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these six are themselves NP-complete. In Section 3.2 we describe three
general approaches for transforming one problem to another, and we
demonstrate their use by proving a wide variety of problems NP-complete.
A concluding section contains some suggested exercises.

3.1 Six Basic NP-Complete Problems

When seasoned practitioners are confronted with a problem IT to be
proved NP-complete, they have the advantage of having a wealth of experi-
ence to draw upon. They may well have proved a similar problem IT' NP-
complete in the past or have seen such a proof. This will suggest that they
try to prove II NP-complete by mimicking the NP-completeness proof for
IT' or by transforming [T’ itself to II. In many cases this may lead rather
easily to an NP-completeness proof for II.

All too often, however, no known NP-complete problem similar to II
can be found (even using the extensive lists at the end of this book). In
such cases the practitioner may have no direct intuition as to which of the
hundreds of known NP-complete problems is best suited to serve as the
basis for the desired proof. Nevertheless, experience can still narrow the
choices down to a core of basic problems that have been useful in the past.
Even though in theory any known NP-complete problem can serve just as
well as any other for proving a new problem NP-complete, in practice cer-
tain problems do seem to be much better suited for this task. The following
six problems are among those that have been used most frequently, and we

suggest that these six can serve as a ‘‘basic core” of known NP-complete

problems for the beginner.

3-SATISFIABILITY (3SAT)
INSTANCE: Collection C = {cy,¢5, . . .
variables such that | ¢;|=3for1 < i< m.
QUESTION: Is there a truth assignment for U that satisfies all the clauses
in C?

3-DIMENSIONAL MATCHING (3DM)

INSTANCE: Aset M C WxXxY, where W, X, and Y are disjoint sets
having the same number q of elements.

QUESTION: Does M contain a matching, that is, a subset M’ C M such
that |M'| = ¢q and no two elements of M’ agree in any coordinate?

VERTEX COVER (VC)

INSTANCE: A graph G = (V,E) and a positive integer X < |V|.
QI'JESTION: Is there a vertex cover of size K or less for G, that is, a subset
V'C V such that | V'| € K and, for each edge {u,} € E, at least one of u
and v belongs to V'?

¢} Of clauses on a finite set U of

3.1 SIX BASIC NP-COMPLETE PROBLEMS 47

CLIQUE

INSTANCE: A graph G = (V,E) and a positive integer J < | V].
QUESTION: Does G contain a cligue of size J or more, that is, a subset
V' C V such that |V'| > J and every two vertices in V' are joined by an
edge in E?

HAMILTONIAN CIRCUIT (HC)

INSTANCE: A graph G = (V,E).
QUESTION: Does G contain a Hamiltonian circuit, that is, an ordering

<v,vy,...,v,> of the vertices of G, where n—[Vl such that
{v,,,v,}EEand {v,,vIH}EEfor all i, 1<i<n?
PARTITION

INSTANCE: A finite set 4 and a ‘‘size” s(a) € Z* for each a€ 4.
QUESTION: Is there a subset 4" C A4 such that

Ysta) = ¥ sla)?

acA’ a€A—A'

One reason tor the popularity ot these six problems is that they all ap-
peared in the original list of 21 NP-complete problems presented in [Karp,
1972]. We shall begin our illustration of the techniques for proving NP-
completeness by proving that each of these six problems is NP-complete,
noting, whenever appropriate, variants of these problems whose NP-
completeness follows more or less directly from that of the basic problems.
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Figure 3.1 Diagram of the sequence of transformations used to prove that the six
basic problems are NP-complete.

Our initial transformation will be from SATISFIABILITY, since it is
the only ‘‘known’ NP-complete problem we have so far. However, as we
proceed through these six proofs, we will be enlarging our collection of
known NP-complete problems, and all problems proved NP-complete before
a problem [I will be available for use in proving that IT is NP-complete.
The diagram of Figure 3.1 shows which problems we will be transforming to
each of our six basic problems, where an arrow is drawn from one problem
to another if the first is transformed to the second. This sequence of
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is clear that s{a;) can be constructed from the given 3DM instance in poly-
nomial time.

The important thing to observe about this part of the construction is
that, if we sum up all the entries in any zone, over all elements of
{a;:1<i<k}, the total can never exceed k=27—1. Hence, in adding up
Y e s(a) for any subset 4' C {a;: 1< i<k}, there will never be any “‘car-
ries”” from one zone to the next. It follows that if we let

39-1
B = z 2Pf
j=0
(which is the number whose binary representation has a 1 in the rightmost
position of every zone), then any subset 4' C {a;: 1<i<k} will satisfy

Y s(a) =B
a€d’

if and only if M’ = {m;: a,€ 4’} is a matching for M.
The final step of the construction specifies the last two elements of 4.
These are denoted by b, and b, and have sizes defined by

s(b) =2 i s(a)|— B
i=1
and

s(by) = i s(a)| + B

i=1

Both of these can be specified in binary with no more than (3pg+1) bits
and thus can be constructed in time polynomial in the size of the given
3DM instance.

Now suppose we have a subset 4' € 4 such that

Y s@a) = ¥ s(a)

a€Ad’ a€A-A'
Then both of these sums must be equal to 23 X, s(a,), and one of the two
sets, 4’ or A—A’, contains b; but not b, It follows that the remaining ele-
ments of that set forrn a subset of {a;: 1< /< k} whose sizes sum to B, and
hence, by our previous comments, that subset corresponds to a matching
M in M. Conversely, if M'CM is a matching, then the set
{6} U {a;: m;€ M'} forms the desired set A’ for the PARTITION instance.
Therefore, 3DM o PARTITION, and the theorem is proved. ®
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3.2 Some Techniques for Proving NP-Completeness

The techniques used for proving NP-completeness results vary almost
as widely as the NP-complete problems themselves, and we cannot hope to
illustrate them all here. However, there are several general types of proofs
that occur frequently and that can provide a suggestive framework for de-
ciding how to go about proving a new problem NP-complete. We call these
(a) restriction, (b) local replacement, and (c) component design.

In this section we shall indicate what we mean by each of these proof
types, primarily by giving examples. It would be sheer folly to attempt to
define them explicitly. Many proofs can be interpreted in ways that would
place them arbitrarily in any one of the three categories. Other proofs
depend on decidedly problem-specific methods, so that no such limited set
of categories could possibly include them in a natural way. Thus, we cau-
tion the reader not to interpret this as a way to classify all NP-completeness
proofs. Rather, our sole intent is to illustrate several ways of thinking
about NP-completeness proofs that the authors (and othérs) have found to
be both intuitively appealing and constructive.

For brevity in what follows, we shall be omitting from .all our proofs
the verification that the given problem is in NP. Each of the problems we
consider is easily seen to be solvable in polynomial time by a nondeter-
ministic algorithm, and the reader should have no difficulty supplying such
an algorithm whenever required.

3’2.1. Restriction

Proof by restriction is the simplest, and perhaps the most frequently ap-
plicable, of our three proof types. An NP-completeness proof by restriction
for a given problem II € NP consists simply of showing that Il contains a
known NP-complete problem IT' as a special case. The heart of such a
proof lies in the specification of the additional restrictions to be placed on
the instances of Il so that the resulting restricted problem will be identical
to I'. We do not require that the restricted problem and the known NP-
complete problem be exact duplicates of one another, but rather that there
be an ‘‘obvious’ one-to-one correspondence between their instances that
preserves ‘‘yes” and ‘‘no’’ answers. This one-to-one correspondence,
which provides the required transformation from II' to II, is usually so ap-
parent that it need not even be given explicitly.
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tion 3 1 2, the problem EXACT COVER BY 3- SETS was shown to be NP-
complete by restricting its instances to 3-sets that contain one element from
a set W, one from a set X, and one from a set Y, where W, X, and Y are
disjoint sets having the same cardinality, thereby obtaining a problem identi-
cal to the 3DM problem. In Section 3.1.4, DIRECTED HAMILTONIAN
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CIRCUIT was shown to be NP-complete by restricting its instances to
directed graphs in which each arc («,v) occurs only in conjunction with the
oppositely directed arc (v,u), thereby obtaining a problem identical to the
undirected HAMILTONIAN CIRCUIT problem.

Thus proofs by restriction can be seen to embody a different way of
looking at things than the standard NP-completeness proofs, Instead of try-
ing to discover a way of transforming a known NP-complete problem to our
target problem, we focus on the target problem itself and attempt to restrict
away its “‘inessential’’ aspects until a known NP-complete problem appears.

We now give a number of additional examples of problems proved
NP-complete by restriction, stating each proof with the brevity it deserves.

(1) MINIMUM COVER
INSTANCE: Collection C of subsets of a set S, positive integer K.
QUESTION: Does C contain a cover for S of size K or less, that is, a

subset C' € C with |C'| < K and such that |J ¢ = §?
cel’
Proof Restrict to X3C by allowing only instances having |¢|=3 for all

¢€C and having K = |S|/3.

(2) HITTING SET
INSTANCE: Collection C of subsets of a set S, positive integer K.
QUESTION: Does S contain a hitting set for C of size K or less, that
is, a subset S'C S with |S’| < K and such that S’ contains at least
one element from each subset in C ?
Progf: Restrict to VC by allowing only instances having |¢|=2 for all
ceC.

(3) SUBGRAPH ISOMORPHISM
INSTANCE: Two graphs, G =(V,E|) and H=(V;,E,).
QUESTION: Does G contain a subgraph isomorphic 10 H, that is, a
subset ¥ C ¥V, and a subset E C E| such that | V|=|V,|,|E| =|E,],
and there exists a one-to-one function f:V,— V satisfying {u,v} € E,
if and only if {f(u),f(V)}€E?
Proof: Restrict to CLIQUE by allowing only instances for which H is
a complete graph, that is, £, contains all possible edges joining two
members of V,.

(4) BOUNDED DEGREE SPANNING TREE
INSTANCE: A graph G=(V,E) and a positive integer K <|V|-L.
QUESTION: Is there a spanning tree for G in which no vertex has
degree exceeding K, that is, a subset £’ C E such that |E'|=]V|-1,
the graph G'=(V,E") is connected, and no vertex in V is included in
more than X edges from E'?
Proof: Restrict to HAMILTONIAN PATH by allowing only instances
in which K =2,
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(5) MINIMUM EQUIVALENT DIGRAPH
INSTANCE: A directed graph G=(V,4) and a positive integer
K <Al
QUESTION: Is there a directed graph G'=(V,4') such that
A'C A, |A'] €K, and such that, for every pair of vertices v and v in
V, G' contains a directed path from v to v if and only if G contains a
directed path from v to v.
Prooft Restrict to DIRECTED HAMILTONIAN CIRCUIT by allow-
ing only instances in which G is strongly connected, that is, contains a
path from every vertex u to every vertex v, and K =|¥|. Note that
this is actually a restriction 1o DIRECTED HAMILTONIAN CIRCUIT
FOR STRONGLY CONNECTED DIGRAPHS, but the NP-
completeness of that problem follows immediately from the construc-
tions we gave for HC and DIRECTED HC.

(6) KNAPSACK
INSTANCE: A finite set U, a ‘*‘size” s{y) € Z* and a ‘‘value”
v(u) € Z* for each u € U, a size constraint B € Z*, and a value goal
KeZ
QUESTION: s there a subset U' € {/ such that

Y sw)<B and Y v(u) 2K
uel uey

Prooft Restrict 10 PARTITION by allowing only instances in which
s(u)y=v(u) forall u€ U and B=K="%Y, ., s(u).

(/) MULIIFKUUEDSUK SUHEDULING
INSTANCE: A finite set 4 of ‘‘tasks,” a “‘length™ /(a) € Z* for
each a € 4, a number m € Z* of ‘“‘processors,” and a ‘“‘deadline”
DeZzZ". .

QUESTION: lIs there a partition 4 = A4,U4,U - -+ U4, of 4 into
m disjoint sets such that

max | ¥ /(a):1<i<m { < D ?
aéA‘.

Proof: Restrict (0 PARTITION by allowing only instances in which
m=2and D="Y,,/(a).

As a final comment, we observe that, of all the approaches (0 proving
NP-completeness we shall discuss, proof by restriction is the one that would
profit most from an extensive knowledge of the class of known NP-
complete problems — beyond the basic six and their variants. Many prob-
lems that arise in practice are simply more complicated versions of problems



