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Abstract Conditional independence graphs are now widely applied in science and
industry to display interactions between large numbers of variables. However, the
computational load of structure identification grows with the number of nodes in the
network and the sample size. A tailored version of the PC algorithm is proposed which
is based on mutual information tests with a specified testing order, combined with false
negative reduction and false positive control. It is found to be competitive with current
structure identification methodologies for both estimation accuracy and computational
speed and outperforms these in large scale scenarios. The methodology is also shown
to approximate dense networks. The comparisons are made on standard benchmarking
data sets and an anonymized large scale real life example.
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622 D. Bacciu et al.

1 Introduction

Efficient identification of the skeleton of a Bayesian network is important in the con-
text of large numbers of variables and large sample size. Applications such as this
are found in data mining, where the co-occurrence and synchronization of events is
analyzed to provide insight into business and marketing processes, and are also typical
of biological and social networks in domains as diverse as public health and bioin-
formatics. Software performance is crucial for achieving both convergence speed and
identification accuracy, that ideally should scale linearly in the number of variables
and of observations.

The ultimate goal of structure identification algorithms is to maximize the quality
of the reconstructed networks while maintaining a feasible computational complexity.
The basic PC algorithm, Algorithm 1 below, suggests certain key aspects related to sta-
tistical hypothesis testing directly influence performance. These include (i) the choice
of the independence test statistic, (ii) the issues raised by multiple testing relating to
the rates of false negative and false positive decisions, (iii) the order in which the tests
are executed, and (iv) the problems caused by a large sample size.

Algorithm 1 The Vanilla PC Algorithm (Spirtes et al. 2000)
Require: Dataset D, Test level α

1: Initialize a fully connected graph G = (V, E)

2: for all i ∈ V do {Marginal independence tests}
3: for all j ∈ ne (i) do
4: IsIndependent ⇐ TestIndependence(D, α, i, j)
5: if IsIndependent then
6: E ⇐ E \ ei j {Remove the edge from the graph}
7: ne (i) ⇐ ne (i) \ j, ne ( j) ⇐ ne ( j) \ i {Update the neighbors lists}
8: end if
9: end for
10: end for
11: K ⇐ 1
12: repeat {Order independence tests by size of conditioning set, K }
13: for all i ∈ V do
14: for all j ∈ ne (i) do
15: A ⇐ ConditionSet( ne (i) \ j, K ) {Construct potential conditioning sets}
16: IsIndependent ⇐ False
17: repeat {Seeks a certificate of exclusion from neighbors of i}
18: A ⇐ select subset from A
19: IsIndependent ⇐ TestCondIndependence(D, α, i, j, A)
20: A ⇐ A \ A
21: until A = ∅ or isIndependent
22: if IsIndependent then
23: E ⇐ E \ ei j {Remove the edge from the graph}
24: ne (i) ⇐ ne (i) \ j, ne ( j) ⇐ ne ( j) \ i {Update the neighbors lists}
25: end if
26: end for
27: end for
28: K ⇐ K + 1
29: until there are no tests of order K in G
30: return Undirected graph G
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Efficient identification of independence networks 623

Our contribution is to provide an extensive experimental assessment of structure
identification methodology intended to elucidate which procedures offer the best trade-
off between computational effort and quality of the reconstructed network in large-
scale scenarios. In particular we study the interactions arising from the combined use of
such computational procedures. The procedures have been implemented in a Matlab
package, herein called CImap for conditional independence map, and is evaluated
against state-of-the-art models from the literature, mostly implemented as part of the
Causal Explorer package (Aliferis et al. 2003). In particular, we consider constraint-
based approaches such as the baseline PC algorithm (Spirtes and Meek 1995) and
the computationally lightweight ARACNE method (Algorithm for the Reconstruc-
tion of Accurate Cellular Networks) (Margolin et al. 2006) that is the most widely
used approach for the reconstruction of high dimensional gene regulatory networks.
Greedy search-and-score approaches are also considered, including Greedy Search
(GS) (Meek 1997) and the Sparse Candidate algorithm (SCA) (Friedman et al. 1999),
where the former constraints the search space to that of the Markov equivalence classes
for DAGs (Spirtes and Meek 1995), while the latter constraints the search procedure
by allowing each node to have at most k parents. Finally, we also consider an hybrid
algorithm, the Max-Min Hill Climbing (MMHC) (Tsamardinos et al. 2006), that uses
an optimized constraint-based approach to reconstruct a candidate skeleton that is later
refined by an hill-climbing search guided by a Bayesian score. The MMHC approach
is, currently, the best structure finding algorithm in terms of tradeoff between com-
putational complexity and quality of the reconstructed network. Both accuracy and
scalability of all the models above have been evaluated in benchmark tests and on
a proprietary large-scale scenario comprising some 300 variables and 40 K observa-
tions, extending the range of the experimental variables significantly beyond the scale
of currently published performance evaluations for high order structure finding in
dense networks.

Plan of the paper After a description of the PC algorithm in Sect. 2 we argue
that for categorical data the mutual information is the most effective test statistic for
conditional independence, and give a rationale for its use in Sect. 3.1. In Sects. 3.2
and 3.3, we discuss multiple test procedures based on rigorous methodologies for
bounding Type I and Type II errors, respectively.

The issue of bounding Type I and Type II errors in skeleton identification is largely
discussed in literature (see, e.g., Tsamardinos and Brown 2008 and Fast et al. 2008):
Sects. 3.2 and 3.3 build on previous works to construct efficient computational rou-
tines that can be effectively applied within constraint based approach. Sections 3.5 and
3.4, on the other hand, present two novel methodological contribution of this work
which have never been tackled with in literature, that are a non-arbitrary ordering for
independence testing and a novel null independence hypothesis for large sample sizes,
respectively.

If the order in which independence tests are performed is arbitrary, the discovered
skeleton is (usually) not reproducible. Algorithm 1, for instance, implicitly assumes
that an ordering exists among the nodes, but no guidance is given. In Sect. 3.5, we
suggest a testing policy based on testing the weakest first (TWF), which imposes a
non-arbitrary ordering of tests and results in a notable improvement in the network
reconstruction performance.
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624 D. Bacciu et al.

The issue of large sample size is that small departures from an independence hypoth-
esis are flagged as edges, leading to graphs with extremely dense connectivity patterns.
Dense graphs also have a high computational cost. Section 3.4 discusses a modification
of the null independence hypothesis that leads to an efficient sparse approximation of
a dense networks. The experimental results are reported in Sect. 4 and the paper ends
with a discussion in the final section.

2 The PC algorithm

Independence networks, also known as graphical models and discussed in the texts
of Koller and Friedman (2009), Jensen and Nielsen (2007), Lauritzen (1996), and
Whittaker (1990), have been widely applied to factorise the joint distribution of multi-
variate data into a product of conditional dependencies which are represented by edges
in a graph. The topology of the graph serves to generate insights about relationships
inherent in the data and, potentially, for inference modelling.

A Bayesian network (BN) is a graphical model (G, P), where P is a joint probabil-
ity of random variables XV = (X1, . . . , X p) associated with nodes V = {1, . . . , p}.
In the context of discrete data, each Xi takes values in a finite set Xi of size |Xi |. The
graph G = (V, Edir ) is a directed acyclic graph (DAG) whose edges Edir encode the
joint probabilistic relationships among the p random variables. The graph is a visual
representation of the joint distribution of the data, where a directed edge ei j from node
i to j indicates that i is the parent of j as part of a conditional dependence relationship
between the two nodes.

The skeleton of the graph is the graph G = (V, E) with undirected edges replacing
directed edges. The predicate IP(i, j |A) is used to denote the conditional indepen-
dence, with respect to the joint probability P, of Xi and X j given a subset of random
variables X A, A ⊂ V . An alternative notation is Xi ⊥⊥P X j |X A (Dawid 1979). For
each missing edge in the skeleton there is a triple i, j, A for which the conditional
independence relationship IP(i, j |A) is true. If all the conditional independencies in
P, and only these, correspond to missing edges in the graph then G and P are faithful
to each other. We consider the task of skeleton identification, learning the structure E
of a Bayesian network from data D = (d1, d2, . . . , dN ) sampled from the distribution
P. Skeleton identification maps the empirical conditional relationships between the
random variables of XV onto the graph.

The essential idea of the PC algorithm is the observation, first made by Spirtes et al.
(1993), that a faithful BN has an edge between i and j in the skeleton if and only if
IP(i, j |A) does not hold for all conditioning subsets A of the remaining nodes. The
problem is then to find an efficient procedure for computing such independence tests
without incurring in a combinatorial explosion from the number of subsets A.

The starting point of our work is the vanilla implementation of the PC algorithm
(Spirtes et al. 2000), described in Algorithm 1. This procedure takes as input the dataset
D and the test level α, and returns an undirected graph G (the skeleton). The term ne (i)
indicates the set of neighbors of node i , i.e. those sharing an edge with i . In particular,
the function ConditionSet() in line 15 generates all the possible instantiations of a
K -th order conditioning set A for an edge ei j , by choosing the conditioning variables
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Efficient identification of independence networks 625

from the neighbors of i and j . The unconditional tests (lines 2–10) are separated from
the higher order conditional independence tests (lines 12–29) highlighting the role of
the first pass of unconditional tests in determining the efficiency of the algorithm. The
procedure starts by generating a fully connected network whose edges are pruned,
in the first pass, based on O(p2) pairwise independence tests. If such a preliminary
pruning phase does not remove enough edges the second pass of the algorithm can
result in an exponential number of conditional tests, i.e. O(p2 · 2p−2).

3 Efficient structure identification with the PC algorithm

3.1 Tests based on mutual information

A popular approach in the literature for testing conditional independence between cat-
egorical variables are the likelihood ratio tests, known as G2 statistics (Bishop et al.
1975; Spirtes et al. 2000),

G2(i, j |A) = 2
∑

xi ,x j ,xA

ni j A(xi , x j , xA) log
ni j A(xi , x j , xA)n A(xA)

ni A(xi , xA)n j A(x j , xA)

where n A(xA) denotes the frequency of the value xA taken by X A in the data set D.
The G2(i, j |A) statistic, under the null hypothesis IP (i, j |A), is asymptotically distrib-
uted as chi-squared with d f = (|Xi | − 1)(|X j | − 1)(|XA|) degrees of freedom where
XA denotes the domain for the conditioning variables. A different derivation of this
independence test is based on the conditional mutual information

I(i, j |A) =
∑

xi ,x j ,xA

pi j A(xi , x j , xA) log2
pi j |A(xi , x j |xA)

pi |A(xi |xA)p j |A(x j |xA)
, (1)

where p is the joint mass function determined by P. When I(i, j |A) = 0 the joint
conditional in the numerator of the log term factorises into the denominator, otherwise
I(i, j |A) > 0. It measures the amount of dependency in bits, with the larger the value
of I implying the stronger the dependency. A mutual information test retains the edge
when the statistic is large.

The mutual information Î is estimated from a point estimate ni j A/N of the mass
function pi j A that results in Î being a multiple of the G2 statistic, G2/2N log(2).
The essential difference is the division by the sample size N , so while G2 is easily
interpretable in hypothesis testing, mutual information is an estimate of association
strength.

The distribution of conditional mutual information estimates Î is approximated
using the chi-squared distribution (see Goebel et al. 2005 for a detailed discussion),
that is

2N log(2)Î(i, j |A) ∼ χ2
d f (2)

where N is the sample size and d f the degrees of freedom given above. Hence it is
possible to obtain a certificate of exclusion for an edge ei j by performing a chi-squared
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626 D. Bacciu et al.

test on the null hypothesis that the two random variables are independent given X A.
The p value for the hypothesis is

pi j A = P(Î(i, j |A) > m|H0), (3)

where m is the observed value of the Î statistic. For instance, the test of the inde-
pendence IP(i, j |k) is performed by computing the p value pi jk : given a significance
level α the edge ei j is deleted if pi jk > α and retained otherwise.

Mutual information has been used to define several strategies for the identification
of statistical dependencies in generic independence networks and there are several
reasons favoring the choice of conditional mutual information as a test statistics,

1. Firstly, because of the principled information theoretic derivation of mutual infor-
mation, it delivers a quantity measurable in scientific units (bits). It is intimately
related to the Kullback–Leibler divergence and has universal application to random
variables on different scales of measurement, for instance, binary, discrete, con-
tinuous or mixed.

2. Mutual information is a measure of strength which can be exploited to display
edge relevance in the final graph and to consistently resolve testing order issues
within constraint based algorithms. In Sect. 3.5, we define a strategy for eliminat-
ing weakest edges first using mutual information.

3. The mutual information statistic allows the specification of more interesting null
distributions than complete independence, appropriate when there are small depen-
dencies between all nodes, for instance, that might occur in a latent variable model
where the underlying variable is not observed.

3.2 False negative reduction

False negatives (FN) result in over-constrained structures missing relevant dependen-
cies between the random variables. Many FNs are caused by a failure in the indepen-
dence test due to noise as a consequence of insufficient data to pick out the signal, the
effect size. In structure identification, rules of thumb are proposed for false negative
reduction (FNR) that either prevent testing the hypothesis if there is insufficient data,
e.g. if the ratio of the sample size to the degrees of freedom of the test is less than 5
in G2 tests (Spirtes et al. 2000); or adjust the independence threshold with respect to
the sample size (Cheng et al. 2002). Such rules of thumb, although helping to reduce
the impact of false negatives, take no account of the effect sizes present in the data.

Fast et al. (2008) suggest a procedure that tailors the power to a desired effect size.
The procedure determines an acceptable number of degrees of freedom of the test to
ensure that a hypothesis is tested with a minimum power of at least 1 − β, given a false
negative proportion β, test level α, sample size N , and a desired effect size w. Since the
power decreases as the degrees of freedom increase, the procedure computes an upper
bound for the degrees of freedom of the test: if this threshold is exceeded, the algo-
rithm does not perform the test. The power of the conditional mutual information test
statistic is evaluated from a non-central chi-squared distribution with non-centrality
λ = 2N log(2) w2 (Goebel et al. 2005).
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Efficient identification of independence networks 627

Algorithm 2 describes the power correction procedure implemented for the tests of
conditional mutual information, where χ−2 and χ2

nc are the inverse and non-central
chi-squared distributions, respectively. This function, which is executed just once, out-
puts the allowed degrees of freedom dof for the conditional mutual information tests.
The power is calculated for each degree of freedom until it drops below level 1 − β,
which gives the maximum allowed value dof . The result of Algorithm 2 depends
closely on the choice of the effect size w: this parameter can be set either by cross val-
idation or by selecting the most appropriate value from the suggested effects described
in Fast et al. (2008) for varying sample sizes.

Algorithm 2 Power Correction for Tests of Conditional Mutual Information
Require: Sample size N , test level α, FN bound β, effect size w

1: dof ⇐ 0
2: while (power ≥ 1 − β) and (dof ≤ MAXDOF) do
3: dof ⇐ dof + 1
4: c ⇐ χ−2(1 − α, dof )

5: power ⇐ P(2N log(2) w2 > c)
6: end while
7: return Degree of freedom bound dof

FNR is achieved by choosing not to perform the conditional independence test
of IP (i, j |A) when the degrees of freedom (|Xi | − 1)(|X j | − 1)(

∏
k∈A |Xk |) exceed

dof , and thus includes the edge ei j by default.

3.3 Bounding the false positive rate

A false positive results in the estimated network having an additional edge compared
to the true network. While the probability of incurring in a false positive on a single
test is given by the significance level α, the false positive rate accumulated over the
whole network typically exceeds this. In structure identification multiple tests occur
because of multiple edges and because tests may be repeated on the same edge for
different conditioning sets.

More formally, given a node i a constraint-based algorithm may perform a single
test of independence of IP(i, j |Ak) for each neighboring node j conditioned on a set
Ak , with an associated p value pi jk . The independence test pi jk > α ensures that the
probability of false detection on the single hypothesis IP(i, j |Ak) is α, but does not
provide a bound to the proportion of false positives in the cumulated tests

{pi jk > α; j ∈ V, Ak ⊂ V, k = 1, . . . , ko}

for node i . The measurement of the overall error rate when testing such multiple
hypotheses is consistently more complicated than for single tests. Tsamardinos and
Brown (2008) describe a theoretical bound for such detection errors that uses the idea
of False Discovery Rate (FDR) developed by Benjamini and Hochberg (1995). Here
we exploit the work in Tsamardinos and Brown (2008) to provide three alternative
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628 D. Bacciu et al.

testing procedures that can be used to reduce the number of false positives in BN
structure learning.

An FDR procedure controls the expected proportion of false positives rather
than the probability of at least one false positive in the set of all hypoth-
eses tested. In network identification, the FDR-induced significance level α∗
can, in principle, be different for each node or for each edge in the network.
To apply the FDR at the node-level, we fix a target node i on which the mul-
tiple tests are performed. First consider the unconditional hypotheses IP(i, j)
with associated p values pi j , and index these over j ( �= i) into increasing order
pi(1) ≤ pi(2) ≤, . . . ,≤ pi(J−1). The Benjamini and Hochberg (1995) condition that
enforces the desired FDR level α f dr , requires rejecting all hypotheses IP(i, j) whose
p value pi j is smaller than

α∗
i = max

j

{
pi( j); pi( j) ≤ j

J − 1
α f dr

}
. (4)

An alternative, tighter bound to the FDR is the Benjamini and Yekutieli (2001) criterion

α∗
i = max

j

{
pi( j); pi( j) ≤ j

J
∑J

j ′=1
1
j ′

α f dr

}
. (5)

More generally, each edge ei j is coupled with a set of values

P i j = {pi jk; Ak ⊂ V, k = 1, . . . , ko}

corresponding to the conditional independence hypotheses IP(i, j |Ak), which includes
the unconditional case Ak = ∅. However, Tsamardinos and Brown (2008) provide a
theoretical argument showing that the p value set P i j can be bounded by the smallest p
value obtained when conditioning on a subset Ak for which independence IP (i, j |Ak)

holds, i.e.

p∗
i j = min

k

{
pi jk ∈ P i j ; pi jk > α

}
,

and it suffices to apply the FDR procedure in (4) replacing pi j with p∗
i j .

An alternative approach, not mentioned by Tsamardinos and Brown (2008), is to
apply the FDR procedure at the edge-level by determining the most appropriate α∗

i j
for each edge ei j in the network. Consider the edge ei j and the independence tests
IP(i, j |Ak) given candidate conditioning sets A1, . . . , Ak, . . . , Ako . The p values pi jk

can be sorted in increasing order pi j(k) as before, and the FDR procedure in (4) can
be applied to determine the α∗

i j . If the test level α∗
i j is undefined, i.e. when the set

in (4) is empty, then edge ei j is retained, otherwise it is pruned. Notice that with the
edge-level approach, the unconditional tests (i.e. Ak = ∅) reduce to a single test of
independence, and there is no advantage in applying an FDR procedure.

We have implemented three FDR control policies: standard FDR, interleaved FDR
and per-edge FDR, where the first two are node-based and the latter one is edge-based.
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Efficient identification of independence networks 629

The standard FDR procedure is a straightforward extension of the results in Tsamardi-
nos and Brown (2008) and is applied after the convergence of Algorithm 1 (possibly
extended with the FNR control) in order to get rid of eventual false positive edges that
have not yet been pruned by the vanilla PC algorithm.

The interleaved FDR procedure, as the name suggests, is interleaved with the steps
of the vanilla PC algorithm of order K . At the first pass of Algorithm 1, which com-
putes all the unconditional tests, we apply the FDR procedure to their p values and
prune the corresponding edges. Then, the order |Ak | = K = 1 tests are all performed
and the edge p values are adapted by keeping track of the minimum p∗

i j at level 1; the
FDR procedure is thus applied and the false positives are pruned. Such a process is
iterated for all the orders of test until the algorithm converges. The rationale behind
the design of the interleaved FDR procedure is to anticipate as much as possible the
pruning of the false positives in order to (i) reduce the computational burden of the
algorithm and (ii) reduce the risk of deleting a true edge because of the presence of
false positives.

The per-edge FDR is a fairly straightforward implementation of the edge-level pro-
cess described above. First, the vanilla procedure in Algorithm 1 is modified so that at
order K = 0 all p values for the unconditional tests are computed, the FDR procedure
is performed on these p values, and the network structure is pruned accordingly. This
step has the same computational cost of the vanilla version. At orders K ≥ 1 and for
each tested edge ei j , the algorithm accumulates the p values for the conditional tests
and applies the edge-level FDR process to obtain the α∗

i j level, pruning edge ei j if
such a test level is undefined.

The three FDR procedures discussed above have been implemented, together with
the FDR bound in (4). In Sect. 4, we compare the experimental performance of the
different FDR settings on freely available structure learning benchmarks.

3.4 Approximating dense networks

With large samples it is possible that small departures from independence become
noticeable so that the empirical distribution of the marginal mutual information differs
consistently from chi-squared. One explanation is a small variation in the probability
that Xi = 1 over the sampling units. A consequence is that the null distribution of the
mutual information is no longer chi-squared and, at the first stage of the PC algorithm,
most edges are retained in the graph which, in consequence, is dense. Such a result
is not necessarily useful nor informative for prediction or understanding: rather than
retaining these edges, a different approach is to retain only those edges that reach a
given threshold. In this sense, the discovered network is only a sparse approximation
to the true graph of the underlying skeleton.

Taking a thresholding perspective easily slots into the current search framework by
replacing the assumption at (2) of a null chi-squared distribution by that of a Normal
distribution. From (1), the sample estimate of the marginal mutual information is

mi j = 1

N

∑

xi ,x j

ni j (xi , x j )

[
log2

(
ni j (xi , x j )N

ni (xi )n j (x j )

)]
.
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630 D. Bacciu et al.

Fig. 1 Example of strong and
weak edges: edge thickness
indicates the strength of variable
association. Notice that testing
ei j first might lead this edge to
be pruned in place of eik

As the counts in the tables ni j (xi , x j ) are sums of independent random variables and
as mi j is a function of these it has an asymptotic normal distribution. Its variance may

be approximated by s2
i j = 1

N (m(2)
i j − m2

i j ) where

m(2)
i j = 1

N

∑

xi ,x j

ni j (xi , x j )

[
log2

(
ni j (xi , x j )N

ni (xi )n j (x j )

)]2

.

The p value is 1 − �
(

mi j −μI
si j

)
calculated from the standard N(0, 1) cumulative dis-

tribution, where μI is the threshold value.
The convergence of mi j to its mean under the thresholding assumption is O(1/

√
N )

while under independence it is O(1/N ). There are obvious generalizations for the var-
iance of the conditional mutual information in higher-way tables but, in practice, it is
the behavior at the first pass of the PC algorithm that is problematic. This model is
denoted as CImap-PN in the following.

3.5 Test the weakest first

The outcome of the vanilla PC algorithm is influenced by the order in which the con-
ditional independence tests are executed. Consider, for instance, the toy scenario in
Fig. 1, where edge thickness is used to denote the strength of conditional association
between the random variables.

Suppose the algorithm performs the independence tests first on node i and, in par-
ticular, on edge ei j conditioned on the realization of k, i.e. tests IP(i, j |k). Here k
is a neighbor of both i and j and it might be the case that it explains the association
between these two nodes in terms of its weaker associations to i and j (i.e. eik and e jk).
This might lead the algorithm to pruning the strong edge ei j that, conversely, ought to
be preserved. Moreover, at the next step, the algorithm tests the weak edge eik without
conditioning on j , given that it has been pruned from the neighbors of i (it is still in
the neighborhood of k but will only be tested later). Hence, it might be the case that
such a weak edge is preserved, thus resulting into two different errors: (i) the incorrect
pruning of ei j and (ii) the incorrect discovery of the eik dependency. The result of a
test can alter the outcome of subsequent tests so that different node and edge orderings
may lead to different final graphs from the same input data.
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Efficient identification of independence networks 631

A principled strategy that provides a non-arbitrary ordering of nodes and edges is
based on a TWF policy, where the strength of the node i is defined as the sum of the
marginal mutual information between i and its adjacent nodes j ∈ ne (i)

σi =
∑

j∈ ne (i)

Î(i, j). (6)

The outcome of the first pass of the algorithm (the unconditional tests) is invariant
with respect to the test order, which only becomes relevant at the stage of conditional
tests. The strengths σi can be computed as part of the first pass without any increase
to the complexity of the algorithm. Once obtained for all nodes in the graph they can
be ordered from the weakest node (i.e. having the lowest σi ), that is tested first, to
the strongest node, that is tested last. Similarly, the TWF policy can be applied to
the edges of a candidate node i in order to select which association is tested first. In
particular, given node i , its incident edges ei j are sorted in increasing order of mutual
information Î(i, j) so that the weakest edge is tested first.

Algorithm 3 describes the PC algorithm with the TWF policy: notice that node
and edge ordering is updated before testing a new order of conditional dependencies
(lines 17–18), so to keep sorting consistent with respect to the deleted edges (line
31). The computational cost of the TWF sorting up-to the K -th order tests is worst
case O(K p2 log p) (presuming the use of a O(p log p) sorting algorithm), and this
calculation can be made more efficient by exploiting the sorting obtained for order
K − 1 to determine the new sorting at K .

The TWF–PC algorithm can be combined with any of the FNR and FDR policies
described previously: for instance, the single-test edge pruning in lines 23–32 can be
replaced by the per-edge FDR procedure. In the experimental evaluation we study
the effect of the TWF policy on the quality of network reconstruction under different
algorithmic setups and in combination with all the methodological tools discussed in
the previous sections.

4 Results

4.1 Experimental comparisons

The software package CImap for high-dimensional structure finding with large data-
sets is based on the constraint-based structure of Algorithm 1, enhanced by procedures
for false negative, false positive control and the TWF policy described in Algorithm 3.
CImap is implemented by a software package comprising both Matlab scripts as well
as open-source pre-compiled MEX routines to speed up mutual information computa-
tions. All the experiments have been performed using Matlab R2007b on a Dual Core
Intel 1.83 GHz CPU equipped with 1 GB RAM.

The performance of the package is compared with respect to several state-of-the-
art structure finding algorithms, mostly implemented as part of the Causal Explorer
package (Aliferis et al. 2003). In particular, the following algorithms have been tested

123

Author's personal copy



632 D. Bacciu et al.

Algorithm 3 The TWF–PC Algorithm
Require: Dataset D, Test level α

1: Initialize a fully connected graph G = (V, E)

2: for all i ∈ V do {Marginal independence tests}
3: σi ⇐ 0
4: for all j ∈ ne (i) do
5: m ⇐ Î(i, j)
6: IsIndependent ⇐ TestIndependence(D, α, m)
7: if IsIndependent then
8: E ⇐ E \ ei j {Remove the edge from the graph}
9: ne (i) ⇐ ne (i) \ j, ne ( j) ⇐ ne ( j) \ i {Update the neighborhoods}
10: else
11: mi j ⇐ m, σi ⇐ σi + m {Update the node and edge strength}
12: end if
13: end for
14: end for
15: K ⇐ 1
16: repeat {Order K independence tests}
17: V ⇐ nodeSort(V, {σi }) {Sort nodes in increasing order of strength}
18: ne (V) ⇐ edgeSort( ne (V), {mi j }) {Sort edges in increasing order of mi j for each i = 1, . . . , p}

19: for all i ∈ Ṽ do
20: for all j ∈ ne (i) do
21: A ⇐ ConditionSet( ne (i) \ j, K )
22: IsIndependent ⇐ false
23: repeat {Seeks a certificate of exclusion from neighbors of i}
24: A ⇐ select element from A
25: IsIndependent ⇐ TestCondIndependence(D, α, i, j, A)
26: A ⇐ A \ A
27: until A = ∅ or isIndependent
28: if IsIndependent then
29: E ⇐ E \ ei j {Remove the edge from the graph}
30: ne (i) ⇐ ne (i) \ j, ne ( j) ⇐ ne ( j) \ i , {Update the neighbors lists}
31: σi ⇐ σi − mi j , mi j ⇐ 0 {Update the node and edge strength}
32: end if
33: end for
34: end for
35: K ⇐ K + 1
36: until there are no tests of order K in G
37: return Undirected graph G

– Two versions of the standard PC algorithm (Spirtes et al. 2000) described in Sect. 2:
one, denoted as PC-G2, implementing significance testing on the G2 statistics; the
other, denoted as PC-MI, testing conditional independence based on mutual infor-
mation thresholds, i.e. without significance testing.

– MMHC (Tsamardinos et al. 2006), an hybrid algorithm mixing an optimized con-
straint-based approach to reconstruct the skeleton with an edge orientation phase
implemented by an hill-climbing search guided by a Bayesian score. The MMHC
algorithm is, to the extent of our knowledge, the state of the art approach to structure
identification in terms of tradeoff between reconstruction performance and com-
putational requirements. In the tested configuration, no limits have been imposed
on the cardinality and the maximum allowed size of the conditioning set has been
fixed to K = 10;
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– SCA (Friedman et al. 1999), a purely search-and-score algorithm that performs
several hill-climbing searches in the full DAG space, constraining each node to
have at most k parents and re-estimating the set of candidate parents at each GS
iteration.

– The GS algorithm (Meek 1997), that performs a greedy optimization in the space
of Markov equivalence classes for DAGs using a Bayesian score to evaluate the
structures.

– A version of the ARACNE algorithm (Margolin et al. 2006) tailored for categori-
cal variables: this method only tests pairwise interactions and considers, at most,
all possible triplets of connected genes generated by an initial step. This makes
the ARACNE method computationally very efficient and has proved to be very
effective in the reconstruction of gene regulatory networks (Margolin et al. 2006).
The implementation used in the tests exploits the same optimized MEX routines
for mutual information computation employed in the CImap package.

Performance has been evaluated in terms of the skeleton reconstruction quality, i.e.
the number of generated false positives and negatives, as well as in terms of completion
time.

4.2 CImap configuration options

Several CImap configurations have been tested, e.g. CImap-P + iFDR + FNR indicates
an algorithm with statistical tests, interleaved FDR and false negative control, listed
in Table 1. The options listed in Table 1 have been combined in several ways to test
a large number of configurations. For the sake of clarity, we use some shortcuts to
denote particular configurations that are tested thoroughly: Table 2 provide a succinct
summary of the shortcuts used.

The test level and the mutual information cut for the independence tests has been
set to α = 0.05 and μM I = 10 mbits, respectively, in accordance to the testing guide-
lines in Tsamardinos et al. (2006). Experimentally, these values offer the best average
reconstruction performance across different benchmarks for all the tested algorithms.
The α f dr value for the FDR procedures (see Sect. 3.3) is always set to be equal to the
significance level α.

Table 1 CImap options tested in the experimental evaluation

Acronym Definition

CImap-P Basic PC algorithm with χ2 tests on mutual information

CImap-MI Basic PC algorithm with mutual information cuts

CImap-PN Dense network approximation algorithm in Sect. 3.4

sFDR Standard FDR with Benjamini and Yekutieli (2001) criterion

iFDR Interleaved FDR with Benjamini and Yekutieli (2001) criterion

peFDR Per-edge FDR with Benjamini and Yekutieli (2001) criterion

FNR False negative control

TWF Test-the-weakest-first policy
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Table 2 List of shortcuts for specific CImap configurations tested in the experimental evaluation

Acronym Configuration

CImap-P-1 CImap-P + TWF

CImap-P-2 CImap-P + iFDR + FNR + TWF

CImap-P-3 CImap-P + peFDR + FNR + TWF

CImap-P-4 CImap-P + iFDR + TWF

CImap-MI1 CImap-MI (basic algorithm)

CImap-MI2 CImap-MI + TWF

CImap-PN1 CImap-PN algorithm with threshold value μI = 10 mbits

CImap-PN2 CImap-PN algorithm with threshold value μI = 5 mbits

Table 3 Bayesian networks
used in the experimental studies

Network Variables Edges Max in/out Domain
degree range

Insurance 27 52 3/7 2–5

Alarm 37 46 4/5 2–4

Hailfinder 56 66 4/16 2–11

Barley 48 84 4/5 2–67

4.3 Benchmark datasets

The experimental setup comprises four benchmark networks that are freely avail-
able from the Bayesian Network Repository1 and whose details are listed in Table 3.
Experiments have been performed by varying the dataset size between 0.5 and 10 K
samples: for each tested size, we performed 10 network simulations using the Bayesian
Network Toolbox (BNT) (Murphy 1997) in order to sample 10 independent datasets.
The Barley network has been tested only up to 5 K samples using the datasets available
on the Casual Explorer2 site.

4.4 Results for alternative configurations of CImap

First, we evaluated the performance of the CImap package for alternative configu-
rations, to compare the effect of the different FDR and FNR corrections as well as
of the TWF policy, using the Insurance and Alarm networks. Figures 2 and 4 show
the corresponding reconstruction errors, for each CImap configuration, as a function
of the sample size: left bars (blue) denote the total reconstruction errors, i.e. the sum of
the false positive plus false negative edges, while right bars (red) show the number of
false negatives. The plots show that the TWF policy produces a consistent reduction in
the reconstruction errors. Moreover, this performance improvement is coupled with a
consistent reduction in the time required by the algorithm to converge. Figure 3 indicate

1 http://www.cs.huji.ac.il/~galel/Repository/.
2 http://discover.mc.vanderbilt.edu/discover/public/supplements/mmhc_paper/mmhc_index.html.

123

Author's personal copy

http://www.cs.huji.ac.il/~galel/Repository/
http://discover.mc.vanderbilt.edu/discover/public/supplements/mmhc_paper/mmhc_index.html


Efficient identification of independence networks 635

0.5K 1K 5K 10K
0

10

20

30

40

R
ec

on
st

ru
ct

io
n 

E
rr

or
s

CImap−P

Tot
FN

0.5K 1K 5K 10K
0

10

20

30

40

R
ec

on
st

ru
ct

io
n 

E
rr

or
s

CImap−P + sFDR

Tot
FN

0.5K 1K 5K 10K
0

10

20

30

40

R
ec

on
st

ru
ct

io
n 

E
rr

or
s

CImap−P + iFDR

Tot
FN

0.5K 1K 5K 10K
0

10

20

30

40

R
ec

on
st

ru
ct

io
n 

E
rr

or
s

CImap−P + peFDR

Tot
FN

0.5K 1K 5K 10K
0

10

20

30

40

R
ec

on
st

ru
ct

io
n 

E
rr

or
s

CImap−P + FNR

Tot
FN

0.5K 1K 5K 10K
0

10

20

30

40

R
ec

on
st

ru
ct

io
n 

E
rr

or
s

CImap−P + iFDR + FNR

Tot
FN

0.5K 1K 5K 10K
0

10

20

30

40

R
ec

on
st

ru
ct

io
n 

E
rr

or
s

CImap−P + TWF

Tot
FN

0.5K 1K 5K 10K
0

10

20

30

40

R
ec

on
st

ru
ct

io
n 

E
rr

or
s

CImap−P + iFDR + TWF

Tot
FN

0.5K 1K 5K 10K
0

10

20

30

40

R
ec

on
st

ru
ct

io
n 

E
rr

or
s

CImap−P + peFDR + TWF

Tot
FN

Fig. 2 Reconstruction errors for the Insurance network as a function of the dataset size with varying CImap
configurations: left bars (blue) denote cumulative errors, while right bars (red) show the number of false
negatives (color figure online)

a quadratic increase in time with sample size with no deterioration in performance by
adding FDR; worse performance by adding FNR; and an improved performance by
adding TWF. The explanation is that the TWF policy reduces the number of false
positives in the network, which shrinks the size of the neighbourhood of each node,
so reducing the number of independence tests performed by the algorithm which,
therefore, converges earlier.

As regards the FDR and FNR corrections it is clear that the latter offers the most
consistent increase in the network reconstruction performance: for instance, it obtains
the best results when used jointly with the TWF policy. The FDR correction, on the
other hand, seems to contribute less to network reconstruction quality, although its
positive effect is seen for the Alarm network (see Fig. 4). Furthermore interleaved and
per-edge FDR seem more effective than standard FDR both as regards reconstruction
quality as well as for reducing the computational load of the algorithm. This, again,
can be explained by the anticipated pruning of the false positives avoiding some tests
on edges that should not be included in the final graph.

4.5 Comparative results

These results suggest we focus on comparing Causal Explorer and ARACNE with
CImap with interleaved FDR, FNR control and TWF policy.
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Fig. 3 Time to complete (in seconds) for the Insurance network as a function of the dataset size with
varying CImap configurations

Figures 5, 6, 7, 8 show the reconstruction error on the Insurance, Alarm, Hailfinder
and Barley networks as a function of the dataset size. Overall, it is clear that the
MMHC gives the best reconstruction quality. CImap has a competitive performance
with MMHC on the Insurance and Barley networks, especially when dealing with
datasets comprising fewer samples. Figure 8 shows that reconstruction errors for
CImap-P-2 are higher than for CImap-P-1 in the Barley network: the number of false
positives increase with FNR switched on and the TWF policy alone cannot get rid of
these. Compared to the standard implementation of the PC algorithm CImap shows a
notable improvement in reconstruction performance. This latter result displays quite
well the effectiveness of the TWF, FDR and FNR procedures, since CImap is essen-
tially a PC algorithm, enhanced by the above methodology. ARACNE has the worse
performance; it retains too many false positive edges because it only tests pairwise
mutual information, hence missing more complex interactions. However, we expect
the ARACNE algorithm to benefit from the FDR procedures resulting in a reduction
of its false positives.

Table 4 shows the time to converge of the different algorithms on the four test
networks. CImap gives the best performance with running times that, on larger
networks such as Hailfinder, vary within 1–5 % of the time required by MMHC
(see Fig. 9). The comparison with the performance of the standard PC algorithm and
pure search-and-score algorithms such as SCA and GS shows clearly the marked
advantage of CImap in terms of computational feasibility. The steep increase, with
respect to sample size, in the time-to-converge of the PC algorithm for the Insurance
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Fig. 4 Reconstruction errors for the Alarm network as a function of the dataset size with varying CImap
configurations: left bars (blue) denote cumulative errors, while right bars (red) show the number of false
negatives (color figure online)
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Fig. 5 Reconstruction errors for the Insurance network using p value test with significance α = 0.05.
Left bars (blue) denote cumulative errors, while right bars (red) show the number of false negatives (color
figure online)
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Fig. 6 Reconstruction errors for the Alarm network using p value test with significance α = 0.05. Left
bars (blue) denote cumulative errors, while right bars (red) show the number of false negatives (color figure
online)
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Fig. 7 Reconstruction errors for the Hailfinder network using p value test with significance α = 0.05.
Left bars (blue) denote cumulative errors, while right bars (red) show the number of false negatives (color
figure online)

network has been documented in Tsamardinos et al. (2006) and appears to be connected
with a late pruning of false positive edges, so resulting in the algorithm performing
independence tests on a larger number of conditioning sets. The standard PC algorithm
did not converge within 7 days on the Barley network, while GS ran out of memory
when reconstructing the Barley network from 5 K samples. The ARACNE algorithm
has, notably, the lowest time computational requirements between tested methods, due
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Fig. 8 Reconstruction errors for the Barley network using p value test with significance α = 0.05.
Left bars (blue) denote cumulative errors, while right bars (red) show the number of false negatives (color
figure online)

to its simplified testing strategy addressing only pairwise dependencies. However, as
seen previously, such simplification results in a consistent increase of the amount of
false positive errors. Overall, the experimental results suggest that CImap offers the
best trade-off in terms of reconstruction quality and computational load when dealing
with high dimensional networks.

4.6 Large datasets

We compare the performance of CImap with respect to the algorithms in the Causal
Explorer package on a large-scale (LargeScale) case-study using anonymized real-
world data. By exploiting proprietary data comprising more than 30 K samples, we
build a ground truth Bayesian network comprising 328 nodes with 154 edges: the
network structure is sparse with over 212 nodes being marginally independent. The
ground truth network is built from the original data using CImap with mutual informa-
tion cuts and a threshold μM I = 8 mbits. Network parameters are learnt by maximum
likelihood estimation using BNT. The experimental setup comprises datasets of dif-
ferent size, including 10, 20, 30 and 40 K samples. For each dataset size, we generate
10 independent datasets by sampling from the ground truth network above, using the
facilities in BNT.

The proposed scenario poses challenging computational issues as the sample size is
large and the network is high-dimensional, yet sparse, being characterized by a mod-
ular structure with low inter-cluster connectivity and strong intra-cluster connectivity.
The high dimensionality of the network causes greedy methods to fail because of the
combinatorial explosion of computational complexity. The large number of observa-
tions inflates chi-squared statistics, preventing most of the constraint-based and hybrid
algorithm to consistently estimate the network structure.
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Table 4 Time to complete (in seconds) for each algorithm configuration as a function of the dataset size
for p value tests of level α = 0.05

Algorithm 500 1000 5000 10000

Sec. SD Sec. SD Sec. SD Sec. SD

Insurance

CImap-P-1 0.70 0.04 1.07 0.07 4.38 0.34 9.09 0.46

CImap-P-2 0.74 0.04 1.19 0.07 4.86 0.51 9.79 0.56

PC-G2 8.09 0.43 9.68 0.27 26.50 3.32 43.28 4.27

MMHC-G2 4.32 0.62 5.32 0.25 19.11 2.07 36.23 2.41

SCA-G2 19.32 3.18 26.73 3.53 88.75 22.72 160.83 36.05

GS 7.61 1.17 10.12 1.67 35.55 5.57 74.31 13.92

ARACNE 0.16 0 0.19 0.01 0.48 0.01 0.92 0.14

Alarm

CImap-P-1 0.50 0.03 0.86 0.05 4.70 0.26 10.56 0.28

CImap-P-2 0.53 0.04 0.90 0.06 4.91 0.31 10.69 0.30

PC-G2 69.56 22.85 108.26 163.41 34.73 2.74 93.84 8.61

MMHC-G2 3.01 0.60 4.06 0.25 20.29 1.38 57.56 3.79

SCA-G2 10.57 3.46 15.55 3.04 40.18 11.07 58.20 14.75

GS 3.58 0.45 5.07 1.08 15.61 2.09 27.47 2.36

ARACNE 0.30 0.02 0.3 0.01 1.12 0.33 1.99 0.37

Hailfinder

CImap-P-1 1.2 0.042 1.49 0.06 4.57 0.39 9.47 1.07

CImap-P-2 1.78 0.58 2.91 1.44 12.70 8.67 32.47 22.08

PC-G2 40 5 78 8 460.23 25.95 1048 72

MMHC-G2 8 1 14 1 172.97 10.28 561 50

SCA-G2 22 5 36 11 111.68 27.48 225 53

GS 14 3 22 3 100.47 14.65 187 33

ARACNE 0.73 0.01 0.84 0.01 2.16 0.10 3.96 0.14

Barley

CImap-P-1 0.92 0.03 1.23 0.04 5.01 0.47 n.a. n.a.

CImap-P-2 1.20 0.17 1.56 0.40 5.04 0.26 n.a. n.a.

CImap-P-3 1.15 0.11 1.55 0.41 5.10 0.35 n.a. n.a.

PC-G2 – – – – − − n.a. n.a.

MMHC-G2 7.94 0.59 11.86 2.24 45.19 9.46 n.a. n.a.

SCA-G2 28.51 5.87 45.57 12.69 129.19 37.69 n.a. n.a.

GS 16.08 1.89 36.62 9.15 − − n.a. n.a.

ARACNE 0.56 0.02 0.65 0.01 1.64 0.05 n.a. n.a.

Results show the mean and standard deviation over 10 independently sampled datasets. Results for algo-
rithms that did not converge within a week are marked as “–”, “n.a.” is used to mark the missing datasets
for the Barley network

Several CImap configurations, Causal Explorer algorithms and ARACNE are
compared in these large scale scenarios. Initially, we run structure learning using basic
tests of mutual information cuts, i.e. we use a threshold μM I = 10 mbits (a standard
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Fig. 9 Comparison of the time to complete (in seconds) for the Hailfinder network as a function of the
dataset size

threshold value from literature) and run the structure learning algorithms by pruning
those edges having conditional mutual information lower that μM I . Such an approach
has the advantage of keeping the computational complexity of edge testing down as
it does not require computing χ2 distributions.

Edge presence testing based on cuts does not allow false positive and false negative
control to be exploited, and also, does not obviously allow one to tailor testing levels
to the size of the conditioning set. Hypothesis testing, however, may implement FDR
and FNR and accounts for the sizes of the conditioning set through the appropriate
null distribution. We run some experiments using the CImap-P algorithm with χ2 tests
of mutual information discussed at level α = 0.05.

Figure 10 shows the behavior of the total reconstruction errors (averaged over the
10 re-samplings) as a function of the dataset size. Surprisingly, the algorithms using
simple MI cuts are performing better than those exploiting more refined statistical
tests. From the error breakdown in Table 5, it is clear that the latter are generating a
large amount of FPs and the FDR procedure in CImap-P-4 manages to reduce them
only partially, leaving almost 180 false positives out of about 300 discovered edges.

The origin of such degenerate behavior is in the first pass of unconditional edge
testing, where p values calculated from the χ2 distribution are significant for almost
all edges, resulting in extremely dense graphs. As discussed in Sect. 3.4, this is due to
the fact that with large samples small departures from independence become notice-
able, resulting in the null distribution of the mutual information differing consistently
from χ2. The impact of this issue on the computational performance of the algorithm
is well illustrated by Fig. 11, where the time-to-complete of the χ2-based algorithms
follows an exponential behavior with respect to dataset size. The results from Causal
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Fig. 10 Cumulative reconstruction errors (false negatives and positives) for the LargeScale scenario using
mutual information cuts (with μM I = 10 mbits) and p value tests (with significance α = 0.05)

Table 5 False positives and false negatives on the LargeScale scenario for each algorithm configuration as
a function of the dataset size for mutual information cuts μM I = 10 mbits, p value tests of level α = 0.05
and Normal approximation thresholds μI = 10 mbits and μI = 5 mbits

Algorithm 10000 20000 30000 40000

FN FP FN FP FN FP FN FP

Insurance

CImap-MI1 74.5 0 74.6 0 75.5 0 75.0 0

CImap-MI2 73.7 0 74.1 0 73.8 0 73.7 0

PC-MI 89.4 0 90.1 0 89.7 0 89.4 0

CImap-P-1 23.4 348.9 19.0 358.1 16.0 359.4 14.2 367.7

CImap-P-4 20.8 169.7 15.9 179.2 13.2 176.8 11.2 182.0

PC-G2 10.2 210.7 – – – – – –

CImap-PN1 (10 Mbit) 54.1 0 51.9 0 49.3 0 49.3 0

CImap-PN2 (5 Mbit) 16.6 0 11.5 0.1 10.8 0 9.3 0

ARACNE 54.4 2,121.4 53.9 2130.1 54.7 2114.9 54.3 2122.5

Results show the mean over 10 independently sampled datasets. Results for algorithms that did not converge
within a week are marked as “–”

Explorer are somewhat disappointing because the program failed to reach a result
within a reasonable run-time apart from the PC-MI algorithm discussed previously.
Such a failure has different explanations, depending on the algorithms. For instance,
search-and-score models such as GS and SCA do not converge due to the large search
space (i.e. graphs with more than 300 nodes). Both the PC algorithm with G2 statistics

123

Author's personal copy



Efficient identification of independence networks 643

10K 20K 30K 40K
0

50

100

150

200

250

300

350

Sample Size

T
im

e 
(m

in
s)

CImap−MI1
CImap−MI1
PC−MI
CImap−P−1
CImap−P−4
CImap−PN1
CImap−PN2
ARACNE

Fig. 11 Comparison of the time to complete (in minutes) for the LargeScale network as a function of the
dataset size

and the MMHC algorithm fail to provide results within a 2 week run-time limit, prob-
ably because they are both affected by the χ2 issue. Notice that the PC-G2 algorithm
managed to provide results within the 2 weeks, but only for the 10 K samples data-
sets: Table 5 reports the corresponding reconstruction error, which has been obtained
with an average time-to-complete of 3202.7 min. For a 20 K samples dataset, PC-G2
crashes (after 1 week running time) because of excessive memory usage when test-
ing order 10 conditional dependencies. The ARACNE algorithm managed to provide
timely results, with a time to complete that is comparable to that the CImap algorithms
based on simple mutual information cuts (see Fig. 11). However, Table 5 shows that
ARACNE produces an large number of false positives, with several thousand false
edges. It seems most of these are produced by the failure of the χ2 tests leading to
extremely dense networks at the first step of the algorithm. The second ARACNE step,
which prunes the edge with the lowest MI among all triplets of connected nodes, is
able to consistently reduce the network connectivity, but still retains too many false
positive edges.

The algorithms based on simple cuts do not generate such a huge number of false
positive edges, with the CImap implementation providing results within an outstand-
ing 6.4 min time (on 40 K datasets) as compared to the 38.68 min required by PC-MI.
However, neither provides a satisfactory reconstruction of the ground truth network
with over 70 errors, almost all false negatives, so returning extremely sparse and poorly
connected networks.

To improve the reconstruction quality in this LargeScale scenario we implemented
the Normal approximation for dense networks discussed in Sect. 3.4. In particular, we
extended the CImap algorithm to perform unconditional statistical testing based on
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a Normal mutual information distribution, while conditional tests are still performed
based on a χ2 distribution. The significance level of the tests is set to α = 0.05 for both
configurations. Notice that, in contrast with αI , μI does not define a hard MI thresh-
old under which edges are severed from the network (e.g. αI = 10 mbits). Rather, it
relocates the expected MI for independent edges from the expectation under the χ2

distribution to μI , performing a statistical test of independence based on test level α.
The results in Fig. 10 and Table 5 shows that the CImap-PN approach produces

a notable increase in the quality of the reconstructed network, with the CImap-PN2
approach yielding to as few as 9 missing edges with no false positives. The computa-
tional effort is larger but not intolerable as the CImap-PN1 configuration is converg-
ing in about 87 min (see Fig. 11). Comparing CImap-PN1 with CImap-PN2 shows
the more conservative nature of the latter configuration which tends to preserve more
edges at the first step of unconditional edge testing. This, on the one hand, reduces the
number of false negatives enhancing the overall reconstruction quality; but increases
the time-to-converge of the algorithm as more conditional tests need to be performed.

5 Concluding remarks

Constraint-based approaches, such as the PC algorithm (Spirtes et al. 2000), are impor-
tant tools for dealing with structure identification on high-dimensional problems with
large sample sizes. To this end, we propose a set of general computational procedures
for enhancing the reconstruction performance of constraint-based methods, without
affecting their computational complexity. Some of them, including FDR and FNR con-
trol, build on previous work in the field to construct computationally efficient routines
for generic constraint-based approaches. The TWF policy and the Normal approxi-
mation for dense networks, on the other hand, are novel contributions of this paper,
addressing issues that have not yet been tackled with in literature.

The experimental assessments show how even a fairly simple algorithm such as the
standard PC algorithm can be made competitive with the best hybrid algorithms, such
as the state-of-the-art MMHC model (Tsamardinos et al. 2006). This model has an
hybrid structure finding strategy that mixes a constraint-based skeleton identification
phase with a search-and-score refinement of the structure, that makes it extremely com-
petitive from the point of view of the trade-off between computational load and quality
of the reconstructed network. However, the proposed CImap approach is shown, across
several experimental tests on benchmark data, to match MMHC reconstruction qual-
ity with computational speeds comparable with one of the fastest current algorithms,
ARACNE. The ARACNE approach simplifies notably the testing strategy since it
addresses only pairwise dependencies; however, such simplification results in a consis-
tent increase of the amount of false positive errors. Overall, the proposed methodology
proved to be the best in terms of trade-off between computational requirements and
quality of the reconstructed network, already with small-to-medium sized problems.

We show that application of error rate bounding in statistical hypothesis test-
ing enhances the quality of the reconstructed network. Also we show how mutual
information provides reliable test statistics for edge tests, which can naturally be
exploited to provide a measure of edge strength. Such a measure is used to implement
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a test-the-weakest-first policy, that is shown to provide a notable increase in the quality
of the reconstructed network by reducing both false positives and false negatives.

A critical issue affecting the applicability of some algorithms in the literature is
the inflation of test statistics with large sample size, leading to dense networks. We
propose a novel procedure for approximating networks that eliminates an edge when
the mutual information is no bigger than a given threshold, and we show that this
leads to a high quality reconstructed network. To our knowledge, such an issue has
not been raised in literature, as it is strongly linked to the peculiarities of large scale
applications (e.g. social networks, data mining, etc.), where a large network search
space is associated to extensive data collections..
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