COMPUTERS AND INTRACTABILITY
A Guide to the Theory of NP- Completeness

38 THE THEORY OF NP-COMPLETENESS

requirements we have just described would appear to be rather demanding.
One must show that every problem in NP transforms to our prospective
NP-complete problem I1. It is not at all obvious how one might go about
doing this. A priori, it is not even apparent that any NP-complete problems
need exist.

The following lemma, which is an immediate consequence of our
definitions and the transitivity of «, shows that matters would be simplified
considerably if we possessed just one problem that we knew to be NP-
complete.

Lemma 2.3 1f L, and L, belong to NP, L, is NP-complete, and L« L,
then L, is NP-complete.
Proof: Since L, € NP, all we need to do is show that, for every L' € NP,
L'« L,. Consider any L' € NP. Since L, is NP-complete, it must be the
case that L'« L. The transitivity of « and the fact that L, < L, then imply
that L'ec L,. ®

Translated to the decision problem level, this lemma gives us a
straightforward approach for proving new problems NP-complete, once we
have at least one known NP-complete problem available. To prove that Il
is NP-complete, we merely show that

1. TI€NP, and

2. some known NP-complete problem IT' transforms to IT.

Before we can use this approach, however, we still need some first NP-
complete problem. Such a problem is provided by Cook’s fundamental
theorem, which we state and prove in the next section.

’

2.6 Cook’s Theorem

The honor of being the ‘“first’’ NP-complete problem goes to a decision
problem from Boolean logic, which is usually referred to as the SATISFIA-
BILITY problem (SAT, for short). The terms we shall use in describing it
are defined as follows:

Let U={uy,u,, ..., u,) be a set of Boolean variables. A truth assign-
ment for U is a function ¢: U—{T,F}. If 1(u) =T we say that u is “‘true”’
under ¢ if #(u) = F we say that u is ““false.”” If u is a variable in U, then
u and # are literals over U. The literal u is true under ¢ if and only if the
variable u is true under ¢ the literal u is true if and only if the variable u
is false.

A clause over U is a set of literals over U, such as {u,u3,ug}. It
represents the disjunction of those literals and is satisfied by a truth assign-
ment if and only if at least one of its members is true under that assign-
ment. The clause above will be satisfied by ¢ unless t(u))=F, t(u3)=T,

2.6 COOK’S THEOREM 39

and t(ug) =F. A collection C of clauses over U is satisfiable if and only if
there exists some truth assignment for U that simultaneously satisfies all
the clauses in C. Such a truth assignment is called a satisfying truth assign-
ment for C. The SATISFIABILITY problem is specified as follows:

SATISFIABILITY
INSTANCE: A set U of variables and a collection C of clauses over U.
QUESTION: Is there a satisfying truth assignment for C?

For example, U={uy,u,} and C= {{u,,7,}, {#,u,}} provide an in-
stance of SAT for which the answer is ‘‘yes.”” A satisfying truth assignment
is given by t(u)=t(up)=T. On the other hand, replacing C by
C'= {{uy,uy}, {uy, @), (@)} yields an instance for which the answer is
“no’’; C’ is not satisfiable.

The seminal theorem of Cook [1971] can now be stated:

Theorem 2.1 (Cook’s Theorem) SATISFIABILITY is NP-complete.

Proof: SAT is easily seen to be in NP. A nondeterministic algorithm for it
need only guess a truth assignment for the given variables and check to see
whether that assignment satisfies all the clauses in the given collection C.
This is easy to do in (nondeterministic) polynomial time. Thus the first of
the two requirements for NP-completeness is met.

For the second requirement, let us revert to the language level, where
SAT is represented by a language Lg,r = L[SAT,e} for some reasonable
encoding scheme e. We must show that, for all languages L € NP,
L < Lgyr. The languages in NP are a rather diverse lot, and there are
infinitely many of them, so we cannot hope to present a separate transfor-
mation for each one of them. However, each of the languages in NP can be
described in a standard way, simply by giving a polynomial time NDTM
program that recognizes it. This allows us to work with a generic
polynomial time NDTM program and to derive a generic transformation
from the language it recognizes to Lg,r. This generic transformation, when
specialized to a particular NDTM program M recognizing the language L,,,
will give the desired polynomial transformation from Ly, to Lg,7. Thus, in
essence, we will present a simultaneous proof for all L € NP that L « Lg,r.

To begin, let M denote an arbitrary polynomial time NDTM program,
specified by T, Z, b, @, 90, 9y, gy, and 8, which recognizes the language
L =1L, In addition, let p(n) be a polynomial over the integers that
bounds the time complexity function T),(n). (Without loss of generality,
we can assume that p(n)>n for all n € Z*.) The generic transformation
f. will be derived in terms of M, T, Z, b, Q, 4q¢, gy, gy, 8, and p.

It will be convenient to describe f, as if it were a mapping from strings
over X to instances of SAT, rather than to strings over the alphabet of our
encoding scheme for SAT, since the details of the encoding scheme could

40 THE THEORY OF NP-COMPLETENESS

be filled in easily. Thus f; will have the property that for all x € £*, x € L
if and only if f; (x) has a satisfying truth assignment. The key to the con-
struction of f; is to show how a set of clauses can be used to check wheth-
er an input x is accepted by the NDTM program M, that is, whether x € L.

If the input x€Z* is accepted by M, then we know that there is an ac-
cepting computation for M on x such that both the number of steps in the
checking stage and the number of symbols in the guessed string are bound-
ed by p(n), where n=|x|. Such a computation cannot involve any tape
squares except for those numbered —p(n) through p(n)+1, since the
read-write head begins at square 1 and moves at most one square in any sin-
gle step. The status of the checking computation at any one time can be
specified completely by giving the contents of thesc squares, the current
state, and the position of the read-write head. Furthermore, since there are
no more than p(n) steps in the checking computation, there are at most
p(n)+1 distinct times that must be considered. This will enable us to
describe such a computation completely using only a limited number of
Boolean variables and a truth assignment to them.

The variable set U that f; constructs is intended for just this purpose.
Label the elements of Q as gqq,4=9y,¢:=4dn,4q3, .-, 4q,, where
r=|0|-1, and label the elements of [as so=b, 51,83, . . ., 5,, where

=|T'|~1. There will be three types of variables, each of which has an in-
tended meaning as specified in Figure 2.7. By the phrase ‘‘at time /'’ we
mean ‘‘upon completion of the i step of the checking computation.”

Variable Range Intended meaning
. 0<<i<p(n) . ..
oli k] O<k<r | At time /, M is in state g.
HUiJ! 0<i<p(n) At time i, the read-write head
’ —p(n)<j<p(n)+l is scanning tape square j.
0<i<p(n) At time /, the contents of tape
Slij .kl —p(n)<j<p(n)+1 square / is symbol s;.
0<k<y

Figure 2.7 Variables in f, (x) and their intended meanings.

A computation of M induces a truth assignment on these variables in
the obvious way, under the convention that, if the program halts before
time p(n), the configuration remains static at all later times, maintaining
the same halt-state, head position, and tape contents. The tape contents at

2.6 COOK’S THEOREM 41

time O consists of the input x, written in squares 1 through n, and the
guess w, written in squares ~1 through ~|w/|, with all other squares blank.

On the other hand, an arbitrary truth assignment for these variables
need not correspond at all to a computation, much less to an accepting com-
putation. According to an arbitrary truth assignment, a given tape square
might contain many symbols at one time, the machine might be simultane-
ously in several different states, and the read-write head could be in any
subset of the positions —p(n) through p(n)+1. The transformation f,
works by constructing a collection of clauses involving these variables such
that a truth assignment is a satisfying truth assignment if and only if it is the
truth assignment induced by an accepting computation for x whose check-
ing stage takes p(n) or fewer steps and whose guessed string has length at
most p(n). We thus will have

x €L <> thereis an accepting computation of M on x

<> there is an accepting computation of M on x with p(n) or
fewer steps.in its checking stage and with a guessed string
w of length exactly p(n)

<> there is a satisfying truth assignment for the collection of
clauses in f; (x).

This will mean that f; satisfies one of the two conditions required of a
polynomial transformation. The other condition, that f; can be computed
in polynomial time, will be verified easily once we have completed our
description of f;.

The clauses in f; (x) can be divided into six groups, each imposing a
separate type of restriction on any satisfying truth assignment as given in
Figure 2.8.

It is straightforward to observe that if all six clause groups perform
their intended missions, then a satisfying truth assignment will have to
correspond to the desired accepting computation_ for x. Thus all we need to
show is how clause groups performing these missions can be constructed.

Group G consists of the following clauses:

{oli,01,01i11, ..., 0lirl}, 0Kigp(n)
{oliyl, oli /N, 0<i<p(n), 0K <j'<r

The first p(n) +1 of these clauses can be simultaneously satisfied if and
only if, for each time i, M is in at least one state. The remaining
(p(n) +1) (r+1) (r/2) clauses can be simultaneously satisfied if and only if
at no time / is M in more than one state. Thus G, performs its mission.
Groups G, and Gj are constructed similarly, and groups G4 and Gs are .
both quite simple, each consisting only of one-literal clauses. Figure 2.9
gives a complete specification of the first five groups. Note that the number

42 THE THEORY OF NP-COMPLETENESS

Clause group Restriction imposed

G, At each time /, M is in exactly one state.
G At each time /, the read-write head is
2 scanning exactly one tape square.
G At each time /i, each tape square contains
3
exactly one symbol from T.
G At time 0, the computation is in the initial
4 configuration of its checking stage for input x.
G By time p(n), M has entered state gy
5 and hence has accepted x.
For each time i, 0<i<p(a), the configuration
G of M at time /+1 follows by a single
6

application of the transition function 8
from the configuration at time /.

Figure 2.8 Clause groups in f; (x) and the restrictions they impose on satisfying

truth assignments.

of clauses in these groups, and the maximum number of literals occurring
in each clause, are both bounded by a polynomial function of »n (since r
and v are constants determined by M and hence by L).

The final clause group Gg, which ensures that each successive
configuration in the computation follows from the previous one by a single
step of program M, is a bit more complicated. It consists of two subgroups
of clauses.

The first subgroup guarantees that if the read-write head is nor scanning
tape square j at time /i, then the symbol in square j does not change
between times / and /+1. The clauses in this subgroup are as follows:

{SUi,j, 10, Hlij1, SLi+1,j,11}, 0<i<p(n),—p(n)<j<p(n)+1,0<ILy

For any time /, tape square j, and symbol s, if the read-write head is not
scanning square j at time /, and square j contains s; at time / but not at
time /+1, then the above clause based on i, j, and / will fail to be satisfied
(otherwise it will be satisfied). Thus the 2(p(n) +1)2(v +1) clauses in this
subgroup perform their mission.

2.6 COOK'S THEOREM 43

Clause group Clauses in group

G {oli 01,0011, ..., Qli,rl}, 0<i<p(n)
{oTi 1,010, 7T), 0<igp(n), 0K <j'Sr
G, {HU,~p(mM)),Hi,—p(n)+1], ..., Hli,p(m)+1]}, 0<i<p(n)
(AU T HTL T, 0<i€p(n),—p(n) i</ <pln)+1
G {51i,7,01,80i, 7,11, ..., Sli,j,v]), 0Kigp(n),—p(n) < ji<pn)+1
(ST / kT, ST, 7, kLo i< p (), —p (M) KJ<pn)+1,0<k <k’
G, {Q10,01},{H10,11},{S(0,0,01},
{S10,1,k1),{S10,2, k1), - - - (S0, n, k1), .
{$10,n+1,01},{S10,2+2,01}, .. . ,{S[0,p(n)+1,01},
where XSk Sey Sy
Gs {Qlp(n),11}

Figure 2.9 The first five clause groups in f; (x).

The remaining subgroup of Gg guarantees that the changes from one
configuration to the next are in accord with the transition function 8 for M.
For each quadruple (i,j,k,0), 0<i<p(n), —p(n) <j<p(n) +1, O<k<r
and 0 /< v, this subgroup contains the following three clauses:

{HLi j1, Qli k1, STi,j, 11, HLi+1,j+Al)
{H1i,j1, 0likl, STi,j, 1, Qli+1,k'1}
{HIi, j1, 0li,k), SLi,j, 01, SLi+1,7,01)

where if g, € Q—{qy,qyl, then the values of A, k', and /' are such that
8(qx,s) = (gy,sp,4), and if g, € {gy,qn}, then A=0, K'=k, and /'=/.

Although it may require a few minutes of thought it is not difficult to
see that these 6(p(n)) (p(n) +1) (r+1) (v+1) clauses impose the desired
restriction on satisfying truth assignments.

Thus we have shown how to construct clause groups G, through G
performing the previously stated missions. If x € L, then there is an
accepting computation of M on x of length p(n) or less, and this computa-
tion, given the interpretation of the variables, imposes a truth assignment
that satisfies all the clauses in C =G, UG,UG;U G,U GsU Gy

44 THE THEORY OF NP-COMPLETENESS

Conversely, the construction of C is such that any satisfying truth assign-
ment for C must correspond to an accepting computation of M on x. It
follows that f; (x) has a satisfying truth assignment if and only if x € L.

All that remains to be shown is that, for any fixed language L, f; (x)
can be constructed from x in time bounded by a polynomial function of
n=|x|. Given L, we choose a particular NDTM M that recognizes L in
time bounded by a polynomial p (we need not find this NDTM itself in
polynomial time, since we are only proving that the desired transformation
Sy exists). Once we have a specific NDTM M and a specific polynomial p,
the construction of the set U of variables and collection C of clauses
amounts to little more than filling in the blanks in a standard (though com-
plicated) formula. The polynomial boundedness of this computation will
follow immediately once we show that Length [£, (x)] is bounded above by
a polynomial function of n, where Length [7] reflects the length of a string
encoding the instance / under a reasonable encoding scheme, as discussed
in Section 2.1. Such a ‘‘reasonable’” Length function for SAT is given, for
example, by |U|-|C|. No clause can contain more than 2-|U| literals
(that’s all the literals there are), and the number of symbols required to
describe an individual literal need only add an additional log|U]| factor,
which can be ignored when all that is at issue is polynomial boundedness.
Since r and v are fixed in advance and can contribute only constant factors
to |U| and |C|, we have |U| = O(p(n)?) and |C| = O(p(n)?»). Hence
Length [f, (x)]1 = |U[|-|C| = O(p(n)*, and is bounded by a polynomial
function of n as desired.

Thus the transformation f;, can be computed by a polynomial time
algorithm (although the particular polynomial bound it obeys will depend on
L and on our choices for M and p), and we conclude that, for every
L €NP, f; is a polynomial transformation from L to SAT (technically, of
course, from L to Lg,r). It follows, as claimed, that SAT is NP-complete.
]

3

Proving NP-Completeness Results

If every NP-completeness proof had to be as complicated as that for
SATISFIABILITY, it is doubtful that the class of known NP-complete prob-
lems would have grown as fast as it has. However, as discussed in Section
2.4, once we have proved a single problem NP-complete, the procedure for
proving additional problems NP-complete is greatly simplified. Given a
problem II € NP, all we need do is show that some already known NP-
complete problem IT' can be transformed to II. Thus, from now on, the
process of devising an NP-completeness proof for a decision problem IT will
consist of the following four steps:

(1) showing that II is in NP,

(2) selecting a known NP-complete problem IT',

(3) constructing a transformation f from IT' to II, and
(4) proving that f is a (polynomial) transformation.

In this chapter, we intend not only to acquaint readers with the end
results of this process (the finished NP-completeness proofs) but also to
prepare them for the task of constructing such proofs on their own. In Sec-
tion 3.1 we present six problems that are commonly used as the ‘‘known
NP-complete problem’’ in proofs of NP-completeness, and we prove that

