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Inference as Message Passing

How to infer the distribution P(Xunk |Xobs) of a number of
random variables Xunk in the graphical model, given the
observed values of other variables Xobs

Directed and undirected
models of fixed structure

Exact inference
Passing messages (vectors of
information) on the structure of
the graphical model following a
propagation direction
Works for chains, trees and can
be used in (some) graphs

Approximated inference can use
approximations of the distribution
(variational) or can estimate its
expectation using examples
(sampling)
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Today’s Lecture

Exact inference on a chain with observed and unobserved
variables
A probabilistic model for sequences: Hidden Markov
Models (HMMs)
Using inference to learn: the Expectation-Maximization
algorithm for HMMs
Graphical models with varying structure: Dynamic
Bayesian Networks
Application examples
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Sequences

A sequence y is a collection of observations yt where t
represent the position of the element according to a
(complete) order (e.g. time)
Reference population is a set of i.i.d sequences y1, . . . ,yN

Different sequences y1, . . . ,yN generally have different
lengths T 1, . . . ,T N
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Sequences in Speech Processing
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Sequences in Biology
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Markov Chain

First-Order Markov Chain
Directed graphical model for sequences s.t. element Xt only
depends on its predecessor in the sequence

Joint probability factorizes as

P(X) = P(X1, . . . ,XT ) = P(X1)
T∏

t=2

P(Xt |Xt−1)

P(Xt |Xt−1) is the transition distribution; P(X1) is the prior
distribution
General form: an L-th order Markov chain is such that Xt
depends on L predecessors

P(Xt |Xt−1, . . . ,Xt−L)
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Observed Markov Chains

Can we use a Markov chain to model the relationship between
observed elements in a sequence?

Of course yes, but...

Does it make sense to represent P(is|cat)?
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Hidden Markov Model (HMM) (I)

Stochastic process where transition dynamics is disentangled
from observations generated by the process

State transition is an unobserved (hidden/latent) process
characterized by the hidden state variables St

St are often discrete with value in {1, . . . ,C}
Multinomial state transition and prior probability
(stationariety assumption)

Aij = P(St = i |St−1 = j) and πi = P(St = i)
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Hidden Markov Model (HMM) (II)

Stochastic process where transition dynamics is disentangled
from observations generated by the process

Observations are generated by the emission distribution

bi(yt) = P(Yt = yt |St = i)
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HMM Joint Probability Factorization

Discrete-state HMMs are parameterized by θ = (π,A,B) and
the finite number of hidden states C

State transition and prior distribution A and π
Emission distribution B (or its parameters)

P(Y =y) =
∑

s

P(Y = y,S = s)

=
∑

s1,...,sT

{P(S1 = s1)P(Y1 = y1|S1 = s1)

T∏
t=2

P(St = st |St−1 = st−1)P(Yt = yt |St = st)

}
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HMMs as a Recursive Model

A graphical framework describing how contextual information is
recursively encoded by both probabilistic and neural models

Indicates that the hidden state St at
time t is dependent on context
information from

The previous time step s−1

Two time steps earlier s−2

...

When applying the recursive model to a
sequence (unfolding), it generates the
corresponding directed graphical model
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3 Notable Inference Problems

Definition (Smoothing)

Given a model θ and an observed sequence y, determine the
distribution of the t-th hidden state P(St |Y = y, θ)

Definition (Learning)

Given a dataset of N observed sequences D = {y1, . . . ,yN}
and the number of hidden states C, find the parameters π, A
and B that maximize the probability of model θ = {π,A,B}
having generated the sequences in D

Definition (Optimal State Assignment)

Given a model θ and an observed sequence y, find an optimal
state assignment s = s∗1, . . . , s

∗
T for the hidden Markov chain
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Forward-Backward Algorithm

Smoothing - How do we determine the posterior P(St = i |y)?
Exploit factorization

P(St = i |y) ∝P(St = i ,y) = P(St = i ,Y1:t ,Yt+1:T )

= P(St = i ,Y1:t)P(Yt+1:T |St = i) = αt(i)βt(i)

α-term computed as part of forward recursion (α1(i) = bi(y1)πi )

αt(i) = P(St = i ,Y1:t) = bi(yt)
C∑

j=1

Aijαt−1(j)

β-term computed as part of backward recursion (βT (i) = 1, ∀i)

βt(j) = P(Yt+1:T |St = j) =
C∑

i=1

bi(yt+1)βt+1(i)Aij
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Deja vu

Doesn’t the Forward-Backward algorithm look strangely
familiar?

αt ≡ µα(Xn)→ forward message

µα(Xn)︸ ︷︷ ︸
αt (i)

=
∑
Xn−1︸︷︷︸∑C

j=1

ψ(Xn−1,Xn)︸ ︷︷ ︸
bi (yt )Aij

µα(Xn−1)︸ ︷︷ ︸
αt−1(j)

βt ≡ µβ(Xn)→ backward message

µβ(Xn)︸ ︷︷ ︸
βt (j)

=
∑
Xn+1︸︷︷︸∑C

i=1

ψ(Xn,Xn+1)︸ ︷︷ ︸
bi (yt+1)Aij

µβ(Xn+1)︸ ︷︷ ︸
βt+1(i)
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Learning in HMM

Learning HMM parameters θ = (π,A,B) by maximum likelihood

L(θ) = log
N∏

n=1

P(Yn|θ)

= log
N∏

n=1

 ∑
sn

1 ,...,s
n
Tn

P(Sn
1)P(Y n

1 |Sn
1)

Tn∏
t=2

P(Sn
t |Sn

t−1)P(Y n
t |Sn

t )


How can we deal with the unobserved random variables St
and the nasty summation in the log?
Expectation-Maximization algorithm

Maximization of the complete likelihood Lc(θ)
Completed with indicator variables

zn
ti =

{
1 if n-th chain is in state i at time t

0 otherwise
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Complete HMM Likelihood

Introduce indicator variables in L(θ) together with model
parameters θ = (π,A,B)

Lc(θ) = log P(X ,Z|θ) = log
N∏

n=1

{
C∏

i=1

[P(Sn
1 = i)P(Y n

1 |Sn
1 = i)]z

n
1i

Tn∏
t=2

C∏
i,j=1

P(Sn
t = i |Sn

t−1 = j)zn
ti z

n
(t−1)j P(Y n

t |Sn
t = i)zn

ti


=

N∑
n=1


C∑

i=1

zn
1i logπi +

Tn∑
t=2

C∑
i,j=1

zn
ti z

n
(t−1)j log Aij +

Tn∑
t=1

C∑
i=1

zn
ti log bi(yn

t )
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Expectation-Maximization

A 2-step iterative algorithm for the maximization of complete
likelihood Lc(θ) w.r.t. model parameters θ

E-Step: Given the current estimate of the model
parameters θ(t), compute

Q(t+1)(θ|θ(t)) = EZ|X ,θ(t) [log P(X ,Z|θ)]

M-Step: Find the new estimate of the model parameters

θ(t+1) = arg max
θ

Q(t+1)(θ|θ(t))

Iterate 2 steps until |Lc(θ)
it −Lc(θ)

it−1| < ε (or stop if maximum
number of iterations is reached)
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E-Step (I)

Compute the expected value expectation of the complete
log-likelihood w.r.t indicator variables zn

ti assuming (estimated)
parameters θt = (πt ,At ,Bt) fixed at time t (i.e. constants)

Q(t+1)(θ|θ(t)) = EZ|X ,θ(t) [log P(X ,Z|θ)]

Expectation w.r.t a (discrete) random variable z is

Ez [Z ] =
∑

z

z · P(Z = z)

To compute the conditional expectation Q(t+1)(θ|θ(t)) for the
complete HMM log-likelihood we need to estimate

EZ|Y,θ(k) [zti ] = P(St = i |y)

EZ|Y,θ(k) [ztiz(t−1)j ] = P(St = i ,St−1 = j |Y)
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E-Step (II)

We know how to compute the posteriors by the
forward-backward algorithm!

γt(i) = P(St = i |Y) = αt(i)βt(i)∑C
j=1 αt(j)βt(j)

γt ,t−1(i , j) = P(St = i ,St−1 = j |Y) =
αt−1(j)Aijbi(yt)βt(i)∑C

m,l=1 αt−1(m)Almbl(yt)βt(l)
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M-Step (I)

Solve the optimization problem

θ(t+1) = arg max
θ

Q(t+1)(θ|θ(t))

using the information computed at the E-Step (the posteriors).
How?

As usual
∂Q(t+1)(θ|θ(t))

∂θ

where θ = (π,A,B) are now variables.

Attention
Parameters can be distributions⇒ need to preserve
sum-to-one constraints (Lagrange Multipliers)
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M-Step (II)

State distributions

Aij =

∑N
n=1

∑T n

t=2 γ
n
t ,t−1(i , j)∑N

n=1
∑T n

t=2 γ
n
t−1(j)

and πi =

∑N
n=1 γ

n
1(i)

N

Emission distribution (multinomial)

Bki =

∑N
n=1

∑Tn
t=1 γ

n
t (i)δ(yt = k)∑N

n=1
∑Tn

t=1 γ
n
t (i)

where δ(·) is the indicator function for emission symbols k
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Decoding Problem

Find the optimal hidden state assignement s = s∗1, . . . , s
∗
T

for an observed sequence y given a trained HMM
No unique interpretation of the problem

Identify the single hidden states st that maximize the
posterior

s∗
t = arg max

i=1,...,C
P(St = i |Y)

Find the most likely joint hidden state assignment

s∗ = arg max
s

P(Y,S = s)

The last problem is addressed by the Viterbi algorithm
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Viterbi Algorithm

An efficient dynamic programming algorithm based on a
backward-forward recursion

An example of a max-product message passing algorithm

Recursive backward term

εt−1(st−1) = max
st

P(Yt |St = st)P(St = st |St−1 = st−1)εt(st),

Root optimal state

s∗1 = arg max
s

P(Yt |S1 = s)P(S1 = s1)ε1(s).

Recursive forward optimal state

s∗t = arg max
s

P(Yt |St = s)P(St = s|St−1 = s∗t−1)εt(s).
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Input-Output Hidden Markov Models

Translate an input sequence into an output sequence
(transduction)
State transition and emissions depend on input
observations (input-driven)
Recursive model highlights analogy with recurrent neural
networks
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Bidirectional Input-driven Models

Remove causality assumption that current observation does
not depend on the future and homogeneity assumption that an
state transition is not dependent on the position in the
sequence

Structure and function of a
region of DNA and protein
sequences may depend on
upstream and downstream
information
Hidden state transition
distribution changes with
the amino-acid sequence
being fed in input
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Coupled HMM

Describing interacting processes whose observations follow
different dynamics while the underlying generative processes
are interlaced
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Dynamic Bayesian Networks

HMMs are a specific case of a class of directed models that
represent dynamic processes and data with changing
connectivity template

Hierarchical HMM
Structure changing information

Dynamic Bayesian Networks (DBN)
Graphical models whose structure changes to represent
evolution across time and/or between different samples
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Take Home Messages

Hidden Markov Models
Hidden states used to realize an unobserved generative
process for sequential data
A mixture model where selection of the next component is
regulated by the transition distribution
Hidden states summarize (cluster) information on
subsequences in the data

Inference in HMMS
Forward-backward - Hidden state posterior estimation
Expectation-Maximization - HMM parameter learning
Viterbi - Most likely hidden state sequence

Dynamic Bayesian Networks
A graphical model whose structure changes to reflect
information with variable size and connectivity patterns
Suitable for modeling structured data (sequences, tree, ...)
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