Generative Modeling of Tree-Structured Data

Davide Bacciu

Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it

Machine Learning: Neural Networks and Advanced Models (AA2)

Outline of the Talk

- Refresher on hidden Markov Models for sequences
- Hidden Markov Models for trees
- Discriminative approaches within the generative paradigm
 - Input-driven Markov models
- Application examples
 - Tree data mapping and visualization

Hidden Markov Model (HMM)

- Elements of an observed sequence y = y₁,..., y_T are generated by an hidden process regulated by corresponding state variables {Q₁,..., Q_T}
- Past independent of the future given the present (Markov Assumption)

$$P(Q_t|Q_{t-1},\ldots,Q_1)=P(Q_t|Q_{t-1})$$

• Currently observed element of the sequence is generated based only on current hidden state

$$P(Y_t|Q_T,\ldots,Q_1,Y_T,\ldots,Y_1)=P(Y_t|Q_t)$$

HMM Parameters

Stationariety assumption \rightarrow time-independent parameterization

State transition distribution

$$A_{ij} = P(Q_t = i | Q_{t-1} = j), \quad \sum_{i=1}^{C} A_{ij} = 1$$

2 Prior distribution (for t = 1)

$$\pi_i = P(Q_1 = i), \ \sum_{i=1}^C \pi_i = 1$$

Label emission distribution

$$B_{ki} = P(Y_t = k | Q_t = i), \ \sum_{k=1}^{K} B_{ki} = 1$$

Inference and Learning in HMM

The three classic problems of HMMs

- Smoothing Given the observed sequence **y** and a model $\lambda = \{A, B, \pi\}$ compute $P(Q_t | \mathbf{y}, \lambda)$
 - Learning Adjust the model parameters $\lambda = \{A, B, \pi, \phi\}$ to maximize $P(\mathbf{y}|\lambda)$
 - Decoding Given the observed sequence **y** and a model $\lambda = \{A, B, \pi\}$ select the *optimal* hidden state assignment **Q**

Generative Models for Trees Bottom-Up Hidden Tree Markov Model Learning and Inference Applications and Results

Tree Structured Data

- Labeled rooted trees with finite outdegree L
- $u \rightarrow \text{node index}$
- $y_u \rightarrow \text{observation}$ (label)
- $ch_l(u) \rightarrow l$ -th child of u
- Node position with respect to its siblings is relevant for information representation (positional trees)

Generative Models for Trees Bottom-Up Hidden Tree Markov Model Learning and Inference Applications and Results

Generative Process

Sequences can be parsed (generated) left-to-right or right-to-left

Do we have generation directions also in trees?

Generative Models for Trees Bottom-Up Hidden Tree Markov Model Learning and Inference Applications and Results

Top-down Hidden Tree Markov Model (THTMM)

Generative model of all the paths from the root to the leaves

- Generative process from the root to the leaves
 - *Q_u* hidden state at node *u*
 - Label emission governed by $P(y_u|Q_u)$
- Markov assumption (conditional dependence)

$$Q_u
ightarrow Q_{ch_l(u)}$$
 $l = 1, \dots, L$

• Parent to children hidden state transition

$$\mathsf{P}(Q_{ch_l(u)}|Q_u)$$

Generative Models for Trees Bottom-Up Hidden Tree Markov Model Learning and Inference Applications and Results

Bottom-up Hidden Tree Markov Model (BHTMM)

- Generative process from the leaves to the root
- Markov assumption (conditional dependence)

$$Q_{ch_1(u)},\ldots,Q_{ch_L(u)}
ightarrow Q_u$$

• Children to parent hidden state transition

$$P(Q_u|Q_{ch_1(u)},\ldots,Q_{ch_L(u)})$$

Generative model of all substructure compositions in the tree

Generative Models for Trees Bottom-Up Hidden Tree Markov Model Learning and Inference Applications and Results

Bottom-up Vs Top-Down

- Direction of the generative process matters when dealing with trees
 - Top-down and bottom-up automata have different expressive power

Modeling paths (TD) versus modeling substructures (BU)

- BU allows recursive processing (compositionality)
- TD cannot model dependence between sibling nodes
- Conditional independence assumptions change drastically

$$P(Q_u|Q_{ch_1(u)},\ldots,Q_{ch_L(u)})$$
 vs $P(Q_{ch_l(u)}|Q_u)$

Generative Models for Trees Bottom-Up Hidden Tree Markov Model Learning and Inference Applications and Results

BHTMM Recursive Model

Trees are generated by an hidden probabilistic process from the leaves to the root

- Regulated by the hidden state random variables *Q_u*
 - Represent information on the substructure rooted in node *u*
- Q_u depends on the context from the I-th child q_l^{-1}
 - Simpler structures are processed first
 - Exploit substructure information to process compound entities

Generative Models for Trees Bottom-Up Hidden Tree Markov Model Learning and Inference Applications and Results

BHTMM Encoding Example

Combinatorial Problem

 $P(Q_u|Q_{ch_1(u)},\ldots,Q_{ch_L(u)})$

State transition distribution is $O(C^{L+1})$ for a *C*-dimensional hidden state space

Generative Models for Trees Bottom-Up Hidden Tree Markov Model Learning and Inference Applications and Results

Switching-Parent BHTMM (SP-BHTMM)

Key Idea

Approximate the joint state transition distribution as a mixture of pairwise transition matrices

- Introduce a child selector variable for each parent *u*
- Switching Parent $S_u \in \{1, \ldots, L\}$
- P(S_u = I) measures the influence of the *I*-th child on the state transition to Q_u

$$P(Q_u|Q_{ch_1(u)},...,Q_{ch_L(u)}) = \sum_{l=1}^{L} P(S_u = l) P(Q_u|Q_{ch_l(u)})$$

Generative Models for Trees Bottom-Up Hidden Tree Markov Model Learning and Inference Applications and Results

Summary of SP-BHTMM Parameters

State transition distribution (child-parent)

$$A_{ij} = P(Q_u = i | Q_{ch_i(u)} = j), \quad \sum_{i=1}^{C} A_{ij} = 1$$

Prior distribution (for leaves states)

$$\pi_i = \boldsymbol{P}(\boldsymbol{Q}_u = i), \ \sum_{i=1}^C \pi_i = 1$$

Switching-parents distribution

$$\phi_l = \boldsymbol{P}(\boldsymbol{S}_u = l), \ \sum_{l=1}^{L} \phi_l = 1$$

4 Label emission distribution

$$B_{ki} = P(Y_u = k | Q_u = i), \ \sum_{k=1}^{\kappa} B_{ki} = 1$$

1/

Generative Models for Trees Bottom-Up Hidden Tree Markov Model Learning and Inference Applications and Results

The three basic problems in HTMM...

Same problems as in HMMs for sequences

Smoothing Given the observed tree **y** and a model $\lambda = \{A, B, \pi, \phi\}$ compute $P(Q_u | \mathbf{y}, \lambda)$

Learning Adjust the model parameters $\lambda = \{A, B, \pi, \phi\}$ to maximize $P(\mathbf{y}|\lambda)$

Decoding Given the observed tree **y** and a model $\lambda = \{A, B, \pi, \phi\}$ select the *optimal* hidden state assignment **Q**

Generative Models for Trees Bottom-Up Hidden Tree Markov Model Learning and Inference Applications and Results

...and their three solutions

Exploit a smart factorization on the structure of the tree to make solutions computationally tractable

Smoothing (Upward-Downward Algorithm) Introduce, by marginalization, the hidden states for each $ch_l(u)$ and estimate a factorization of

$$\mathcal{P}(\mathcal{Q}_u | \mathbf{y}, \lambda) = \sum_{\mathbf{q}_{\mathsf{ch}(u)}} \mathcal{P}(\mathbf{q}_{\mathsf{ch}(u)}, \mathcal{Q}_u | \mathbf{y}, \lambda)$$

Learning (EM Algorithm) Perform a double upward-downward recursion to compute posteriors $P(Q_u, Q_{ch_l(u)}, S_u | \mathbf{y})$ and use them to update λ Decoding (Viterbi Algorithm) Maximize a factorization of

 $P(\mathbf{y},\mathbf{q})$

Generative Models for Trees Bottom-Up Hidden Tree Markov Model Learning and Inference Applications and Results

Upwards-Downwards Algorithm

• Message passing based on the Bayesian factorization

$$P(Q_u = i | \mathbf{y}) = \frac{P(\mathbf{y}_{1 \setminus u} | Q_u = i)}{P(\mathbf{y}_{1 \setminus u} | \mathbf{y}_u)} P(Q_u = i | \mathbf{y}_u)$$

Upwards pass estimates

$$\beta_u(i) = P(Q_u = i | \mathbf{y}_u)$$

- $\beta_u(i)$ serves to compute $P(\mathbf{y}|\lambda)$
- Downwards pass uses β_u(i) to estimate the posterior

$$\epsilon_{u,ch_l(u)}(i,j) = P(Q_u = i, Q_{ch_l(u)} = j, S_u = l|\mathbf{y})$$

Generative Models for Trees Bottom-Up Hidden Tree Markov Model Learning and Inference Applications and Results

Viterbi Decoding

State inference problem

Determines the most likely joint hidden states assignment ${\bm Q}={\bm x}$ for a given observed tree ${\bm y}$

Based on the recursive formulation

$$\max_{\mathbf{x}} P(\mathbf{y}, \mathbf{Q} = \mathbf{x}) =$$
$$= \max_{i} \left\{ \delta_{u}(i) \max_{\mathbf{x}_{1 \setminus u}} \left\{ P(\mathbf{y}_{1 \setminus \mathbf{CH}(u)}, \mathbf{Q}_{1 \setminus u} = \mathbf{x}_{1 \setminus u} | Q_{u} = i) \right\} \right\}$$

Exact Viterbi inference in BHTMM is $O(C^L)$ but can be approximated by an O(LC) procedure

Generative Models for Trees Bottom-Up Hidden Tree Markov Model Learning and Inference Applications and Results

Application Example

- Challenging tasks with tree-structured data arise in documental analysis
 - Parse trees
 - Tagging languages often provide structured document representation, e.g. XML
- INEX 2005 Competition
 - 9361 XML documents from 11 thematic categories
 - 366 XML labels and outdegree 32

Generative Models for Trees Bottom-Up Hidden Tree Markov Model Learning and Inference Applications and Results

What about different document types?

- Image parse trees
 - Hierarchical segmentation of the image yields tree structure
 - Visual content in image segments determine node labels

Amounts to learning an image grammar (Thesis Advertisement)

Generative Models for Trees Bottom-Up Hidden Tree Markov Model Learning and Inference Applications and Results

An Input-Driven Generative Model for Trees

- So far, we have focused on learning a generative process P(x) for a tree x
- What about learning an input-conditional generative process P(y|x) between Input-Output structures (x, y)?
- Learn an isomorph transduction τ from **x** to **y**

Generative Models for Trees Bottom-Up Hidden Tree Markov Model Learning and Inference Applications and Results

Input-Output BHTMM (IO-BTHMM)

F

- An input label *x_u* acting as observable context
- An output label y_u generated by the input-conditional emission P(y_u|Q_u, x_u)
- The input-conditional state transition is approximated by a finite mixture

$$\mathcal{P}(Q_u|Q_{ch_1(u)},\ldots,Q_{ch_L(u)},x_u) =$$

 $\sum_{l=1}^{L} \mathcal{P}(S_u = l)\mathcal{P}(Q_u|Q_{ch_l(u)},x_u)$

Generative Models for Trees Bottom-Up Hidden Tree Markov Model Learning and Inference Applications and Results

IO-BHTMM in INEX 2005

Classification is a tree-transduction task to a single node labeled with the class

Hidden	IO-BHTMM		BHTMM	THTMM
States	root	vote		
INEX 2005				
<i>C</i> = 2	38.09 (1.24)	32.60 (2.24)	32.20 (7.17)	34.28 (5.66)
<i>C</i> = 4	27.09 (4.86)	19.66 (2.17)	24.98 (5.89)	23.40 (4.89)
<i>C</i> = 6	16.45 (2.84)	1 <u>5.10</u> (2.77)	22.91 (3.64)	30.50 (9.33)
<i>C</i> = 8	16.43 (3.88)	13.31 (2.75)	18.11 (3.02)	27.36 (6.53)
<i>C</i> = 10	12.18 (3.57)	11.43 (2.93)	18.93 (3.18)	28.92 (4.53)

Generative Models for Trees Bottom-Up Hidden Tree Markov Model Learning and Inference Applications and Results

Learning Image Transductions

- Supervised hierarchical topic model for image processing
 - Learning transductions from segmentation trees to visual theme hierarchies
 - IO-isomorph transduction with multinomial labels
 - Thesis advertisement

Topographic Mapping of Tree Data

Generative Topographic Mapping

Generative Topographic Mapping for Flat data

Visualization of high-dimensional vectors on a 2D map (latent space) that preserves vector similarities

Vectors generated by Gaussian distributions with means μ_c constrained on manifold S induced by the smooth mapping Γ Topographic Mapping of Tree Data

Generative Topographic Mapping

Generative Topographic Mapping for Trees (GTM-SD)

- Create a 2D map to visualize trees
 - Use SP-BHTMM to generate trees instead of Gaussians
- Since BHTMM is compositional we obtain a projection of all the substructures for free

Generative Topographic Mapping Applications

С

Tree Projection

- Train a constrained SP-BHTMM model using the EM algorithm
- Visualization of a tree **y** is based on projecting its root onto the lattice by using its hidden state assignment *Q*₁

• Mean projection
$$\longrightarrow X_{mean}(\mathbf{y}) = \sum P(Q_1 = i | \mathbf{y}) x_i$$

- Mode projection $\longrightarrow X_{mode}(\mathbf{y}) = \arg \max_{\mathbf{x}_i} P(Q_1 = i | \mathbf{y})$
- Distribution P(Q₁ = x_i|y) is obtained as a by-product of Upwards-Downwards algorithm
 - Alternatively, Viterbi inference can be used

Generative Topographic Mapping Applications

Topographic Mapping with Structure Only

Left/Right sequences and binary trees with identical label for all nodes and trees

Generative Topographic Mapping Applications

Four Gaussian

Complete binary trees from four 2-state TD-HTMMs

Generative Topographic Mapping Applications

Policeman Dataset

12 classes representing Policemen, Boat and House images

Topographic Mapping of Tree Data

Applications

Policeman Dataset

12 classes representing Policemen, Boat and House images

*B*5

Generative Topographic Mapping Applications

Sub-tree Projection

Compositionality allows topographic organization and visualization of all the substructures in the dataset

Level 2

Level 1

Level 3

Level 4

Take Home Messages

- Generative models provide an interesting approach to structured data
 - Can generate and explain data
 - Can learn transductions
 - Can be computationally expensive
 - Generative vs Discriminative
- Room for improvement on models and applications (a.k.a. thesis)
 - Structured image processing
 - Learning non-isomorphic transductions
 - Generative models for graphs
- Preview of upcoming lessons
 - Building blocks for generative kernels for trees
 - Discriminative approaches on top of generative models

Bibliography (I)

Hidden Tree Markov Models

- D. Bacciu, A. Micheli and A. Sperduti, "Compositional Generative Mapping for Tree-Structured Data - Part I: Bottom-Up Probabilistic Modeling of Trees", IEEE Transactions on Neural Networks and Learning Systems, vol. 23, no. 12, pp. 1987-2002, 2012
- P. Frasconi, M. Gori and A. Sperduti, "A general framework for adaptive processing in data structures", IEEE Transactions on Neural Networks, vol. 9, no. 5, pp.768-785, 1998
- M. Diligenti, P. Frasconi, M. Gori, "Hidden tree Markov models for document image classification", IEEE Transactions. Pattern Analysis and Machine Intelligence, Vol. 25, pp. 519-523, 2003

Bibliography (II)

Input/Output Generative Models

- D. Bacciu, A. Micheli and A. Sperduti, "An Input-Output Hidden Markov Model for Tree Transductions", Neurocomputing, Elsevier, Vol. 112, pp. 34-46, Jul, 2013
- Y. Bengio, P. Frasconi, "Input-Output HMMs for sequence processing", IEEE Transactions on Neural Networks, Vol. 7, pp. 1231-1249, 1996

Bibliography (III)

Topographic Mapping

- D. Bacciu, A. Micheli and A. Sperduti, "Compositional Generative Mapping for Tree-Structured Data - Part II: Topographic Projection Model", IEEE Transactions on Neural Networks and Learning Systems, vol. 24, no. 2, pp. 231-247, Feb 2013
- M. Hagenbuchner , A. Sperduti and A. Tsoi "A self-organizing map for adaptive processing of structured data", IEEE Transactions on Neural Networks, vol. 14, no. 3, pp. 491-505, 2003
- N. Gianniotis, P. Tino, "Visualization of tree-structured data through generative topographic mapping", IEEE Transactions on Neural Networks, vol. 19, pp. 1468-1493, 2008