
Data	stream	statistics	

Filippo	Geraci	

A	set	of	data	analytics	problems	

1.  How	many	different	users	accessed	the	
server	this	week?	

2.  Was	john	among	them?	
3.  How	many	times	john	accessed	the	server?	
4.  What	is	the	usage	trend	on	the	server?	
5.  Who	are	the	most	active	users	on	this	

server?	

Cardinality	Estimation	

•  Easy	when	I	want	to	count	all	
•  Counting	the	distinct	elements	of	a	stream:	
– Sort	data	and	find	unique	keys	
– Use	hash	tables	

•  Sorting	takes	O(n	log	n)	time	
•  Both	require	O(n)	space	

Cardinality	Estimation:	Linear	Counting	

•  LF	<<	1	à	low	probability	of	collision	
•  LF	~	1	à	Estimation	can	be	corrected	based	on	the	

probability	of	collision	
•  LF	>>	1	à	Estimation	cannot	be	corrected	

!"#$	&#'(") =	 #	$,-(,.'(/0/1/.(-1 	

Cardinality	Estimation:	Linear	Counting	

•  Estimation	of	c’	can	be	adjusted	according	to	the	the	
number	m	of	bits	and	the	number	c	of	bits	set	to	1	

! " =	−&	'(& − !
& 	

Cardinality	Estimation:	Linear	Counting	

Load	factor	 Real	count	 Estimated	count	 Relative	Error	

10%	 1	 1.050	 5%	

20%	 2	 2.230	 11.5%	

30%	 3	 3.560	 18.6%	

40%	 4	 5.100	 27.5%	

50%	 5	 6.930	 38.6%	

60%	 6	 9.160	 52.6%	

70%	 7	 12.030	 71.8%	

80%	 8	 16.090	 101.1%	

90%	 9	 23.020	 155.7%	

Linear	counting	with	m=10	and	no	collisions	

How	big	should	be	the	bit	vector?	

•  http://dblab.kaist.ac.kr/Publication/pdf/
ACM90_TODS_v15n2.pdf	

Number	of	elements	in	the	stream	 Size	for	an	error	rate	of	1%	

100	 5034	

1000	 5329	

7000	 7132	

8000	 7412	

10000	 7960	

100000	 26729	

1000000	 154171	

10000000	 1096582	

100000000	 8571013	

Cardinality	Estimation:	Linear	Counting	
–	Complex	queries	

•  Case	study:	I	have	tweets	tagged	with	country	
and	language	
– Question:	how	many	tweets	from	Italy	are	in	
English?	

Cardinality	Estimation:	Linear	Counting	
–	Complex	queries	

•  Case	study:	I	have	tweets	tagged	with	country	and	
language	
–  Question:	how	many	tweets	from	Italy	are	in	English?	

•  I	can	keep	two	counters	one	for	country	and	one	for	
language	
–  Answer:	OR	of	the	two	counters	

1	 0	 1	Italy	

0	 1	 1	English	

Italy		no	English	 English		no	Italy	 English		Italy	

Cardinality	Estimation:	Linear	Counting	

•  Keeping	the	error	rate	under	control	still	
requires	linear	growth	of	memory	with	the	
dataset	

Loglog	counters	

•  Assuming	each	element	is	hashed	as	a	H	bit	
vector	
– Let	ρ(y)	be	the	rank	(i.e.	the	position	of	the	
leftmost	bit	set	to	1)	of	the	hash	of	the	element	y	

1…	
1…	

Rank	=1	

1…	
01…	

Rank	=	2	

1…	
00…01..	

Rank	=	r	

½	Elements	 ¼		Elements	 1/2r	~	1	Elements	

Loglog	counters	

•  Given	a	hash	function	where	the	bits	are	
uniformly	distributed	we	can	estimate	that:	

	

Imply	

thus	
max!!(!) = !"#!!!

! = !!:!! !! = ! = ! 12! !≅ 1!

Loglog	counters	

•  Using	one	estimator	would	be	unstable	

Element	
hash	

H	bits	

k	bits	

Used	as	index	
to	address	one	estimator		

2k	
estimators	

Requires	log	(H-k)	bits	to	remember	rank	

Loglog	counters	
•  Example	H=6,	k=2	(22=4	estimators	each	of	which	with	
of	2	bits	=	8	bits	overall)	

00	 0010	Element1	
hash	

10	 0111	Element2	
hash	

11	 0001	Element3	
hash	

00	 1000	Element4	
hash	

01	 0010	Element5	
hash	

Rank	

Rank	

Rank	

Rank	

Rank	 2	

0	

3	

1	

2	

Estimators	

10	

10	

01	

11	

00	

01	

10	

11	

Loglog	counters	

Loglog	counters	-	performance	

•  Given	m=256	(k=8)	H=16	->	max	rank	()	stored	
in	4	bits	
– The	data	structure	is	256	*	4bit	=	128	bytes	
– Count	the	number	of	distinct	words	in	
Shakespeare’s	writings	with	an	error	rate	of	9.4%	

– 30,897	instead	of	28,239	
•  The	HyperLogLog	algorithm	can	count	>	109	
elements	using	1.5kB	of	memory	with	error	
rate	less	than	2%	

Loglog	counters	–	in	practice	
import hyperloglog, random

h = hyperloglog.HyperLogLog (0.005)
print "k = ", h.p
s = set ()
diff = maxdiff = 0
tot_elems = 10000
while (len (s) < tot_elems):
 x = random.randint (0, 10 * tot_elems)
 h.add (x)
 s.add (x)
 if abs (len (h) - len (s)) != diff:
 diff = abs (len (h) - len (s))
 print len (h), len (s), diff
 if abs (diff) > maxdiff:
 maxdiff = diff
print len (h), len (s), diff
print maxdiff
print float (maxdiff) / tot_elems

	

Resources	

•  Python	Imlementation	of	Loglogcounters	
– https://github.com/svpcom/hyperloglog	

•  Original	work:	
– http://algo.inria.fr/flajolet/Publications/DuFl03-
LNCS.pdf	

•  Several	references	can	be	found	in	the	
Wikipedia	article	
– https://en.wikipedia.org/wiki/HyperLogLog	

A	step	further	

•  Now	I	know	how	many	different	elements	in	a	
multiset.	

•  I	want	to	know	if	an	element	belongs	to	the	
set	

A	step	further	

•  Now	I	know	how	many	different	elements	in	a	
multiset.	

•  I	want	to	know	if	an	element	belongs	to	the	
set	

•  Bloom	filters	answer:	
–  I	strongly	think	the	element	is	in	set	
– Definitely	not	in	set	

Bloom	filters	

•  Bloom	filters	reduce	to	linear	counting	when	using	
only	one	hash	function.	

Improving	Bloom	filters	

•  Bloom	filters	are	somehow	similar	to	linear	
counters	but	cannot	answer	to	the	
cardinality	query		
–  The	number	of	bits	set	for	each	insertion	is	not	

proportional	to	the	number	of	hash	functions	
•  Case	1:	collisions	with	other	elements	
•  Case	2:	collisions	among	the	hash	functions	

•  A	possible	solution:	partition	the	bloom	filter	
so	no	case	2	collisions	are	possible	

Bloom	filters’	extensions	

•  	Deletable	Bloom	filters:	enable	probabilistic	
removal	of	elements	without	false	negatives	
and	with	minimal	additional	memory	
– C.	E.	Rothenberg,	C.	A.	B.	Macapuna,	F.	L.	Verdi,	
and	M.	Magalhaes,	“The	deletable	Bloom	filter:	a	
new	member	of	the	Bloom	family,”	IEEE	
Communications	Letters,	vol.	14,	no.	6,	pp.	557–
559,	June	2010.	[Online].	Available:	http://
arxiv.org/abs/1005.0352	

Bloom	filters’	extensions	

•  Dynamic	Bloom	filters	(DBF)	allow	to	extend	
bloom	filters	when	the	load	factor	exceeds	a	
given	threshold	
– D.	Guo,	J.	Wu,	H.	Chen,	Y.	Yuan,	and	X.	Luo,	“The	
dynamic	Bloom	filters,”	IEEE	Transactions	on	
Knowledge	and	Data	Engineering,	vol.	22,	no.	1,	
pp.	120–133,	2010.	

Bloom	filters:	a	practical	example	of	
use	

•  Consider	you	have	a	proxy	that	caches	web	
pages.	You	may	want	not	to	cache	a	page	that	
will	be	visited	only	once	

Bloom	filters:	a	practical	example	of	
use	

•  Consider	you	have	a	proxy	that	caches	web	
pages.	You	may	want	not	to	cache	a	page	that	
will	be	visited	only	once	
– Solution:	use	a	bloom	filter.	Once	you	have	a	
request	first	check	whether	it	has	already	be	seen.	
If	YES	cache	the	page,	otherwise	NO.	ANYWAY	add	
the	page	to	the	Bloom	filter.	

The	bloom	filter	version	of	the	spell	
checker	

Number	of	words	in	the	dictionary	

Practical	usage	

•  A	python	implementation:	
– https://github.com/jaybaird/python-bloomfilter	

•  Two	parameters:	
– Capacity	(i.e.	expected	number	of	elements	to	
insert)	

– Error	rate	[0,	1]	
•  Compare	speed	versus	space	of	bloom	filters	
and	hash	sets	

Estimation	of	the	number	of	
occurrences:	the	count	mean	sketch		

A	simple	python-ish	implementation	
class CountMinSketch:
 int CMS[d][w], a[d], b[d];
 int p = (2^31) - 1; # a convenient prime number

 def initializeHashes () {
 for i in range (d):
 a[i] = random (p) # random in range 1..p
 b[i] = random (p)

 def hash (value, i):
 return ((a[i] * value + b[i]) mod p) mod w

 def add (value):
 for i in range (d):
 CMS[i][hash (value, i)] += 1

 def estimateFrequency (value):
 return min ([CMS[i][hash(value, i) for i in range (d)])

What	about	computing	distributions?	

•  Given	highly	skewed	data	I	want	to	measure	
the	frequency	at	least	of	the	top	elements	

•  Facts:	
– Counters	are	expected	to	be	higher	because	of	
the	contribution	of	other	elements	

– CM	returns	the	counter	with	less	noise	
•  Idea	
– Estimate	the	contribution	of	noise	for	a	specific	
counter	

CMM	–	Count	Mean-Min	sketch	

•  Noise	as	the	average	value	of	the	other	elements	of	
the	row	

Heavy	hitters	

•  All	the	above	data	structures	allow	counting	
or	membership	evaluation.	

•  How	to	know	the	most	represented	keys	in	a	
stream?	

•  Until	now:	
–  I	can	count	how	many	keys	exist,	
–  I	can	check	if	a	particular	key	is	present	
–  I	can	count	the	number	of	its	occurrences	
– …but	I	can’t	do	anything	if	I	don’t	know	it	

Bad	news	

•  Naïve	solution:	
– Sort	data		

•  There	is	no	algorithm	that	solves	the	Heavy	
Hitters	problem	in	one	pass	while	using	a	
sublinear	amount	of	auxiliary	space	

A	simple	algorithm	
•  Problem:	find	the	elements	that	occur	more	than	
N/k	times	(N	is	the	stream	length,	k	is	a	free	
parameter)	

•  Solution:	
– Maintain	a	CM	and	a	max-heap	(with	k	elements)	of	
the	top	elements	

•  Process:	
1.  Add	the	element	in	the	CM	and	estimate	its	

frequency	
2.  If	frequency	>=	N/k	insert	the	element	in	the	heap	
3.  Note:	the	number	of	elements	in	the	heap	must	be	

at	most	k	

max-heap	review	

•  A	tree	where	the	parent	node	is	higher	than	the	
descendent	nodes	

https://en.wikipedia.org/wiki/Heap_(data_structure)#/media/File:Max-Heap.svg	

The	Space	saving	algorithm	-	build	

The	Space	saving	algorithm	-	query	

Note	that	counts	are	sorted	in	descending	order	in	this	implementation	

References	
•  New	Estimation	Algorithms	for	Streaming	Data:	Count-
min	Can	Do	More	
–  http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.420.449&rep=rep1&type=pdf	

•  Efficient	Computation	of	Frequent	and	Top-k	Elements	
in	Data	Streams	
–  http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.94.8360&rep=rep1&type=pdf	

•  PROBABILISTIC	DATA	STRUCTURES	FOR	WEB	
ANALYTICS	AND	DATA	MINING	
–  https://highlyscalable.wordpress.com/2012/05/01/
probabilistic-structures-web-analytics-data-mining/	

References	

•  Guo,	Deke,	et	al.	"The	dynamic	bloom	
filters."	IEEE	Transactions	on	Knowledge	and	
Data	Engineering	22.1	(2010):	120-133.	

Datasets	

•  Free	Twitter	datasets	
– http://followthehashtag.com/datasets/	

•  Stackexchange	Q&A	website	
– https://archive.org/download/stackexchange	

