

・ロト ・四ト ・ヨト ・ヨト

- 2

#### Linear and Non-Linear Dimensionality Reduction

#### Alexander Schulz

#### aschulz(at)techfak.uni-bielefeld.de

University of Pisa, Pisa 04.05.2015 and 07.05.2015

#### **Overview**

#### **Dimensionality Reduction**

Motivation Linear Projections Linear Mappings in Feature Space Neighbor Embedding Manifold Learning CITEC

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Advances in Dimensionality Reduction Speedup for Neighbor Embeddings Quality Assessment of DR Feature Relevance for DR Visualization of Classifiers Supervised Dimensionality Reduction

#### **Curse of Dimensionality**<sup>1</sup>

CITEC

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

<sup>1</sup>[Lee and Verleysen, 2007]





high-dimensional spaces are almost empty

<sup>1</sup>[Lee and Verleysen, 2007]

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへ⊙



- high-dimensional spaces are almost empty
- Hypervolume concentrates in a thin shell close to the surface

0 0 0 0 0 0 0 0 0 0 0 0 0 81 34 0 0 0 0 0 0 0 0 0 0 0 3 104 247 153 0 0 0 0 0 0 0 0 0 0 0 0 70 255 255 175 0 0 0 0 0 0 0 0 0 14 54 227 255 255 98 0 0 0 0 0 0 0 0 0 168 255 255 255 179 7 0 0 0 0 0 0 0 0 33 157 254 255 247 162 13 0 0 0 0 0 0 0 72 207 255 255 255 124 0 0 0 0 0 0 0 0 29 149 250 255 255 228 160 2 0 0 0 0 0 0 0 6 148 255 255 255 245 112 0 0 0 0 0 0 0 56 195 255 255 255 169 15 0 0 0 0 0 0 0 5 205 255 254 208 61 10 0 0 0 0 0 0 0 39 84 255 219 127 0 0 0 0 0 0 0 0 0 3 186 234 211 41 0 0 0 0 0 0 0 0 0 0 0 105 255 230 15 0 0 0 0 0 0 0 0 0 0 0 175 224 48 0 0 0 0 0 0 0 0 0 0 0 0 63 52 0 0 0 000000000000

CITEC

## Why use Dimensionality Reduction?



#### Why use Dimensionality Reduction?



◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

CITEC

## Principal Component Analysis (PCA)

#### variance maximization

• var 
$$(\mathbf{w}^{\top}\mathbf{x}_i)$$
 with  $\|\mathbf{w}\| = 1$ 



▲□▶▲□▶▲□▶▲□▶ □ のQで

## Principal Component Analysis (PCA) CITEC

#### variance maximization

► var 
$$(\mathbf{w}^{\top}\mathbf{x}_i)$$
 with  $\|\mathbf{w}\| =$   
►  $= \frac{1}{N}\sum_i (\mathbf{w}^{\top}\mathbf{x}_i)^2$   
►  $= \frac{1}{N}\sum_i \mathbf{w}^{\top}\mathbf{x}_i\mathbf{x}_i^{\top}\mathbf{w}$ 



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

## Principal Component Analysis (PCA)

#### variance maximization

• *var* 
$$(\mathbf{w}^{\top}\mathbf{x}_i)$$
 with  $\|\mathbf{w}\| = 1$ 

$$\mathbf{P} = \frac{1}{N} \sum_{i} (\mathbf{W}^{\top} \mathbf{X}_{i})^{2}$$

$$\mathbf{P} = \frac{1}{N} \sum_{i} \mathbf{W}^{\top} \mathbf{X}_{i} \mathbf{X}_{i}^{\top} \mathbf{W}$$



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

### Principal Component Analysis (PCA) CITEC

#### variance maximization

- *var*  $(\mathbf{w}^{\top}\mathbf{x}_i)$  with  $\|\mathbf{w}\| = 1$
- $\mathbf{P} = \frac{1}{N} \sum_{i} (\mathbf{W}^{\top} \mathbf{X}_{i})^{2}$
- $\mathbf{P} = \frac{1}{N} \sum_{i} \mathbf{W}^{\top} \mathbf{X}_{i} \mathbf{X}_{i}^{\top} \mathbf{W}$
- $\mathbf{P} = \mathbf{w}^{\top} \mathbf{C} \mathbf{w}$
- ► →Eigenvectors of the covariance matrix are optimal



◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

#### **PCA in Action**



<sup>2</sup>[Gisbrecht and Hammer, 2015]

CITEC

СІТЁС

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●



• objective  $\delta_{ij} \approx d_{ij}$ 

- distances  $\delta_{ij} = \|\mathbf{x}_i \mathbf{x}_j\|^2$ ,  $d_{ij} = \|\mathbf{y}_i \mathbf{y}_j\|^2$
- objective  $\delta_{ij} \approx d_{ij}$
- distances d<sub>ij</sub> and similarities s<sub>ij</sub> can be transformed into each other

СІТЁС

(日) (日) (日) (日) (日) (日) (日)

•  $\mathbf{S} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\top}$  matrix of pairwise similarities

- distances  $\delta_{ij} = \|\mathbf{x}_i \mathbf{x}_j\|^2$ ,  $d_{ij} = \|\mathbf{y}_i \mathbf{y}_j\|^2$
- objective  $\delta_{ij} \approx d_{ij}$
- distances d<sub>ij</sub> and similarities s<sub>ij</sub> can be transformed into each other
- $\mathbf{S} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\top}$  matrix of pairwise similarities
- ▶ best low rank approximation of **S** in Frobenius norm is  $S = U\tilde{\Lambda}U^{\top}$  with the largest eigenvalue

CITEC

(日) (日) (日) (日) (日) (日) (日)



#### learn linear manifold

represent data as projections on unknown w:

$$C = \frac{1}{2N} \sum_{i} (\mathbf{x}_i - y_i \mathbf{w})^2$$



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで



- represent data as projections on unknown w: C = <sup>1</sup>/<sub>2N</sub> ∑<sub>i</sub>(x<sub>i</sub> − y<sub>i</sub>w)<sup>2</sup>
- What are the best parameters y<sub>i</sub> and w?



◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

CITEC





◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

#### three ways to obtain PCA

- maximize variance of a linear projection
- preserve distances
- find a linear manifold such that errors are minimal in an L2 sense





◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

#### Idea

- Apply a fixed nonlinear preprocessing  $\phi(\mathbf{x})$
- Perform standard PCA in feature space





◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

#### Idea

- Apply a fixed nonlinear preprocessing  $\phi(\mathbf{x})$
- Perform standard PCA in feature space
- How to apply the kernel trick here?

#### **Kernel PCA in Action**



<sup>4</sup>[Gisbrecht and Hammer, 2015]

◆ロ▶ ◆舂▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

CITEC

## Stochastic Neighbor Embedding (SNE)<sup>5</sup> CITEC

introduce a probabilistic neighborhood in the input space

$$p_{j|i} = \frac{\exp(-0.5\|\mathbf{x}_i - \mathbf{x}_j\|^2 / \sigma_i^2)}{\sum_{k,k \neq i} \exp(-0.5\|\mathbf{x}_i - \mathbf{x}_k\|^2 / \sigma_i^2)}$$

### Stochastic Neighbor Embedding (SNE)<sup>5</sup> CITEC

introduce a probabilistic neighborhood in the input space

$$p_{j|i} = \frac{\exp(-0.5 \|\mathbf{x}_i - \mathbf{x}_j\|^2 / \sigma_i^2)}{\sum_{k,k \neq i} \exp(-0.5 \|\mathbf{x}_i - \mathbf{x}_k\|^2 / \sigma_i^2)}$$

and in the output space

$$q_{j|i} = \frac{\exp(-0.5\|\mathbf{y}_i - \mathbf{y}_j\|^2)}{\sum_{k,k \neq i} \exp(-0.5\|\mathbf{y}_i - \mathbf{y}_k\|^2)}$$

<sup>5</sup>[Hinton and Roweis, 2002]

### Stochastic Neighbor Embedding (SNE)<sup>5</sup> CITEC

introduce a probabilistic neighborhood in the input space

$$p_{j|i} = \frac{\exp(-0.5 \|\mathbf{x}_i - \mathbf{x}_j\|^2 / \sigma_i^2)}{\sum_{k,k \neq i} \exp(-0.5 \|\mathbf{x}_i - \mathbf{x}_k\|^2 / \sigma_i^2)}$$

and in the output space

$$q_{j|i} = \frac{\exp(-0.5\|\mathbf{y}_i - \mathbf{y}_j\|^2)}{\sum_{k,k \neq i} \exp(-0.5\|\mathbf{y}_i - \mathbf{y}_k\|^2)}$$

optimize the sum of Kullback-Leibler divergences

$$C = \sum_{i} KL(P_i, Q_i) = \sum_{i} \sum_{j \neq i} p_{j|i} \log \left( \frac{p_{j|i}}{q_{j|i}} \right)$$

<sup>5</sup>[Hinton and Roweis, 2002]

# Neighbor Retrieval Visualizer (NeRV)<sup>6</sup>



◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

<sup>6</sup>[Venna et al., 2010]

# Neighbor Retrieval Visualizer (NeRV)<sup>6</sup>



• 
$$precision(i) = \frac{N_{TP,i}}{k_i} = 1 - \frac{N_{FP,i}}{k_i}$$
,  $recall(i) = \frac{N_{TP,i}}{r_i} = 1 - \frac{N_{MISS,i}}{r_i}$ 

<sup>6</sup>[Venna et al., 2010]

# Neighbor Retrieval Visualizer (NeRV)

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

3

- ► *KL*(*P<sub>i</sub>*, *Q<sub>i</sub>*) generalizes recall
- $KL(Q_i, P_i)$  generalizes precision

## Neighbor Retrieval Visualizer (NeRV)

- KL(P<sub>i</sub>, Q<sub>i</sub>) generalizes recall
- $KL(Q_i, P_i)$  generalizes precision
- NeRV optimizes

$$C = \lambda \sum_{i} KL(P_i, Q_i) + (1 - \lambda) \sum_{i} KL(Q_i, P_i)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで



◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

- symmetrized probabilities p and q
- uses a Student-t distribution in the output space

<sup>&</sup>lt;sup>7</sup>[van der Maaten and Hinton, 2008]



uses a Student-t distribution in the output space



CITEC

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

<sup>7</sup>[van der Maaten and Hinton, 2008]



#### **Neighbor Embedding in Action**

<sup>8</sup>[Gisbrecht and Hammer, 2015]

8

#### Maximum Variance Unfolding (MVU)<sup>9</sup>

 goal: 'unfold' a given manifold while keeping all the local distances and angles fixed



CITEC

<sup>9</sup>[Weinberger and Saul, 2006]

#### Maximum Variance Unfolding (MVU)<sup>9</sup>

 goal: 'unfold' a given manifold while keeping all the local distances and angles fixed

► maximize 
$$\sum_{ij} \|\mathbf{y}_i - \mathbf{y}_j\|^2$$
 s.t.  
 $\sum_i \mathbf{y}_i = 0$   
 $\|\mathbf{y}_i - \mathbf{y}_j\|^2 = \|\mathbf{x}_i - \mathbf{x}_j\|^2$ , for all neighbors



CITEC

<sup>9</sup>[Weinberger and Saul, 2006]

#### **Manifold Learner in Action**



<sup>10</sup>[Gisbrecht and Hammer, 2015]

CITEC

#### **Overview**

#### **Dimensionality Reduction**

Motivation Linear Projections Linear Mappings in Feature Space Neighbor Embedding Manifold Learning CITEC

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

#### Advances in Dimensionality Reduction

Speedup for Neighbor Embeddings Quality Assessment of DR Feature Relevance for DR Visualization of Classifiers Supervised Dimensionality Reduction




#### **Complexity of NE**

• Neighbor Embeddings have the complexity  $O(N^2)$ 

<sup>11</sup>[Yang et al., 2013, van der Maaten, 2013]

- \* ロ > \* 母 > \* き > \* き - 釣 < や



#### **Complexity of NE**

- Neighbor Embeddings have the complexity  $O(N^2)$
- matrices P and Q are squared

<sup>&</sup>lt;sup>11</sup>[Yang et al., 2013, van der Maaten, 2013]

#### **Complexity of NE**

- Neighbor Embeddings have the complexity  $O(N^2)$
- matrices P and Q are squared
- squared summation for the gradient

$$\frac{\partial \boldsymbol{C}}{\partial \mathbf{y}_i} = \sum_{j \neq i} g_{ij} (\mathbf{y}_i - \mathbf{y}_j)$$

СІТЕС

<sup>11</sup>[Yang et al., 2013, van der Maaten, 2013]





<sup>12</sup>[van der Maaten, 2013]

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

# СІТЕС

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

#### **Barnes Hut**

• approximate the gradient  $\frac{\partial C}{\partial \mathbf{y}_i} = \sum_{j \neq i} g_{ij}(\mathbf{y}_i - \mathbf{y}_j)$  as

$$\sum_{j
eq i} g_{ij}(\mathbf{y}_i - \mathbf{y}_j) pprox \sum_t |G_t^i| \cdot g_{ij}(\mathbf{y}_i - \hat{\mathbf{y}}_t^i)$$

## CITEC

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

#### **Barnes Hut**

• approximate the gradient  $\frac{\partial C}{\partial \mathbf{y}_i} = \sum_{j \neq i} g_{ij}(\mathbf{y}_i - \mathbf{y}_j)$  as

$$\sum_{j 
eq i} g_{ij}(\mathbf{y}_i - \mathbf{y}_j) pprox \sum_t |G_t^i| \cdot g_{ij}(\mathbf{y}_i - \hat{\mathbf{y}}_t^i)$$

- approximate P as sparse matrix
- results in a O(N log N) algorithm

### **Barnes Hut SNE**





<sup>13</sup>[van der Maaten, 2013]



 O(N) algorithm: apply NE to a fixed subset, map remainder with out of sample projection

## Kernel t-SNE<sup>14</sup>

СІТЕС

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

- O(N) algorithm: apply NE to a fixed subset, map remainder with out of sample projection
- how to obtain an out of sample extension?

## Kernel t-SNE<sup>14</sup>

 O(N) algorithm: apply NE to a fixed subset, map remainder with out of sample projection

CITEC

(日) (日) (日) (日) (日) (日) (日)

- how to obtain an out of sample extension?
- use kernel mapping

$$\mathbf{x} \mapsto \mathbf{y}(\mathbf{x}) = \sum_{j} \alpha_{j} \cdot \frac{k(\mathbf{x}, \mathbf{x}_{j})}{\sum_{l} k(\mathbf{x}, \mathbf{x}_{l})} = \mathbf{A}\mathbf{k}$$

## Kernel t-SNE<sup>14</sup>

- O(N) algorithm: apply NE to a fixed subset, map remainder with out of sample projection
- how to obtain an out of sample extension?
- use kernel mapping

$$\mathbf{x} \mapsto \mathbf{y}(\mathbf{x}) = \sum_{j} \alpha_{j} \cdot \frac{k(\mathbf{x}, \mathbf{x}_{j})}{\sum_{l} k(\mathbf{x}, \mathbf{x}_{l})} = \mathbf{A}\mathbf{k}$$

minimization of

$$\sum_{i} \|\mathbf{y}_{i} - \mathbf{y}(\mathbf{x}_{i})\|^{2}$$
 yields  $\mathbf{A} = \mathbf{Y} \cdot \mathbf{K}^{-1}$ 

<sup>14</sup>[Gisbrecht et al., 2015]

CITEC

### **Kernel t-SNE**







15

<sup>15</sup>[Gisbrecht et al., 2015]



most popular measure

$$Q_k(X,Y) = \sum_i \left( N_k(\vec{x}^i) \cap N_k(\vec{y}^i) \right) / (Nk)$$

<sup>16</sup>[Lee et al., 2013]



most popular measure

$$Q_k(X,Y) = \sum_i \left( N_k(\vec{x}^i) \cap N_k(\vec{y}^i) \right) / (Nk)$$

rescaling added recently

<sup>16</sup>[Lee et al., 2013]



most popular measure

$$Q_k(X,Y) = \sum_i \left( N_k(\vec{x}^i) \cap N_k(\vec{y}^i) \right) / (Nk)$$

- rescaling added recently
- recently used to compare many DR techniques

### **Quality Assessment of DR**



<sup>17</sup>[Peluffo-Ordóñez et al., 2014]

▲□▶▲圖▶▲≧▶▲≧▶ 差 のへで

CITEC



Which features are important for a given projection?



## data set: ESANN participants

| Partic. | University | ESANN paper | #publications | <br>likes beer |  |
|---------|------------|-------------|---------------|----------------|--|
| 1       | A          | 1           | 15            | 1              |  |
| 2       | A          | 0           | 8             | -1             |  |
| 3       | В          | 1           | 22            | <br>-1         |  |
| 4       | С          | 1           | 9             | <br>0          |  |
| 5       | С          | 0           | 15            | -1             |  |
| 6       | D          |             |               |                |  |
| :       | :          |             |               | :              |  |

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

CITEC

## Visualization of ESANN participants



▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

CITEC

## Relevance of features for the projection CITEC



▲ロト▲聞ト▲臣ト▲臣ト 臣 のへで

# Relevance of features for the projection CITEC





▲ロ▶▲御▶▲臣▶▲臣▶ 臣 のQで

## Visualization of ESANN participants



CITEC



▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

#### Aim

 estimate the relevance of single features for non linear dimensionality reductions



#### Aim

 estimate the relevance of single features for non linear dimensionality reductions

#### Idea

 change the influence of a single feature and observe the change in the quality



#### NeRV cost function<sup>18</sup> $Q_k^{\text{NeRV}}$

interpretation from an information retrieval perspective

<sup>18</sup>[Venna et al., 2010] <sup>19</sup>[Schulz et al., 2014a]



(日) (日) (日) (日) (日) (日) (日)

#### NeRV cost function<sup>18</sup> $Q_k^{\text{NeRV}}$

- interpretation from an information retrieval perspective
- $d(\vec{x}^i, \vec{x}^j)^2 = \sum_l (x_l^i x_l^j)^2$  becomes  $\sum_l \lambda_l^2 (x_l^i x_l^j)^2$

<sup>18</sup>[Venna et al., 2010] <sup>19</sup>[Schulz et al., 2014a]

### **NeRV cost function**<sup>18</sup> $Q_k^{\text{NeRV}}$

- interpretation from an information retrieval perspective
- $d(\vec{x}^i, \vec{x}^j)^2 = \sum_l (x_l^i x_l^j)^2$  becomes  $\sum_l \lambda_l^2 (x_l^i x_l^j)^2$
- $\lambda_{\text{NeRV}}^{k}(I) := \lambda_{I}^{2}$  where  $\lambda$  optimizes  $Q_{k}^{\text{NeRV}}(X_{\lambda}, Y) + \delta \sum_{I} \lambda_{I}^{2}$

くしゃ 人間 そう キャット マックタイ

<sup>18</sup>[Venna et al., 2010] <sup>19</sup>[Schulz et al., 2014a]





◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●







◆□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <







<<p>(日)、<</p>

æ











・ロット (雪) (日) (日)

ъ













◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

## Relevances for different projections





◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

## Relevances for different projections CITEC





SAC



▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

## 98.7%
#### Why visualize Classifiers?



▲□▶▲□▶▲□▶▲□▶ □ のくで

CITEC

#### Why visualize Classifiers?





### Why visualize Classifiers?









▲□▶▲□▶▲□▶▲□▶ □ のQで

#### **Class borders are**

- often non linear
- often not given in an explicit functional form (e.g. SVM)
- high dimensional which makes it non feasible to sample them for a projection

#### An illustration the approach





< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

CITEC

### An illustration the approach





◆□▶▲□▼▲□▼▲□▼▲□▼

CITEC

class

class

## An illustration: dimensionality reduction



・ロット (雪) ・ (ヨ) ・ (ヨ) ・ ヨ

# An illustration: dimensionality reduction



- sample the 2D data space
- project the samples up

## An illustration: dimensionality reduction CITEC



- sample the 2D data space
- project the samples up



イロト イポト イヨト イヨト

ъ

## An illustration: dimensionality reduction CITEC



- sample the 2D data space
- project the samples up



・ロット (雪) (日) (日)

ъ

classify them

### An illustration: border visualization

 color intensity codes the certainty of the classifier



CITEC

diml

(日)



- project data to 2D
- sample the 2D data space
- project the samples up
- classify them













dim2

#### ◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●





rim?









dim1

dim2





dim1

dim2





#### Toy Data Set 2 with NE





dim2





▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

#### Toy Data Set 2 with NE





dim1

dim2





### **DR: intrinsically 3D data**







< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

### **DR: NE projection**



CITEC

### Supervised dimensionality reduction

·=c

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Use the Fisher metric<sup>21</sup> d(**x**, **x** + d**x**) = **x**<sup>T</sup> **J**(**x**)**x J**(**x**) = E<sub>p(c|**x**)</sub> { (\$\frac{\partial}{\partial **x}\$ log p**(c|**x**)\$)(\$\frac{\partial}{\partial **x}\$ log p**(c|**x**)\$)<sup>T</sup> }

<sup>21</sup>[Peltonen et al., 2004, Gisbrecht et al., 2015]

### Supervised dimensionality reduction

Use the Fisher metric<sup>22</sup> d(x, x + dx) = x<sup>T</sup> J(x)x
J(x) = E<sub>p(c|x)</sub> { (\$\frac{\partial}{\partial x} \log p(c|x)\$) (\$\frac{\partial}{\partial x} \log p(c|x)\$) ]<sup>T</sup>



<sup>22</sup>[Peltonen et al., 2004, Gisbrecht et al., 2015]

EC

СІТ

#### **DR: supervised NE projection**





СІТЕС

### **DR: supervised NE projection**







▲□▶▲圖▶▲≣▶▲≣▶ ■ のへで

#### prototypes in original space



・ロト・(四ト・(日下・(日下・))

СІТЕС





different objectives of dimensionality reduction







◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

- different objectives of dimensionality reduction
- new approach to get insight into trained classification models
- discriminative information can yield major imrpovements



## Thank You For Your Attention!

Alexander Schulz aschulz (at) techfak.uni-bielefeld.de

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで





#### Gisbrecht, A. and Hammer, B. (2015).

Data visualization by nonlinear dimensionality reduction. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 5(2):51–73.



Gisbrecht, A., Schulz, A., and Hammer, B. (2015).

Parametric nonlinear dimensionality reduction using kernel t-sne. *Neurocomputing*, 147:71–82.



Hinton, G. and Roweis, S. (2002).

Stochastic neighbor embedding.

In Advances in Neural Information Processing Systems 15, pages 833-840. MIT Press.



#### Lee, J. A., Renard, E., Bernard, G., Dupont, P., and Verleysen, M. (2013).

Type 1 and 2 mixtures of kullback-leibler divergences as cost functions in dimensionality reduction based on similarity preservation.

Neurocomput., 112:92-108.

#### Lee, J. A. and Verleysen, M. (2007).

Nonlinear dimensionality reduction. Springer.



#### Peltonen, J., Klami, A., and Kaski, S. (2004).

Improved learning of riemannian metrics for exploratory analysis. *Neural Networks*, 17:1087–1100.

### Literature II





#### Peluffo-Ordóñez, D. H., Lee, J. A., and Verleysen, M. (2014).

Recent methods for dimensionality reduction: A brief comparative analysis. In 22th European Symposium on Artificial Neural Networks, ESANN 2014, Bruges, Belgium, April 23-25, 2014.



#### Schölkopf, B., Smola, A., and Müller, K.-R. (1998).

Nonlinear component analysis as a kernel eigenvalue problem. *Neural Comput.*, 10(5):1299–1319.



Schulz, A., Gisbrecht, A., and Hammer, B. (2014a).

Relevance learning for dimensionality reduction. In 22th European Symposium on Artificial Neural Networks, ESANN 2014, Bruges, Belgium, April 23-25, 2014.



Schulz, A., Gisbrecht, A., and Hammer, B. (2014b).

Using discriminative dimensionality reduction to visualize classifiers. *Neural Processing Letters*, pages 1–28.



#### van der Maaten, L. (2013).

Barnes-hut-sne. CoRR, abs/1301.3342.

van der Maaten, L. and Hinton, G. (2008).

Visualizing high-dimensional data using t-sne. Journal of Machine Learning Research, 9:2579–2605.



Venna, J., Peltonen, J., Nybo, K., Aidos, H., and Kaski, S. (2010).

Information retrieval perspective to nonlinear dimensionality reduction for data visualization. Journal of Machine Learning Research, 11:451–490.

### Literature III





#### Weinberger, K. Q. and Saul, L. K. (2006).

An introduction to nonlinear dimensionality reduction by maximum variance unfolding. In Proceedings of the 21st National Conference on Artificial Intelligence. AAAI.

#### Yang, Z., Peltonen, J., and Kaski, S. (2013).

#### Scalable optimization of neighbor embedding for visualization.

In Dasgupta, S. and Mcallester, D., editors, *Proceedings of the 30th International Conference on Machine Learning* (*ICML-13*), volume 28, pages 127–135. JMLR Workshop and Conference Proceedings.

