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Suppose there are N Web pages in total. Let the page rank of page i, i = 1,..., N be
PR(i). The page ranks are determined by the following linear equations:

PR(i) = (1—d) + 3 PRG)-L i=1,..N
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where C'(7) is the total number of links contained in page j.

Model the network of Web pages by a Markov chain. Regard the network as a huge
finite state machine, where every state is a page. The conclusion we will arrive at is that
the page ranks are proportional to the stationary probabilities of the states in the Markov
chain. That is, if you wander around the Web pages randomly according to this Markov
chain, after a long time, the probability of visiting any page at any time converges, and this
probability is not affected by how you start your navigation. The higher the probability
is, the higher the rank of the page will be. The scaling factor between the page rank and
the probability is N/d, where 0 < d < 1 is a chosen constant related to how likely you will
restart your navigation by not following links in pages.

Set up the Markov chain as follows.
1. Every page is a state, 1 =1,...,N.
2. Add an imaginary state, referred to as the Restart page, and label it as state 0.

3. The transition probabilities between the states are defined as follows. Note that the
transition probability p;; is the probability of entering state ¢ given the current state
is j. Valid transition probabilities have to satisfy ) ; p;; = 1 for any j.

(a) Every state ¢, 0 < i < N has probability of 1 — d transiting to the restart state 0,
that is, p; 0 = 1 — d for all the states 7. Heuristically, this means that no matter
which page you are currently in, you always have a fixed probability of restarting
instead of hopping around via links.

(b) The probability of going from state 0 to state i, i # 0, is po; = d/N. That is,
from the restart state, the probability of going to any real page is equal, and
the total probability of going to a real page is d (the rest probability, 1 — d, is
assigned to restart again).

(¢) The probability of going from state j, j # 0, to state i, ¢ # 0, is

d
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where I(-) is the indicator function that equals 1 if the argument is true, 0
otherwise. This means that for every page, besides the probability of 1 —d going
to restart, the rest probability d is evenly divided among the C'(j) links contained
in it. If a page i is not linked to j, p;; = 0.



Let the stationary probabilities (i.e., limiting probabilities) of state i be 7;. By a theorem
on Markov chain (assuming the MC is irreducible and ergodic, easily satisfied by a connected
finite graph without cycling patterns), these probabilities satisfy the following set of linear
equations:
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Specific to the Markov chain set up above:
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Define the page rank as PR(i) = %m, we get:
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which is precisely the page rank equation of the early Google.



