

3

4

Value

-1.34

0.26

1.07

MEAN: 2.66 STD: 1.25



z-map
The new value is calculated as the difference between the current value and the 
average value of a comparison array, divided by the standard deviation of a 
comparison array. 

We can use the zmap() function of the scipy.stats library.



Example
from scipy.stats import zmap
df['Value'] = zmap(df['Value'], df['Count'])

Value Count

1 3

3 4

4 5

Value Count

-3.67 3

-1.22 4

0 5



Data Binning
Data binning (or bucketing) groups data in bins (or 

buckets), in the sense that it replaces values contained into 
a small interval with a single representative value for that 

interval.



Binning

Binning can be applied to convert numeric values to categorical or to 
sample (quantize) numeric values.

Binning is a technique for data smoothing. Data smoothing is 
employed to remove noise from data. 



Techniques for binning

● convert numeric to categorical
○ binning by distance
○ binning by frequency



Binning by distance - cut()
● Define the bin edges
● Convert numeric into categorical variables
● Define the number of bins and the associated labels

Size

1000

5

500

100

250

400

Size

very large

small

large

medium

large

large

# bins = 4

Label Ranges

small 0-50

medium 51-100

large 101-500

very large > 500



Example
import numpy as np

bins = [ 0, 50, 100, 500, 1000 ]

labels = ['small', 'medium', 'large','very large']

df['Size'] = pd.cut(df['Size'] , bins=bins, labels=labels, 
include_lowest=True)



Example 2 - Linear Space among ranges
min_value = df[‘Size’].min()

max_value = df[‘Size’].max()

n_bins = 4

bins = np.linspace(min_value,max_value,n_bins+1)

array([   5. ,  336.66666667,  668.33333333, 1000. ])

labels = ['small', 'medium', 'large','very large']

df['Size'] = pd.cut(df['Size'] , bins=bins, labels=labels, 
include_lowest=True)



Example 2 (cont.)

Size

1000

5

500

100

250

400

Size

very large

small

medium

small

small

medium

# bins = 4

Label Ranges

small 0 - 5

medium 5 - 336.67

large 336.67-668.33

very large 668.33 - 1000



Binning by frequency - qcut()

● Quantile-based discretization function
● Calculate the size of each bin so that each bin contains (almost) 

the same number of observations, but the bin range will vary.



Example
Size

1000

5

500

100

250

400

10

30

Size

very large

small

very large

medium

large

large

small

medium

# bins = 4
2 observations for each bin

Label

small

medium

large

very large



Example (cont.)
labels = ['small', 'medium', 'large','very large']

n_bins = 4

df['Size'] = pd.qcut(df['Size'], q=n_bins,precision=1, 
labels=labels)

We can set the precision parameter to define the number of decimal points.



Remove Duplicates
Remove all rows that appear at least twice.



The concept of duplicate

Rows 1 and 2 are duplicates

Rows 1, 2 and 3 are duplicates in column Name and Surname

Name Surname Value

Mark Grenn 3

Mark Grenn 3

Mark Grenn 4

1

2

3



Drop duplicates on the basis of all columns

keep just one row for each duplicate

Name Surname Value

Mark Grenn 3

Mark Grenn 4

Do not maintain any row for the duplicate

Name Surname Value

Mark Grenn 4



Drop duplicates on the basis of the Name and 
Surname Columns

Keep just one value for column

Name Surname Value

Mark Grenn 3

Do not maintain any row for the duplicate

Name Surname Value



drop_duplicates()
df1 = df.drop_duplicates()

df2 = df.drop_duplicates(keep=False)

df3 = df.drop_duplicates(subset=["Name", "Surname"])

df4 = df.drop_duplicates(subset=["Name", "Surname"], 
keep=False)


