Deep Learning

Davide Bacciu

Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it

Machine Learning: Neural Networks and Advanced Models (AA2)

Lecture Plan Motivation

Today's Lecture

- An introduction to deep learning
 - What it is
 - Why it is so big now
- Deep learning architectures
 - Deep Belief Networks
 - Stacked Autoencoders
- Application examples

Lecture Plar Motivation

What is Deep Learning?

Machine learning algorithms inspired by brain organization, based on learning multiple levels of representation and abstraction

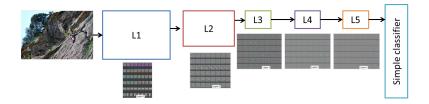
- Learning models with many layers trained layer-wise
- Build a hierarchical feature space through layering
- Reduce the need of supervised information
 - Unsupervised discovery of features in the internal layers
 - Final layer performs supervised step (any recall?)

Lecture Plar Motivation

Hierarchical Features

The traditional shallow way

The deep way



Lecture Plar Motivation

Why Deep Learning?

Lecture Plan Motivation

No, Seriously.. Why Deep Learning?

- Deep learning is THE hot topic now
- Revolutionized performance in
 - Speech recognition
 - Machine vision
- Now expanding to other topics
 - Natural language
 - Reinforcement learning
 - Robotics

Performs best when input information has some form of structure, e.g. spatial, temporal, ...

Introduction Deep Belief Networks Stacked Autoencoders

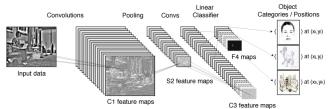
The concept

- Learning effective and efficient representation of complex data
- Learning hierarchical feature representation
- Learning distributed feature representation
- Exploit unlabeled and/or partially-labeled data

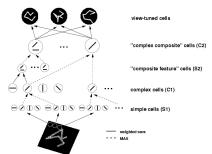
Introduction Deep Belief Networks Stacked Autoencoders

Foundations - Hierarchical Representation

Convolutional Neural Networks (CNNs)



Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE 86(11): 2278-2324, 1998



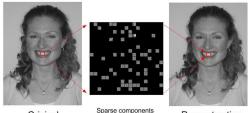
HMAX model - Inspired by the structure of the visual cortex in mammals

M. Riesenhuber, T. Poggio, Hierarchical Models of Object Recognition in Cortex. Nature Neuroscience 2: 1019-1025, 1999 Introduction Introc Deep Learning Deep Applications Stack

Introduction Deep Belief Networks Stacked Autoencoders

Foundations - Distributed Representation

Originates from sparse coding theory in brain: sensory information in the brain is represented by a relatively small number of simultaneously active neurons out of a large population (B.A. Olshausen, D.J. Field, 1996)



of patch in the red box

Original

Reconstruction

The machine learning perspective: a single layer network learns better to generate a target output if the input has a sparse representation (Willshaw and Dayan, 1990)

Introduction Deep Belief Networks Stacked Autoencoders

How Deep is "Deep Learning"?

Conventional neural networks

- 1-layer Linear Classifiers: logistic regression, naive Bayes
- 2-layers Universal approximators: MLP, RBFnet, nonlinear SVM
- 3-layers or more
 - MLPs, RNN, decision trees
 - Deep learning
- It does not suffice to stack layers to do deep learning
 - Need to have the right computational elements
 - Weighted sum, product, max operators, single neuron, kernels, ...

Introduction Deep Belief Networks Stacked Autoencoders

Deep Networks

- Deep architecture with multiples layers focused on learning sparse encoding of input data
- Unsupervised training between layers to decompose the problem into distributed sub problems with increasing levels of abstraction
- Deep networks type
 - Deep Belief Networks
 - Stacked Autoencoders
 - Hybrid

Introduction Deep Belief Networks Stacked Autoencoders

Training Deep Networks

Problem with conventional backpropagation training

- Strongly relies on labeled training data
- Learning does not scale well to multiple hidden layers (BPTT)
- Greedy layer-wise training
 - Pre-training unsupervised (internal) layer by layer training
 - Read-out supervised training of last layer
 - Fine-tuning supervised adjustment of all weights
- Key advantages
 - Give full learning focus to each layer
 - Exploit unlabeled data
 - Use supervised training only for fine tuning with weights hopefully close to global maxima

Introduction Deep Belief Networks Stacked Autoencoders

Deep Belief Networks

Intuition - Discover hidden (latent) features \mathbf{h} which represent well input-data \mathbf{x} (observable)

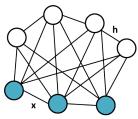
- Directed latent variable models?
 - Marginally independent causes h can become dependent given evidence x
 - Deep features posterior P(h|x) can be intractable
- Undirected models?
 - Energy-based models (Boltzmann machines)

$$P(\mathbf{x},\mathbf{h}) = rac{1}{Z} \exp{(E(\mathbf{x},\mathbf{h}))}$$

• Problem is intractability of Z factor

Introduction Deep Belief Networks Stacked Autoencoders

Boltzmann Machines



A variant of the Ising model

- Solution Visible RV x ∈ {0, 1}
- Latent RV *h* ∈ {0, 1}

• A linear energy function

$$m{E}(\mathbf{x},\mathbf{h})=-rac{1}{2}\mathbf{x}^{T}\mathbf{U}\mathbf{x}-rac{1}{2}\mathbf{h}^{T}\mathbf{V}\mathbf{h}-\mathbf{x}^{T}\mathbf{W}\mathbf{h}-\mathbf{b}^{T}\mathbf{x}-\mathbf{d}^{T}\mathbf{h}$$

- Model parameters θ = {U, v, W, b, d} encode the interactions between the variables (observable and not)
- Posterior inference intractable due to the (exponential) marginalization term

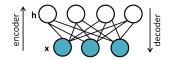
Boltzmann machines are a type of Recurrent Neural Network

Restricted Boltzmann Machines (RBM)

A special Boltzmann machine

- Bipartite graph
- Connections only between hidden and observable nodes

$$E(\mathbf{x}, \mathbf{h}) = -\mathbf{x}^T \mathbf{W} \mathbf{h} - \mathbf{b}^T \mathbf{x} - \mathbf{d}^T \mathbf{h}$$



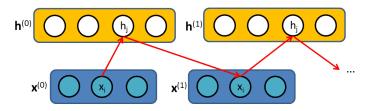
Used to implement layers of a Deep Network

- Observable nodes are inputs
- Hidden nodes are a latent feature representation of the input
- Tractable inference due to graph bipartition which factorizes posterior distribution

Introduction Deep Belief Networks Stacked Autoencoders

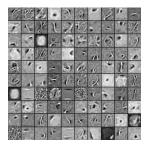
Training RBM

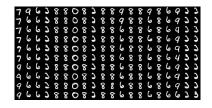
- Gradient ascent of the RBM log-likelihood (Computationally intensive)
- Gibbs sampling: Iterative sample **x** then **h** (Slow convergence)
- Contrastive-Divergence
 - A form of alternating Gibbs sampling, iterated few times
 - Feed training input to observable nodes and update all hidden units posterior (encoding)
 - Update all visible units to get a reconstruction from hidden units (decoding); update again all hidden units



Introduction Deep Belief Networks Stacked Autoencoders

RBM - Character Recognition Example





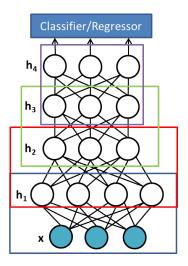
RBM reconstructed inputs using Gibbs sampling

Learned latent features (filters)

Introduction Introduction Deep Learning Applications Stacked Autoencoders

Deep Belief Network - Architecture

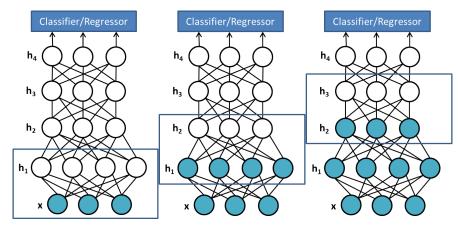
A network of stacked RBM plus a supervised read-out layer



Introduction Introduction Deep Learning Applications Stacked Autoencoders

Deep Belief Network - Training

Layer-wise training of the RBM (e.g. Contrastive Divergence)

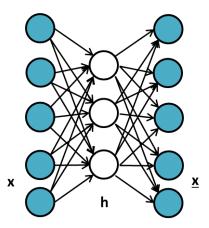


Train the read-out layer (independent learning model,additional RBM layer,...)

Introduction Deep Belief Networks Stacked Autoencoders

Autoencoder Networks

Neural networks for feature discovery and data compression

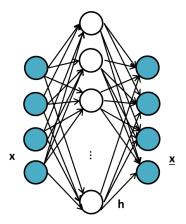


E.g. linear hidden units with MSE perform PCA

Introduction Deep Belief Networks Stacked Autoencoders

Sparse Autoencoders

Autoencoders using more features with a significant number being 0 when encoding an input

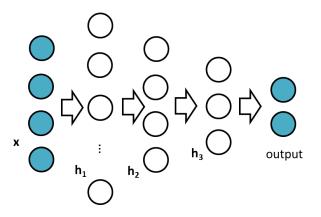


Using regularization approaches to enforce sparsity

Introduction Deep Belief Networks Stacked Autoencoders

Stacked Autoencoders

Stack autoencoders with level-wise training as with RBM

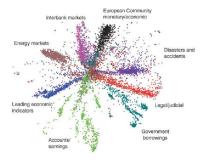


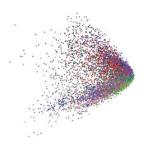
Train each autoencoder in isolation and drop the decoding layer when training is completed

Deep Learning Applications Conclusions

Document Encoding

Finding sparse features for > 800K newswire stories





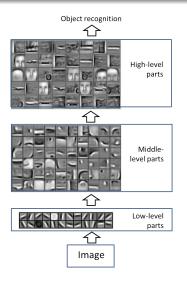
RBM document encoding

Latent semantic analysis encoding

Hinton, Salakhutdinov, Reducing the dimensionality of data with neural networks, Science, 2006

Deep Learning Applications Conclusions

Convolutional DBN for Hierarchical Object Recognition

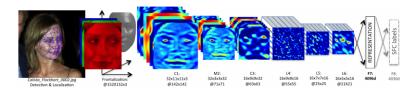


Obtaining a hierarchical representation of object parts through a deep convolutional network

Lee et al, Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations,

Deep Learning Applications Conclusions

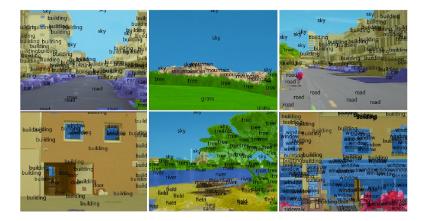
DeepFace recognition accuracy is \approx 97.35% (23% better than previous results)



Taigman et al, Deepface: Closing the gap to human-level performance in face verification, CVPR 2014

Deep Learning Applications Conclusions

Scene Understanding



Farabet et al, Learning Hierarchical Features for Scene Labeling, TPAMI 2013

Deep Learning Applications Conclusions

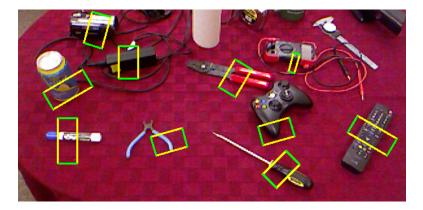
Want to try something out?

- The Caffe project at Berkeley: http://demo.caffe.berkeleyvision.org/
- The Zeiler-Fergus image classifier at NYU: http://horatio.cs.nyu.edu/

Deep Learning Applications Conclusions

Deep Learning and Robotics

Learning where to grasp objects with robotic manipulators

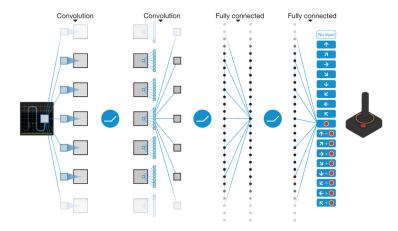


Lenz et al, Deep Learning for Detecting Robotic Grasps, IJRR 2014

Deep Learning Applications Conclusions

Learning to Play Atari (I)

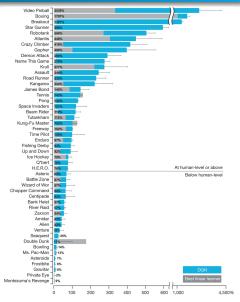
Using Deep Learning with Reinforcement Learning



Mnih et al, Human-level control through deep reinforcement learning, Nature 2015

Deep Learning Applications Conclusions

Learning to Play Atari (II)



Deep Learning Applications Conclusions

Take Home Messages

- Deep learning is about learning features of complex data
 - Probabilistic interpretation: features \equiv latent factors (RBM)
 - Neural interpretation: features ≡ hidden neurons (Neural autoencoders)
 - Bridging neural and probabilistic world
- Stacking and level-wise training
 - Let the deep network discover the features and then place your preferred learning model to perform your task
- Breakthrough performance in several learning tasks/application areas
 - Complex spatio/temporal structured data
- Do we really know what is going on with the encoding? How many layers?