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1 Introduction

Connectionist models for learning in sequential domains are typically dynami-
cal systems that use hidden states to store contextual information. In principle,
these models can adapt to variable time lags and perform complex sequential
mappings. In spite of several successful applications (mostly based on hidden
Markov models), the general class of sequence learning problems is still far from
being satisfactorily solved. In particular, learning sequential translations is ge-
nerally a hard task and current models seem to exhibit a number of limitations.
One of these limitations, at least for some application domains, is the causality
assumption. A dynamical system is said to be causal if the output at (discrete)
time t does not depend on future inputs. Causality is easy to justify in dyna-
mics that attempt to model the behavior of many physical systems. Clearly, in
these cases the response at time t cannot depend on stimulae that the system
has not yet received as input. As it turns out, non-causal dynamics over infinite
time horizons cannot be realized by any physical or computational device. For
certain categories of finite sequences, however, information from both the past
and the future can be very useful for analysis and predictions at time t. This is
the case, for example, of DNA and protein sequences where the structure and
function of a region in the sequence may strongly depend on events located both
upstream and downstream of the region, sometimes at considerable distances.
Another good example is provided by the off-line translation of a language into
another one. Even in the so-called “simultaneous” translation, it is well known
that interpreters are constantly forced to introduce small delays in order to ac-
quire “future” information within a sentence to resolve semantic ambiguities and
preserve syntactic correctness.

Non-causal dynamics are sometimes used in other disciplines (for example,
Kalman smoothing in optimal control or non-causal digital filters in signal pro-
cessing). However, as far as connectionist models are concerned, the causality
assumption is shared among all the types of models which are capable of map-
ping input sequences to output sequences, including recurrent neural networks
and input-output HMMs (IOHMMs) (Bengio & Frasconi, 1996). In this paper,
we develop a new family of non-causal adaptive architectures where the underly-
ing dynamics are factored using a pair of chained hidden state variables. The two
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chains store contextual information contained in the upstream and downstream
portions of the sequence, respectively. The output at time t is then obtained by
combining the two hidden representations. Interestingly, the same general me-
thodology can be applied to many different classes of graphical models for time
series, such as recurrent neural networks, IOHMMs, tree structured HMMs, and
switching state space models (Ghahramani & Jordan, 1997). For concreteness,
however, in the rest of this paper we focus exclusively on IOHMMs and recurrent
neural networks.

The main motivation of this work is an application to the problem of protein
secondary structure (SS) in molecular biology. The task can be formulated as the
translation of amino acid input strings into corresponding output strings that
describe an approximation of the proteins’ 3D folding. This is a classic problem in
bioinformatics which has been investigated for several years under the machine
learning perspective, and for which significant performance improvements are
still expected. Protein SS prediction can be formulated as the problem of learning
a synchronous sequential translation, from strings in the amino acid alphabet
to strings in the SS alphabet. The task is thus a special form of grammatical
inference (Angluin & Smith, 1983). Nonetheless, to the best of our knowledge no
successful applications of grammatical inference algorithms (neither symbolic,
neither based on connectionist architecture) have been reported. Instead, the
current best predictors are based on feedforward neural networks fed by a fixed-
width window of amino acids, which by construction cannot capture relevant
information contained in distant regions of the protein. Our proposal is motivated
by the assumption that both adaptive dynamics and non-causal processing are
needed to overcome the drawbacks of local fixed-window approaches. While our
current system achieves an overall performance exceeding 75% correct prediction
(at least comparable to the best existing systems) the main emphasis here is on
the development of new algorithmic ideas.

The chapter is organized as follows. In Section 2, we shortly review the lite-
rature on protein SS prediction. In Sections 3 and 4, we introduce the two novel
non-causal architectures: bidirectional IOHMMs (BIOHMMs) and bidirectional
RNNs (BRNNs). In Section 5, we describe the protein datasets used in the ex-
perimental evaluation of the proposed system. Finally, in Section 6 we report
preliminary prediction results on the SS prediction task using our best system
which is based on ensembles of BRNNs.

2 Prediction of Protein Secondary Structure

Proteins are polypeptides chains carrying out most of the basic functions of life
at the molecular level. The chains can be viewed as linear sequences over the
20-letter amino acid alphabets that fold into complex 3D structures essential to
their function. One step towards predicting how a protein folds is the prediction
of its secondary structure. The secondary structure consists of local folding regu-
larities often maintained by hydrogen bonds, and traditionally subdivided into
three classes: alpha helices, beta sheets, and coils, representing all the rest. The
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sequence preferences and correlations involved in these structures have made
secondary structure prediction one of the classical problems in computational
molecular biology. Moreover, this is one application where machine learning me-
thods, particularly neural networks, have had considerable impact yielding the
best performing algorithms to date (Rost & Sander, 1994).

The basic architecture used in the early work of Qian and Sejnowski (1988) is
a fully connected MLP with a single hidden layer that takes as input a local fixed-
size window of amino acids (the typical width is 13), centered around the residue
for which the secondary structure is being predicted. A significant improvement
was obtained by cascading the previous architecture with a second network to
clean up the output of the lower network. The cascaded architecture reached a
performance of Q3 = 64.3%, with the correlations Cα = 0.41, Cβ = 0.31, and
Cγ = 0.41 — see (Baldi et al., 1999) for a review of the standard performance
measures used in this chapter. Although this approach has proven to be quite
successful, using a local fixed width window has well known drawbacks. First,
the size of the input window must be chosen a priori and a fair choice may be
difficult. Second, the number of parameters grows with the window size. This
means that permitting certain far away inputs to exert an effect on the current
prediction is paid in terms of parametric complexity. Hence, one of the main
dangers of the Qian and Sejnowski’s architectures is the overfitting problem.

Most of the subsequent work on predicting protein secondary structure using
NNs has been based on architectures with a local window, although a lot of
effort has been put on devising several improvements. Rost and Sander (1993b,
1993a) started with Qian and Sejnowski’s architecture, but used two methods
to address the overfitting problem. First, they used early stopping. Second, they
used ensemble averages (Hansen & Salamon, 1990; Krogh & Vedelsby, 1995) by
training different networks independently, using different input information and
learning procedures. But the most significant new aspect of their work is the
use of multiple alignments, in the sense that profiles (i.e. position-dependent
frequency vectors derived from multiple alignments), rather than raw amino
acid sequences, are used in the network input. The reasoning behind this is that
multiple alignments contain more information about secondary structure than
do single sequences, the secondary structure being considerably more conserved
than the primary sequence. Although tests made on different data sets can be
hard to compare, the method of Rost and Sander, which resulted in the PHD
prediction server (Rost & Sander, 1993b, 1993a, 1994), still reaches the top levels
of prediction accuracy (Q3 = 72%, measured using 7-fold cross validation). In
the 1996 Asilomar competition CASP2, the PHD method reached Q3 = 74%
accuracy, thus performing much better than virtually all other methods used for
making predictions of secondary structure.

Another interesting recent NN approach is the work of Riis and Krogh (1996),
who address the overfitting problem by careful design of the NN architecture.
Their approach has four main components. First, they reduce the number of free
parameters by using an adaptive encoding of amino acids, that is, by letting the
NN find an optimal and compressed representation of the input letters. Second,
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the authors design a different network for each of the three classes, using bio-
logical prior knowledge. For example, in the case of alpha-helices, they exploit
the helix periodicity by building a three-residue periodicity between the first
and second hidden layers. Third, Riis and Krogh use ensembles of networks and
filtering to improve the prediction. The networks in each ensemble differ, for
instance, in the number of hidden units used. Finally, the authors use multi-
ple alignments together with a weighting scheme. Instead of profiles, for which
the correlations between amino acids in the window are lost, predictions are
made first from single sequences and then combined using multiple alignments.
Most important, perhaps, the basic accuracy achieved is Q3 = 66.3% when using
seven-fold cross-validation on the same database of 126 non-homologous proteins
used by Rost and Sander. In combination with multiple alignments, the method
reaches an overall accuracy of Q3 = 71.3%, and correlation coefficients correla-
tions Cα = 0.59, Cβ = 0.50, and Cγ = 0.41. Thus, in spite of a considerable
amount of architectural design, the final performance is practically identical to
(Rost & Sander, 1994). More recently, Cuff and Barton (1999) have compared
and combined the main existing predictors. On the particular data sets used in
their study, the best isolated predictor is still PHD with Q3 = 71.9%.

A more detailed review of the secondary structure prediction problem and
corresponding results can be found in (Baldi & Brunak, 1998). The important
information however is that there is an emerging consensus of an accuracy upper
bound, slightly above 70-75%, to any prediction method based on local infor-
mation only. By leveraging evolutionary information in the form of multiple
sequence alignments, performance seems to top at the 72-74% level, in spite of
several attempts with sophisticated architectures. Thus it appears today that
to further improve prediction results one must use distant information, in se-
quences and alignments, which is not contained in local input windows. This
is particularly clear in the case of beta sheets where stabilizing bonds can be
formed between amino acids far apart. Using long-ranged information, however,
poses two formidable related challenges: (1) avoiding overfitting related to large-
input-window MLPs (2) being able to detect the sparse and weak long-ranged
signal and combine it with the significant local information, while ignoring the
bulk of less relevant distant information.

The limitations associated with the fixed-size window approach can be miti-
gated using other connectionist models for learning sequential translators, such
as recurrent neural networks (RNNs) or input-output hidden Markov models
(IOHMMs). Unlike feedforward nets, these models employ state dynamics to
store contextual information and they can adapt to variable width temporal
dependencies. Unfortunately there are theoretical reasons suggesting that, de-
spite an adequate representational power, RNNs cannot possibly learn to cap-
ture long-ranged information because of the vanishing gradient problem (Bengio
et al., 1994). However, it is reasonable to believe that RNNs fed by a small win-
dow of amino acids can capture some distant information using less adjustable
weights than MLPs. The usual definition of RNNs only allows “past” context
to be used but, as it turns out, useful information for prediction is located both
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downstream and upstream of a given residue. The architectures described in the
next sections remove these limitations.

3 IOHMMs and Bidirectional IOHMMS

3.1 Markovian Models for Sequence Processing

Hidden Markov models (HMMs) have been introduced several years ago as a
tool for probabilistic sequence modeling. The interest in this area developed
particularly in the Seventies, within the speech recognition research community,
concerned at that time with the limitations of template-based approaches such
as dynamic time-warping. The basic model was very simple, yet so flexible and
effective that it rapidly became extremely popular. During the last years a large
number of variants and improvements over the standard HMM have been pro-
posed and applied. Undoubtedly, Markovian models are now regarded as one of
the most significant state-of-the-art approaches for sequence learning. Besides
speech recognition (see e.g. (Jelinek, 1997) for more recent advances), impor-
tant application of HMMs include sequence analysis in molecular biology (Baldi
et al., 1994; Krogh et al., 1994; Baldi & Chauvin, 1996; Baldi & Brunak, 1998),
time series prediction (Andrew & Dimitriadis, 1994), numerous pattern recogni-
tion problems such as handwriting recognition (Bengio et al., 1995; Bunke et al.,
1995), and, more recently, information extraction (Freitag & McCallum, 2000).
HMMs are also very closely related to stochastic regular languages, making them
interesting in statistical natural language processing (Charniak, 1993). The re-
cent view of the HMM as a particular case of Bayesian networks (Bengio &
Frasconi, 1995; Lucke, 1995; Smyth et al., 1997) has helped the theoretical un-
derstanding and the ability to conceive extensions to the standard model in a
sound and formally elegant framework.

The basic data object being considered by the standard model is limited
to a single sequence of observations (which may be discrete or numerical, and
possibly multivariate). Internally, standard HMMs contain a single hidden state
variable Xt which is repeated in time to form a Markov chain (see Figure 1). The
Markov property states that Xt+1 is conditionally independent of X1, . . . , Xt−1
given Xt. Similarly, each emission variable Yt is independent of the rest given
Xt. These conditional independence assumptions are graphically depicted using
the Bayesian network of Figure 1. More details about the basic model can be
found in (Rabiner, 1989).

Some variants of standard HMMs are conceived as extensions of the internal
structure of the model. For example, factorial HMMs (Ghahramani & Jordan,
1997) contain more than just one hidden state variable (see for example the
middle of Figure 1) and can also introduce complex probabilistic relationships
amongst state variables. However, the data interface towards the external world
essentially remain the same and the basic data objects being processed are still
single sequences.

Another direction that can be explored to extend the data types that can
be dealt with Markovian models is the direction of modeling. A standard HMM
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Fig. 1. Bayesian networks for standard, factorial, and input-output HMMs.

is a generative model. When used in classification tasks (as in isolated word
recognition), one model per class is introduced and each model is typically trai-
ned on positive examples only. This means that no competition among classes is
introduced when estimating the parameters and there is no associative probabi-
listic mapping from a sequence to a class variable. Learning is thus unsupervised
because the model is trained to estimate an unconditional probability density
(in a sense, we might say that a weak form of supervision occurs because class
membership of training examples is only used to select the model to which the
sequence is presented but each model is not aware of other classes). A fully super-
vised method for training HMMs has been early proposed by Brown (1987). The
method modifies the function to be optimized and, instead of using maximum
likelihood estimation, it relies on maximum mutual information (MMI) between
the model and the class variable. In this way, the set of models employed in
a classification task allows to estimate the conditional probability of the class
given the input sequence, thus effectively introducing supervision in the learning
process, as noted by Bridle (1989) and Bengio & Frasconi (1994). However, the
MMI approach only allows to associate a single output variable to the input
sequence. A more general supervised learning problem for sequences consists of
associating a whole output sequence to the input sequence. This is the common
sequence learning setting when using other machine learning approaches, such
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as recurrent neural networks. This extension cannot be achieved by a modifica-
tion of the optimization procedure but requires a different architecture, called
input-output HMM (IOHMM).

As shown at the bottom of Figure 1, three classes of variables are considered.
The emission Yt is called in this case output variable. Hidden states in IOHMMs
are conditionally dependent on the input variable Ut. In this way, state transition
probabilities, although stationary, are non-homogeneous because the probability
of transition is controlled by the current input. The resulting model is thus si-
milar to a stochastic translating automaton (i.e. it can be used to estimate the
conditional probability of the output sequence given the input sequence), but
IOHMMs can also deal with continuous input and output variables. This can
be easily achieved by employing feedforward neural networks as models of the
conditional probabilities P (Yt|Xt, Ut) and P (Xt|Xt−1, Ut) that define the pa-
rameterization of the model. This technique is described in detail in (Baldi &
Chauvin, 1996) and in (Bengio & Frasconi, 1996), along with details about infe-
rence and learning algorithms. These topics are summarized later on in Sections
3.3 and 3.4 for the more general case of the bidirectional architecture presented
in this paper.

3.2 The Bidirectional Architecture

A bidirectional IOHMM is a non-causal model of a stochastic translation defined
on a space of finite sequences. Like IOHMMs, the model describes the conditional
probability distribution P (Y |U), where U = U1, U2, · · · , UT is a generic input
sequence and Y = Y1, Y2, · · · , YT the corresponding output sequence. Although
in the protein application described below both U and Y are symbolic sequences,
the theory holds for sequences of continuous (possibly multivariate) sequences
as well. The model is based on two Markov sequences of hidden state variables,
denoted by F and B, respectively. For each time step, Ft and Bt are discrete
variables with realizations (states) in {f1, · · · , fn} and {b1, · · · , bm}, respectively.
As in HMMs, Ft is assumed to have a causal impact on the next state Ft+1.
Hence, Ft stores contextual information contained on the left of t (propagated
in the forward direction). Symmetrically, Bt is assumed to have a causal impact
on the state Bt−1, thus summarizing information contained on the right of t
(propagated in the backward direction).

As in other Markov models for sequences, several conditional independence
assumptions are made, and can be described by a Bayesian network as shown in
Fig. 2. In particular, the following factorization of the joint distribution holds:

P (Y ,U ,F ,B) =
T∏

t=1

P (Yt|Ft, Bt, Ut)P (Ft|Ft−1, Ut)P (Bt|Bt+1, Ut)P (Ut) (1)

Two boundary variables, BT+1 and F0 are needed to complete the definition of
the model. For simplicity we assume these variables are given, i.e. P (BT+1 =
b1) = P (F0 = f1) = 1, although generic (trainable) distributions could be
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Fig. 2. Bayesian networks for the bidirectional IOHMM.

specified. The suggested architectures can be viewed as a special form of factorial
IOHMMs (with obvious relationships to factorial HMMs and hidden Markov
decision trees (Ghahramani & Jordan, 1997)) where the state space is factorized
into the state variables Ft and Bt.

3.3 Parameterization

The parameters of a Bayesian network specify the local conditional distribution
of each variable given its parents. In the case of BIOHMMs, the local conditional
distributions are P (Yt|Ft, Bt, Ut), P (Ft|Ft−1, Ut), and P (Bt|Bt+1, Ut). Uncondi-
tional distributions for root nodes (i,e, P (Ut)) do not need to be modeled if we
assume that there are no missing data in the input sequences. A quite common
simplification is to assume that the model is stationary, i.e. the above conditio-
nal distributions do not vary over time. Stationarity can be seen as a particular
form of parameter sharing that significantly reduces the degrees of freedom of
the model. In the discrete case, parameters can be explicitly represented using
conditional probability tables. Unfortunately the tables can become very large
when nodes have many parents, or variables have large state spaces. Hence,
a more constrained reparameterization is often desirable and can be achieved
using the neural network techniques. In (Baldi & Chauvin, 1996), the general
approach is demonstrated in the context of HMMs for protein families using, for
the emission probabilities, a single hidden layer shared across all HMM states.
In the case of BIOHMMs, the approach can be extended by introducing three
separate feedforward neural networks for modeling the local conditional proba-
bilities P (Bt|Bt+1, Ut),P (Ft|Ft−1, Ut),P (Yt|Ft, Bt, Ut). Alternatively, a modular
approach using a different MLP for each state can be pursued (Baldi et al.,
1994; Bengio & Frasconi, 1996). The modular approach is also be possible with
BIOHMMs, although in this case the number of subnetworks would become
n+m+nm (one subnetwork for each state bi, f j , and one for each pair (bi, f j)).
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3.4 Inference and Learning

The basic theory for inference and learning in graphical models is well establis-
hed, and can readily be applied to the present architecture. For conciseness,
we focus on the main aspects only. A major difference between BIOHMMs
and IOHMMs or HMMs is that the Bayesian network for BIOHMMs is not
singly connected. Hence direct propagation algorithms such as Pearl’s algorithm
(1988) cannot be used for solving the inference problem. Rather, we adopt the
general junction tree algorithm (Jensen et al., 1990). Given the regular struc-
ture of the network, the junction tree can be constructed by hand. Cliques are
{Ut, Ft, Bt, Yt}, {Ut, Ft, Bt, Ft−1}, and {Ut, Ft, Bt, Bt+1}. Assuming Bt and Ft

have the same number of states (i.e., n = m) space and time complexities are
O(KTn3), where K is the number of input symbols (K = 20 in the case of pro-
teins). However, it should be noted that often in a sequence translation problem
input variables are all observed (this is the case, at least, in the protein problem)
and thus we know a priori that the nodes Ut always receive evidence, both in the
learning and recall phases. Therefore, we can reduce the complexity by a factor
K since only those entries which are known to be non-zero need to be stored and
used in the absorption computations. In the case of proteins, this simple trick
yields a speed up factor of about 20, the size of the input amino acid alphabet.
The advantage is even more pronounced if, instead of a single amino acid, the
input Ut is obtained by taking a window of amino acids, as explained later on.

Learning is formulated in the framework of maximum likelihood and is solved
by the expectation maximization (EM) algorithm. EM is a family of algorithms
for maximum likelihood estimation in the presence of missing (or hidden) va-
riables (in our case, forward and backward states Ft and Bt are the hidden
variables). Let Dc denote the complete data (input and output sequences U and
Y , plus the hidden state sequences F and B) and let D denote the incomplete
data (only the input and output sequences). Furthermore, let Lc denote the
complete data likelihood, i.e.

Lc(θ;Dc) =
∏

training sequences
P (Y ,F ,B|U ,θ).

Since forward and backward states are not observed, logLc(θ;Dc) is a random
variable that cannot be optimized directly. However, given an initial hypothesis
θ̂ on the parameters and observed variables U and Y , it is possible to compute
the expected value of logLc(θ;Dc). Thus, an EM algorithms iteratively fills in
missing variables according to the following procedure:

E-step Compute the auxiliary function

Q(θ, θ̂) .= E[logLc(θ̂;Dc)|θ,D]

M-step Update the parameters by maximizing Q(θ, θ̂) with respect to θ, i.e.

θ̂ ← arg max
θ

Q(θ, θ̂)

and repeat until convergence.
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A well known result is that the above procedure will converge to a local maxi-
mum of the likelihood function (Dempster et al., 1977). A variant of the above
procedure, called generalized EM (GEM) consists of computing a new parameter
vector θ̂ such that Q(θ̂, θ̂) > Q(θ, θ̂) (instead of performing full optimization).
GEM will also converge to a local maximum, although convergence rate may be
slower.

In the case of belief networks, the E-step essentially consists of computing
the expected sufficient statistics for the parameters. In our case these statistics
are the following expected counts:

– Nf
j,l,u: expected number of (forward) transitions from f l to f j when the

input is u (j, l = 1, . . . , n; u = 1, . . . ,K);
– N b

k,�,u: expected number of (backward) transitions from b� to bk when the
input is u (k, � = 1, . . . ,m; u = 1, . . . ,K);

– Ny
i,j,k,u: expected number of times output symbol i is emitted at a given

position t when the forward state at t is f j , backward state at t is bk, and
the input at t is u.

Basically, expected sufficient statistics are computed by inference using the jun-
ction tree algorithm as a subroutine. If local conditional probabilities were mo-
deled by multinomial tables, then the M-step would be straightforward: each
entry in the table would be replaced by the corresponding normalized expec-
ted count (Heckerman, 1997). However, in our case the M-step deserves more
attention because of the neural network reparameterization of the local conditio-
nal probabilities. In fact, maximizing the function Q(θ, θ̂), requires the neural
network weights θ to be adapted to perfectly fit the normalized expected suffi-
cient statistics. Even in the absence of local minima, a complete maximization
would require an expensive inner gradient descent loop, inside the outer EM
loop. Hence, we resorted to a generalized EM algorithm, where a single gra-
dient descent step is performed inside the main loop. The expected sufficient
statistics are used as “soft” targets for training the neural networks. In parti-
cular, for each output unit, the backpropagation delta-error term is obtained
as the difference between the unit activation (before the softmax) and the cor-
responding expected sufficient statistic. For example, consider the network for
estimating the conditional probability of the output Yt, given the forward state
Ft, the backward state Bt, and the input symbol Ut. For each sequence and
for each time step t, let ai,t be the activation of the i-th output unit of this
network when fed by Ft = f j , Bt = bk and Ut = ut (where ut is fixed ac-
cording to the input training sequence). Let zi,j,k,t = exp(ai,t)/(

∑
� exp(a�,t).

We have zi,j,k,t = P (Yt = yi|Ft = f j , Bt = bk, Ut = ut,θ). Moreover, let
ẑi,j,k,t = P (Yt = yi, Ft = f j , Bt = bk, Ut = ut, training data, θ̂) denote the
contribution in this sequence at position t to the expected sufficient statistics
(obviously, ẑi,j,k,t = 0 if the observed output at position t, yt �= yi). Then, the
error function for training this network is given by

C =
∑

training sequences

∑
t

∑
i,j,k

ẑi,j,k,t log zi,j,k,t. (2)
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Similar equations hold for the other two networks modeling P (Ft|Ft−1, Ut), and
P (Bt|Bt+1, Ut).

4 Bidirectional Recurrent Neural Nets

4.1 The Architecture

The basic idea underlying the architecture of BIOHMMs can be adapted to
recurrent neural networks. Suppose in this case Ft and Bt are two vectors in IRn

and IRm, respectively. Then consider the following (deterministic) dynamics, in
vector notation:

Ft = φ(Ft−1, Ut) (3)
Bt = β(Bt+1, Ut) (4)

where φ() and β() are adaptive nonlinear transition functions. The vector Ut ∈
IRK encodes the input at time t (for example, using one-hot encoding in the
case of amino acids). Equations 3 and 4 are completed by the two boundary
conditions F0 = BT+1 = 0. Transition functions φ() and β() are realized by two
MLPs Nφ and Nβ , respectively. In particular, for MLP Nβ we have:

bi,t = σ




Nβ∑
j=1

ωijhj,t


 i = 1, . . . n (5)

where σ is the logistic function, Nβ is the number of hidden units in MLP Nβ ,
bi,t is the i-th component of Bt and

hj,t = σ




Nβ∑
�=1

wj,�b�,t+1 +
k∑

�=1

vj,�u�,t


 j = 1, . . . , Nβ (6)

is the output of j-th hidden unit. In the above equations, ωij , wj,� and vj,� are
adaptive weights. Network Nφ is described by similar equations except that the
forward state Ft is used instead of the backward state Bt.

Also, consider the mapping

Yt = η(Ft, Bt, Ut) (7)

where Yt ∈ IRs is the output prediction and η() is realized by a third MLP Nη.
In the case of classification, s is the number of classes and Nη has a softmax
output layer so that outputs can be interpreted as conditional class probabilities.
The neural network architecture resulting from eqs. 3,4, and 7 is shown in Fig.
3, where for simplicity all the MLPs have a single hidden layer (several variants
are conceivable by varying the number and the location of the hidden layers).
Like in Elman’s simple recurrent networks, the hidden state Ft is copied back
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Fig. 3. A bidirectional RNN.

to the input. This is graphically represented in Fig. 3 using the causal shift ope-
rator q−1 that operates on a generic temporal variable Xt and is symbolically
defined as Xt−1 = q−1Xt. The shift operator with the composition operation
forms a multiplicative group. In particular, q, the inverse (or non-causal) shift
operator is defined Xt+1 = qXt and q−1q = 1. As shown in Fig. 3, a non-causal
copy is performed on the hidden state Bt. Clearly, if we remove the backward
chain {Bt} we obtain a standard first-order RNN. A BRNN is stationary if the
connection weights in networks Nβ , Nφ and Nη do not change over time. Statio-
narity will be assumed throughout the paper. It is worth noting that using MLPs
for implementing β() and φ() is just one of the available options as a result of
their well known universal approximation properties. Similar generalizations of
second-order RNN (Giles et al., 1992) or recurrent radial basis functions (Fras-
coni et al., 1996) are easily conceivable following the approach here described.

4.2 Inference and Learning

As for standard RNNs, it is convenient to describe inference and learning in
BRNNs by unrolling the network on the input sequence. The resulting graphi-
cal model has exactly the same form as the BIOHMM network shown in Fig.
2. Actually, the BRNN can be interpreted as a Bayesian network, except for
some differences as explained below. First, causal relationships among nodes
linked by a directed edge should be regarded as deterministic rather than pro-
babilistic. In particular, P (Yt|Ft, Bt, Ut) should be regarded as a delta-Dirac
distribution centered on a value corresponding to Yt = η(Ft, Bt, Ut). Similarly,
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P (Ft|Ft−1, Ut) and P (Bt|Bt+1, Ut) are replaced by Dirac distributions centered
at Ft = φ(Ft−1, Ut) and Bt = β(Bt+1, Ut), respectively. The second difference is
that state variables in this case are vectors of real variables rather than symbols
in a finite alphabet.

The inference algorithm in BRNNs is straightforward. Starting from F0 = 0,
all the states Ft are updated from left to right, following eq. 3. Similarly, sta-
tes Bt are updated from right to left using the boundary condition BT+1 = 0
and following eq. 4. After forward and backward propagation have taken place,
predictions Yt can be computed using eq. 7. The main advantage with BRNNs
(compared to BIOHMMs) is that inference is much more efficient. The intuitive
reason is that in the case of BRNNs, the hidden states Ft and Bt evolve inde-
pendently (without affecting each other). However, in the case of BIOHMMs, Ft

and Bt, although conditionally independent given Ut, become dependent when
Yt is also given (as it happens during learning). This is reflected by the fact
that cliques relative to Bt and Ft in the junction tree contain triplets of state
variables, thus yielding a time complexity proportional to n3 for each time step
(if both variable have the same number of states n). In the case of BRNNs,
assuming that MLPs Nβ and Nφ have O(n) hidden units, time complexity is
only proportional to n2 for each time step and this can be further reduced by
limiting the number of hidden units.

The learning algorithm is based on maximum-likelihood. For simplicity we
limit our discussion to classification. In this case, the cost function (or negative
log likelihood) has the form of a cross-entropy:

C(D; θ) =
∑

training sequences

s∑
i=1

yi,t log yi,t

where yi,t is the target output (equal to 1 if the class at position t is i, and
equal to 0 otherwise) and yi,t is the i-th output of Nη at position t. Optimiza-
tion is based on gradient descent, where gradients are computed by a noncausal
version of backpropagation through time. The intuitive idea behind backpropa-
gation through time is to flatten-out cycles in the recurrent network by unrolling
the recursive computation of state variables over time. This essentially consists
of replicating the transition network for each time step, so that a feedforward
network with shared weights is obtained. The same unrolling procedure can be
applied in more general cases than just sequences. For example it can be ap-
plied to trees and graphs, provided that the resulting unrolled network is acyclic
(Goller & Kuechler, 1996; Frasconi et al., 1998). In the case of BRNNs, it is
immediate to recognize that the unrolling procedure yields an acyclic graph (if
we only look at the main variables Yy,Bt,Ft, and Ut, the unrolled network has
the same topology as the Bayesian network shown in Figure 2). The unrolled
network can be divided into slices associated with different position indices t,
and for each slice there is exactly one replica of each network Nφ, Nβ , and Nη.
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The error signal is first computed for the leaf nodes (corresponding to the output
variables Yt):

δi,t
.=

∂C

∂ai,t
= yi,t − yi,t i = 1, . . . , s; t = 1, . . . , T

where ai,t denotes the activation of the i-th output unit of Nη (before the soft-
max). Then error is then propagated over time (in both directions) by following
any reverse topological sort of the unrolled net. For example, the delta-errors
of Nφ at position t are computed from the delta-errors at the input of Nη at t,
and from the delta-errors at the first n inputs of Nφ at position t+ 1. Similarly,
the delta-errors of Nβ at position t are computed from the delta-errors at the
input of Nη at t, and from the delta-errors at the last m inputs of Nβ at position
t− 1. Obviously, the computation of delta-errors also involves backpropagation
through the hidden layers of the MLPs. Since the model is stationary, weights are
shared among the different replicas of the MLPs at different time steps. Hence,
the total gradients are obtained by summing all the contributions associated to
different time steps. There are three possibilities: First, if i and j are any pair of
connected neurons within the same position slice t, δi,t denotes the delta-error
of unit i at t, and xj,t denotes the output of neuron j at t, then

∂C

∂wij
=

T∑
t=1

δi,txj,t.

Second, if i is in the hidden layer of Nβ at slice t and j is in the output layer of
Nβ at slice t + 1, then

∂C

∂ωij
=

T∑
t=1

δi,tbj,t+1.

Finally, if i is in the hidden layer of Nφ at slice t and j is in the output layer of
Nφ at slice t− 1, then

∂C

∂ωij
=

T∑
t=1

δi,tfj,t−1.

4.3 Embedded Memories and Other Architectural Variants

One of the principal difficulties when training standard RNNs is the problem of
vanishing gradients. In (Bengio et al., 1994), it is shown that one of the following
two undesirable situations necessarily arise: either the system is unable to ro-
bustly store past information about its inputs, or gradients vanish exponentially.
Intuitively, in order to contribute to the output at time t, the input signal at
time t−τ must be propagated in the forward chain through τ replicas of the NN
that implements the state transition function. However, during gradient compu-
tation, error signals must be propagated backward along the same path. Each
propagation step involves a multiplication between the error vector and the Ja-
cobian matrix associated with the transition function. Unfortunately, when the
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dynamics develop attractors that allow the system to reliably store past infor-
mation, the norm of the Jacobian is < 1. Hence, when τ is large, gradients of the
error at time t with respect to inputs at time t− τ tend to vanish exponentially.
Similarly, in the case of BRNNs, error propagation in both the forward and the
backward chains is subject to exponential decay. Thus, although the model has
in principle the capability of storing remote information, such information can-
not be learnt effectively. Clearly, this is a theoretical argument and its practical
impact needs to be evaluated on a per case basis.

In practice, in the case of proteins, the BRNN can reliably utilize input in-
formation located within about ±15 amino acids (i.e., the total effective window
size is about 31). This was empirically evaluated by feeding the model with
increasingly long protein fragments. We observed that the average predictions
at the central residues did not significantly change if fragments were extended
beyond 41 amino acids. This is an improvement over standard NNs with input
window sizes ranging from 11 to 17 amino acids (Rost & Sander, 1994; Riis &
Krogh, 1996). Yet, there is presumably relevant information located at longer
distances that our model have not been able to discover so far.

To limit this problem, we propose a remedy motivated by recent studies of
NARX networks (Lin et al., 1996). In these networks, the vanishing gradients
problem is mitigated by the use of an explicit delay line applied to the output,
which provides shorter paths for the effective propagation of error signals. The
very same idea cannot be applied directly to BRNNs since output feedback,
combined with bidirectional propagation, would generate cycles in the unrolled
network. However, as suggested in (Lin et al., 1998), a similar mechanism can be
implemented by inserting multiple delays in the connections among hidden state
units rather than output units. The modified dynamics in the case of BRNNs
are defined as follows:

Ft = φ(Ft−1, Ft−2, . . . , Ft−s, It)
Bt = β(Bt+1, Bt+2, . . . , Bt+s, It).

(8)

The explicit dependence on forward or backward states introduces shortcut
connections in the graphical model, forming shorter paths along which gradients
can be propagated. This is akin to introducing higher order Markov chains in
the probabilistic version. However, unlike Markov chains where the number of
parameters would grow exponentially with s, in the present case the number
of parameters grows only linearly with s. To reduce the number of parameters,
a simplified version of Eq. 8 limits the dependencies to state vectors located s
residues apart from t:

Ft = φ(Ft−1, Ft−s, It)
Bt = β(Bt+1, t + s, It).

(9)

Another variant of the basic architecture which also allows to increase the effec-
tive window size consists in feeding the output networks with a window in the
forward and backward state chains. In this case, the prediction is computed as

Ot = η(Ft−k, . . . , Ft+k, Bt−k, . . . , Bt+k, It). (10)
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5 Datasets

The assignment of the SS categories to the experimentally determined 3D struc-
ture is nontrivial and is usually performed by the widely used DSSP program
(Kabsch & Sander, 1983). DSSP works by assigning potential backbone hydrogen
bonds (based on the 3D coordinates of the backbone atoms) and subsequently
by identifying repetitive bonding patterns. Two alternatives to this assignment
scheme are the programs STRIDE and DEFINE. In addition to hydrogen bonds,
STRIDE uses also dihedral angles (Frishman & Argos, 1995). DEFINE uses dif-
ference distance matrices for evaluating the match of interatomic distances in
the protein to those from idealized SS (Richards & Kundrot, 1988). While assig-
nment methods impact prediction performance to some extent (Cuff & Barton,
1999), here we concentrate exclusively on the DSSP assignments. A number of
data sets were used to develop and test our algorithms. We will refer to each set
using the number of sequences contained in it. The first high quality data used
in this study was extracted from the Brookhaven Protein Data Bank (PDB)
(Bernstein & et al., 1977) release 77 and subsequently updated. We excluded
entries if:

– They were not determined by X-ray diffraction, since no commonly used
measure of quality is available for NMR or theoretical model structures.

– The program DSSP could not produce an output, since we wanted to use the
DSSP assignment of protein secondary structure (Kabsch & Sander, 1983).

– The protein had physical chain breaks (defined as neighboring amino acids
in the sequence having Cα-distances exceeding 4.0Å).

– They had a resolution worse than 1.9Å, since resolutions better than this
enables the crystallographer to remove most errors from their models.

– Chains with a length of less than 30 amino acids were also discarded.
– From the remaining chains, a representative subset with low pairwise se-

quence similarities was selected by running the algorithm #1 of Hobohm
et al. (1992), using the local alignment procedure search (rigorous Smith-
Waterman algorithm) (Myers & Miller, 1988; Pearson, 1990) using the
pam120 matrix, with gap penalties -12, -4.

Thus we obtained a data set consisting of 464 distinct protein chains, correspon-
ding to 123,752 amino acids, roughly 10 times more than what was available
in (Qian & Sejnowski, 1988). Another set we used is the EMBL non-redundant
PDB subsets that can be accessed by ftp at the site ftp.embl-heidelberg.de. Data
details are in the file /pub/databases/pdb select/README. The extraction is
based on the file /pub/databases/pdb select/1998 june.25.gz containing a set
of non-redundant (25%) PDB chains. After removing 74 chains on which the
DSSP program crashes, we obtained another set of 824 sequences, overlapping
in part with the former ones. In addition, we also used the original set of 126
sequences of Rost and Sander (corresponding to 23,348 amino acid positions) as
well as the complementary set of 396 non-homologue sequences (62,189 amino
acids) prepared by Cuff and Barton (1999). Both sets can be downloaded at
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Fig. 4. Unfolded bidirectional model for protein SS prediction. The model receives as
input an explicit window of amino acids of size w (w = 3 in the figure).

http://circinus.ebi.ac.uk:8081/pred res/. Finally, we also constructed two more
data sets, containing all proteins in PDB which are at least 30 amino acids long,
produce DSSP output without chain breaks, and have a resolution of at least
2.5 Å. Furthermore the proteins in both sets have less than 25% identity to
any of the 126 sequences of Rost and Sander. In both sets, internal homology
is reduced again by Hobohm’s #1 algorithm, keeping the PDB sequences with
the best resolution. For one set, we use the standard 25% threshold curve for
homology reduction. For the other set, however, we raise, the threshold curve
by 25%. The set with 25% homology threshold contains 826 sequences, corre-
sponding to a total of 193,249 amino acid positions, while the set with 50%
homology threshold contains 1180 sequences (282,303 amino acids). Thus, to
the best of our knowledge, our experiments are based on the currently largest
available corpora of non-redundant data. In all but one experiment (see below),
profiles were obtained from the HSSP database (Schneider et al., 1997) available
at http://www.sander.embl-heidelberg.de/hssp/.

6 Architecture Details and Experimental Results

We carried out several preliminary experiments to tune up and evaluate the pre-
diction system. DSSP classes were assigned to three secondary structure classes
α, β, and γ as follows: α is formed by DSSP class H, β by E, and γ by everything
else (including DSSP classes F, S, T, B, and I). This assignment is slightly dif-
ferent from other assignments reported in the literature. For example, in (Riis
& Krogh, 1996), a contains DSSP classes H, G, and I. In the CASP competition
(Moult & et al., 1997; CASP3, 1998), α contains H, and G, while β contains
E, and B. In a first set of experiments, we used the 824 sequences dataset and
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reserved 2/3 of the available data for training, and 1/3 for testing. We trained
several BRNNs of different sizes and different architectural details. In all expe-
riments, we set n = m and we tried different values for n and k (see Eq. 10).
The number of free parameters varied from about 1400 to 2600. Qualitatively
we observed that using k > 0 can improve accuracy, but increasing n beyond 12
does not help because of overfitting. Results for this method, without using pro-
files, are summarized in the first rows of Table 1. By comparison, we also trained
several feedforward NNs on the same data. The best feedforward NN achieved
Q3 = 67.2% accuracy using a window of 13 amino acids. By enriching the feed-
forward architecture with adaptive input encoding and output filtering, as in
(Riis & Krogh, 1996), 68.5% accuracy was achieved (output filtering actually
increases the length of the input window). Hence, the best BRNN outperforms
our best feedforward network, even when additional architectural design is in-
cluded. Subsequent experiments included the use of profiles. Table 1 reports the
best results obtained by using multiple alignments, both at the input and out-
put levels. Profiles at the input level consistently yielded better results. The best
feedforward networks trained in the same conditions achieve Q3 = 73.0% and
72.3%, respectively.

Table 1. Experimental results using a single BRNN and 1/3 of the data as test set.
hφ, hβ and hη are the number of hidden units for the transition networks Nφ, Nβ and
the output network Nη respectively. We always set hφ = hβ .

Profiles n k hφ hη W Accuracy
No 7 2 8 11 1611 Q3 =68.7%
No 9 2 8 11 1899 Q3 =68.8%
No 7 3 8 11 1919 Q3 =68.6%
No 8 3 9 11 2181 Q3 =68.8%
No 20 0 17 11 2601 Q3 =67.6%
Output 9 2 8 11 1899 Q3 =72.6%
Output 8 3 9 11 2181 Q3 =72.7%
Input 9 2 8 11 1899 Q3 =73.3%
Input 8 3 9 11 2181 Q3 =73.4%
Input 12 3 9 11 2565 Q3 =73.6%

In a second set of experiments (also based on the 824 sequences), we combi-
ned several BRNNs to form an ensemble, as in (Krogh & Vedelsby, 1995), using a
simple averaging scheme. Different networks were obtained by varying architec-
tural details such as n, k, and the number of hidden units. Combining 6 networks
using profiles at the input level we obtained the best accuracy Q3 = 75.1%, mea-
sured in this case using 7-fold cross validation. We also tried to include in the
ensemble a set of 4 BRNNs using profiles at the output level but performance in
this way slightly decreased to 75.0%. A study for assessing the capabilities of the
model in capturing long ranged information was also performed. Results indicate
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that the model is sensitive to information located within about ±15 amino acids.
Although this value is not very high, it should be remarked that typical feedfor-
ward nets reported in the literature do not exploit information beyond τ = 8.
To further explore the long-range information problem we conducted another
set of experiments using BRNNs with simplified embedded memories (see Eq.
9). In this case, as for the results reported in Table 1, we used a single model
(rather than a mixture) and the test set method (1/3 of the available data) for
measuring accuracy. We tried all values of s from 1 to 10, but in no case we could
observe a significant performance improvement on the test set. Interestingly, our
experiments showed that using shortcuts reduces the convergence difficulties as-
sociated with vanishing gradients: accuracy on the training set increased from
75.7% using no shortcuts to 76.9% with s = 3. On the other hand, the gap
between training set and test set performance also increased. Thus overfitting
offset the convergence improvement, probably because long-range information is
too sparse and noisy.

Another experiment was conducted by training on all the 824 sequences and
using the official test sequences used at the 1998 CASP3 competition. In this
case, we adopted a slightly different class assignment for training (DSSP classes
H, G, and I were merged together). The CASP3 competition was won by one
of the two programs entered by D. Jones, which selected 23 out of 35 proteins
obtaining a performance of Q3 = 77.6% per protein, or Q3 = 75.5% per resi-
due (Jones, 1999). We evaluated that system on the whole set of 35 proteins by
using Jones’ prediction server at http://137.205.156.147/psiform.html. It achie-
ved Q3 = 74.3% per residue and 76.2% per protein. On the same 35 sequences
our system achieved Q3 = 73.0% per residue and Q3 = 74.6% per protein. A
test set of 35 proteins is relatively small for drawing general conclusions. Still,
we believe that this result confirms the effectiveness of the proposed model, es-
pecially in consideration of the fact that Jones’ system builds upon more recent
profiles from TrEMBL database (Bairoch & Apweiler, 1999). These profiles con-
tain many more sequences than our profiles, which are based on the older HSSP
database, leaving room for further improvements of our system.

Table 2. First confusion matrix derived with an ensemble of 6 BRNNs with 2/3-1/3
data splitting. First row provides percentages of predicted helices, sheets, and coils
within (DSSP-assigned) helices.

pred α pred β pred γ

α 78.61% 3.13% 18.26%
β 5.00% 61.49% 33.51%
γ 10.64% 9.37% 79.99%

To further compare our system with other predictors, as in (Cuff & Barton,
1999), we also trained an ensemble of BRNNs using the 126 sequences in the Rost
and Sander data set. The performance on the 396 test sequences prepared by Cuff
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Table 3. Same as above. First row provides percentages of (DSSP-assigned) helices,
sheets, and coils within the predicted helices.

α β γ

pred α 80.77% 3.74% 15.49%
pred β 5.11% 73.17% 21.72%
pred γ 11.71% 15.63% 72.66%

and Barton is Q3 = 72.0%. This is slightly better than the 71.9% score for the
single best predictor (PHD) amongst (DSC, PHD, NNSSP, and PREDATOR)
reported in (Cuff & Barton, 1999). This result is also achieved with the CASP
class assignment. Finally, we also trained an ensemble of 6 BRNNs using the
set containing 826 sequences with less than 25% identity to the 126 sequences
of Rost and Sander. When tested on the 126 sequences, the system achieves
Q3 = 74.7% per residue, with correlation coefficients Cα = 0.692, Cβ = 0.571,
and Cγ = 0.544. This is again achieved with the harder CASP assignment. In
contrast, the Q3 = 75.1% described above was obtained by 7 fold cross-validation
on 824 sequences and with the easier class assignment (H → α, E → β, the
rest → γ). The same experiment was performed using the larger training set of
1,180 sequences having also less than 25% identity with the 126 sequences of
Rost and Sander, but with a less stringent redundancy reduction requirement.
In this case, and with the same hard assignment, the results are Q3 = 75.3%
with correlation coefficients Cα = 0.704, Cβ = 0.583, and Cγ = 0.550. The
corresponding confusion matrices are given in Tables 2 and 3. Table 4 provides
a summary of the main results with different datasets.

Table 4. Summary of main performance results.

Training sequences Test sequences Class assignment Performance
824 (2/3) 824 (1/3) Default Q3 = 75.1%
824 35 CASP Q3 = 73.0%
126 396 CASP Q3 = 72.0%
826 126 CASP Q3 = 74.7%
1180 126 CASP Q3 = 75.3%

Although in principle bidirectional models can memorize all the past and
future information using the state variables Ft and Bt, we also tried to employ a
window of amino acids as input at time t. In so doing, the input Ut for the model
is a window of w amino acids centered around the t-th residue in the sequence (see
Fig. 4). As explained in the previous sections, both with BIOHMMs and BRNNs
the prediction Yt is produced by an MLP fed by Ut (a window of amino acids) and
the state variables Ft and Bt. Hence, compared to the basic architecture of Qian
and Sejnowski, our architecture is enriched with more contextual information
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provided by the state variables. The main advantage of the present proposal is
that w can be kept quite small (even reduced to a single amino acid), and yet
relatively distant information propagated through the state variables. Because
of stationarity (weight sharing) this approach allows a better control over the
number of free parameters, thus reducing the risk of data overfitting.

In a set of preliminary experiments, we have tried different architectures and
model sizes. In the case of BIOHMMs, the best result was obtained using w = 11,
n = m = 10, 20 hidden units for the output network and 6 hidden units for the
forward and backward state transition networks. The resulting model has about
105 parameters in total. The correct residue prediction rate is 68%, measured by
reserving 1/3 of the available sequences as a test set. This result was obtained
without using output filtering or multiple alignments. Unfortunately, n = 10
seems too small a number for storing enough contextual information. On the
other hand, higher values of n are currently prohibitive for today’s computational
resources since complexity scales up with n3.

In the case of BRNNs, we were able to obtain slightly better performances,
with significant computational savings. A set of initial experiments indicated
that redefining the output function as Yt = η(Ft−k, . . . , Ft+k, Bt−k, Bt+k, Ut)
and using w = 1 yields the best results. In subsequent experiments, we have
trained 4 different BRNNs with n = m varying from 7 to 9, and k varying
from 2 to 4. The number of free parameters varies from about 1400 to 2100. An
RNN can develop quite complex nonlinear dynamics and, as a result, n BRNN
state units are able to store more context than n BIOHMM discrete states. The
performances of the 4 networks are basically identical, achieving about 68.8% ac-
curacy measured on the test set. While these results do not lead to an immediate
improvement, it is interesting to remark that using a static MLP we obtained
roughly the same accuracy only after the insertion of additional architectural
design as in (Riis & Krogh, 1996): adaptive input encoding and output filtering.
More precisely, the MLP has w = 13, with 5 units for adaptive encoding (a total
of about 1800 weights) and achieves 68.9%. Interestingly, although the 4 BRNNs
and the static MLP achieve roughly the same overall accuracy, distributions of
errors on the three classes are quite different. This suggests that combining pre-
dictions from filtered MLP and BRNNs could improve performance. Indeed, by
constructing an ensemble with the five networks, accuracy increased to 69.5%.
Finally we enriched the system using an output filtering network on the top of
the ensemble and adding multiple alignment profiles as provided by the HSSP
database (Schneider et al., 1997). In this preliminary version of the system, we
have not included commonly used features like entropy and number of insertions
and deletions. The performance of the overall system is 73.3%.

In a second set of experiments, we measured accuracy using 7-fold cross
validation. The usage of more training data in each experiments seems to have a
positive effect. The performance of the five networks ensemble is 69.6% without
alignments and 73.7% using alignments. We must remark that these results
are not directly comparable with those reported by Rost and Sander (1994)
because our dataset contains more proteins and the assignment of residues to
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SS categories is slightly different (in our case the class coil includes everything
except DSSP classes ’H’ and ’E’).

The last experiment is based on a set of 35 proteins from the 1998 edition
of “Critical Assessment of Protein Structure Prediction” (Moult & et al., 1997;
CASP3, 1998). This unique experiment attempts to gauge the current state of
the art in protein structure prediction by means of blind prediction. Sequences
of a number of target proteins, which are in the process of being solved, are
made available to predictors before the experimental structures are available.
Although we tried our system only after the competition was closed, we believe
that result obtained on this dataset are still interesting. Our system achieved
71.78% correct residue prediction on the 35 sequences. A direct comparison with
other systems is difficult. The best system (labeled JONES-2 in the CASP3
web site) achieves 75.5% correct residue prediction on a subset of 23 proteins
(performance of JONES-2 on the remaining 12 proteins is not available). It
should be also remarked that, in the CASP evaluation system, DSSP class ’G’
(3-10 helix) is assigned to ’H’ and DSSP class ’B’ (beta bridge) is assigned to
’E’. Moreover, accuracy is measured by averaging the correct prediction fraction
over single proteins, thus biasing sensitivity towards shorter sequences. Using
this convention, our accuracy is 74.1% on 35 proteins while JONES-2 achieves
77.6% on 23 proteins. If we focus only on the 24 proteins for which our network
has the highest prediction confidence (the criterion is based on the entropy at
the softmax output layer of the network), then the performance of our system
is 77.5%, although it is likely that in so doing we are including sequences which
are easy to predict. More importantly, JONES-2 results have been obtained
using profiles from TrEMBL database (Bairoch & Apweiler, 1999). These profiles
contain many more sequences than our profiles which are based on the older
HSSP database. We believe that this leaves room for further improvements.

7 Conclusion

In this paper, we have proposed two novel architectures for dealing with sequence
learning problems in which data is not obtained from physical measurements
over time. The new architectures remove the causality assumption that charac-
terize current connectionist approaches to learning sequential translations. Using
BRNNs on the protein secondary structure prediction task appears to be very
promising. Our performance is very close to the best existing systems although
our usage of profiles is not as sophisticated. One improvement of our prediction
system could be obtained by using profiles from the TrEMBL database.
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