
The	rsync	algorithm	

h1ps://rsync.samba.org/tech_report/tech_report.html	

An	easy	problem	

•  I	have	two	files	A	and	B.	I	want	to	make	B	
equals	to	A	

•  What	is	the	cost?	
– CPU	
– Data	moved	(reads,	writes)	

The	problem	of	rsync	

•  A	is	stored	in	computer	alpha	and	B	in	
computer	beta	

•  The	network	link	can	be	slow	(at	least	it	is	
much	slower	than	CPU)	

•  How	can	I	save	bandwidth?	

A	naïve	approach	

•  Beta	compute	a	hash	of	the	file	B	and	send	it	to	
alpha	

•  Alpha	compute	the	hash	of	A	and	send	back	to	beta	
either	the	hash	(if	the	two	hash	are	the	same)	or	the	
content	of	A	if	they	differ	

•  Beta	check	if	the	message	is	the	hash	or	has	to	
update	B	

•  What	is	the	cost?	
•  What	is	the	hash	funcNon?	

Cryptographic	hash	

1.  DeterminisNc	
2.  Quick	to	compute	
3.  Infeasible	to	generate	a	message	from	the	

hash	
4.  A	small	change	in	the	message	should	

drasNcally	change	the	hash	
5.  It	is	infeasible	to	find	collisions	

Cryptographic	hash	

1.  DeterminisNc	
2.  Quick	to	compute	
3.  Infeasible	to	generate	a	message	from	the	

hash	
4.  A	small	change	in	the	message	should	

drasNcally	change	the	hash	
5.  It	is	infeasible	to	find	collisions	

Can	I	do	be1er?	

•  Can	I	save	bandwidth	when	A	and	B	are	
similar?	

SoluNon	1	-	buckeNng	

•  Weakness?	
•  Can	I	do	be1er?	

SoluNon	2	-	rolling	

…and	the	green	ones	as	well	

Can	I	do	be1er?	

•  Intense	use	of	cpu	in	alpha	

SoluNon	3	–	rolling	hashing	

•  A	two	hashing	strategy	

!"#$%&'(= !!,!!…!!!
!

! !, ! = ! !!
!

!!!
!"#!!!

! !, ! = ! (! − ! + 1)!!
!

!!!
!"#!!!

! !, ! = !! !, ! + !2!"!!(!, !)!
!

SoluNon	3	–	rolling	hashing	

•  Is	it	M=216	a	good	idea?	
•  Collisions?	

! ! + 1, ! + 1 = !! !, ! + !!!!! − !!! !!"#!!!
!
! ! + 1, ! + 1 !!!

= ! ! !, ! !! − ! − ! + 1 !!!!!!!!!!!!!!
+ !(! + 1, ! + 1) !!"#!!!

!

•  A	convenient	way	to	derive	next	hash	

QuesNons?	

1.  What	is	the	difference	with	the	Rabin	
fingerprint?	

2.  What	is	the	difference	with	the	KarpRabin	
searching	algorithm?	

SoluNon	4	-	rsync	

•  Use	two	hash	funcNons	
•  The	rolling	hashing	for	each	possible	offset	
•  A	stronger	128bit	hash	in	case	a	collision	is	
detected	
– Rsync	uses	MD4	

SoluNon	4	-	rsync	

•  Use	two	hash	funcNons	
•  The	rolling	hashing	for	each	possible	offset	
•  A	stronger	128bit	hash	in	case	a	collision	is	
detected	
– Rsync	uses	MD4	

•  How	to	generate	collisions	in	MD4	
– h1ps://eprint.iacr.org/2005/151.pdf	

Checksum	searching	

•  Beta	sent	several	checksums		
•  For	each	test	alpha	performs	a	search	on	
these	checksums	

•  Is	linear	scanning	an	opNon?	

Checksum	searching	

•  Beta	sent	several	checksums		
•  For	each	test	alpha	performs	a	search	on	these	
checksums	

•  Is	linear	scanning	an	opNon?	
•  Binary	search	
•  Perfect	hashing	
•  What	is	the	preprocessing	and	querying	cost	in	
terms	of	CPU	and	memory?	

The	rsync	three	way	test	

16bit	

Rolling	checksum	

216	enNes	

•  Search	for	a	match	in	
the	table	
–  If	nul	the	block	is	not	
found	

The	rsync	three	way	test	

•  Scan	the	sorted	list	
to	find	a	match	with	
the	second	half	of	
the	checksum	

16bit	

Rolling	checksum	

216	enNes	

The	rsync	three	way	test	

•  Use	the	strong	
fingerprint	to	
confirm	the	match	

16bit	

Rolling	checksum	

216	enNes	

The	rsync	three	way	test	

•  What	happens	if	two	blocks	in	B	have	the	
same	fingerprint?	

•  How	the	list	of	blocks	can	be	organized?	
•  Is	it	possible	to	copy	a	corrupted	file?	

Things	you	may	want	to	try	and	
discuss	next	week	

•  Test	the	karpRabin	algorithm	
•  Test	binary	search	or	perfect	hashing	
•  Test	the	impact	of	the	length	of	the	block	

•  Small	vs	huge	files	

