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ABSTRACT

Motivation: The goal of the haplotype assembly problem is to
reconstruct the two haplotypes (chromosomes) for an individual
using a mix of sequenced fragments from the two chromosomes.
This problem has been shown to be computationally intractable
for various optimization criteria. Polynomial time algorithms have
been proposed for restricted versions of the problem. In this article,
we consider the haplotype assembly problem in the most general
setting, i.e. fragments of any length and with an arbitrary number
of gaps.

Results: We describe a novel combinatorial approach for the
haplotype assembly problem based on computing max-cuts in
certain graphs derived from the sequenced fragments. Levy et al.
have sequenced the complete genome of a human individual and
used a greedy heuristic to assemble the haplotypes for this individual.
We have applied our method HapCUTto infer haplotypes from this
data and demonstrate that the haplotypes inferred using HapCUT
are significantly more accurate (20-25% lower maximum error
correction scores for all chromosomes) than the greedy heuristic
and a previously published method, Fast Hare. We also describe
a maximum likelihood based estimator of the absolute accuracy of
the sequence-based haplotypes using population haplotypes from
the International HapMap project.

Availability: A program implementing HapCUT is available on
request.

Contact: vibansal@cs.ucsd.edu

1 INTRODUCTION

Humans are diploid organisms with two copies of each chromosome
(except the sex chromosomes). The two chromosomes are
homologous and differ at a number of sites, a large fraction of
which correspond to single base pair differences commonly known
as single nucleotide polymorphisms (SNPs). The genome sequence
assembly for a chromosome is an arbitrary mix of the two haploid
chromosomes. The two haplotypes (described by the combination
of alleles at variant sites on a single chromosome) represent the
complete information on DNA variation in an individual, and
are very useful for a number of reasons: (i) different haplotypes
(e.g. for genes containing multiple variants) can show different
gene expression patterns and consequently varying susceptibility
to disease; (ii) haplotype data from the HapMap project has
allowed whole genome association studies to limit the search for
disease-related genetic variants to a smaller set of ‘tag’ SNPs
without an appreciable loss of power and (iii) knowledge of
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haplotype structure in humans has proved useful in understanding
recombination patterns and identification of genes under positive
selection (Altshuler et al., 2005).

SNP chips can now interrogate upto a million SNPs in each
individual, making the genotyping effort cost-effective. However,
haplotype information remains difficult to obtain experimentally.
Haplotypes are typically inferred from population SNP data using
‘haplotype phasing’ algorithms (Bafna et al., 2003; Eskin et al.,
2003; Gusfield, 2002; Stephens er al., 2001). These algorithms
exploit linkage disequilibrium (LD); the correlation between alleles
at neighbouring SNPs in a population to reconstruct haplotypes.
The great variation in recombination rates and LD across the human
genome limits the accuracy of these methods. A popular haplotype
phasing method, PHASE (Stephens et al., 2001), has a switch error
rate of 5.4% for unrelated individuals from a European population
(Marchini et al., 2006); this corresponds to one switch error
between the maternal and paternal chromosomes approximately
every 50 kb.

An alternative approach to obtain haplotypic information is
to reconstruct the two haplotypes for an individual using DNA
sequence fragments. A sequence fragment that covers two or more
variant sites in a genome can link or phase those variants. If
a large fraction of the fragments are long enough to encompass
multiple variant sites, and the shotgun sequencing has sufficient
coverage to provide overlaps between fragments, the fragments
can be assembled to reconstruct long haplotypes (see Fig. 1 for
an illustration). The haplotype assembly problem, also known
as the Single Individual Haplotyping problem, was introduced
in the context of SNPs by Lancia et al. (2001) who described
three optimization formulations for solving this problem. The
problem has been shown to be computationally hard under various
combinatorial objective functions (Bafna er al., 2005; Cilibrasi
et al., 2005; Lancia et al., 2001) [e.g. minimum fragment removal
(MFR), minimum error correction (MEC), minimum SNP removal
(MSR)]. Efficient algorithms exist for optimizing the MFR objective
when all fragments are gapless (Lippert et al., 2002; Rizzi et al.,
2002). Several heuristic methods have been proposed for handling
gapped fragments (Panconesi and Sozio, 2004; Wang et al.,
2005). However, the lack of real sequencing data has limited the
development and evaluation of computational methods for this
problem.

Recently, Levy and colleagues (2007) announced the diploid
genome sequence of a single human individual, referred to as
HuRef. Interestingly, they show that a significant fraction of a
population’s genetic variation can be found in a single diploid
genome. The coverage and quality of the HuRef sequence data
also makes it amenable to ‘haplotype assembly’, i.e. separation of
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Sequencing
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-ACACTCT
-ACAGTCT

AGCGTTA
GAAGAT- - -AGCATT

Haplotype
Assembly

Fig. 1. A cartoon illustration of haplotype assembly. Each read originates
from one of the two chromosomes. Reads that have different alleles at a
common SNP can be inferred to come from different chromosomes. Reads
that share an allele at a common variant site are derived from the same
chromosome and can be linked together to reconstruct haplotypes. Note that
only variant positions are relevant for haplotype assembly.

the maternal and paternal chromosomes. They have demonstrated
that the quality of the data and the presence of paired-end reads
allows haplotype assembly and have used a greedy heuristic for
reconstructing haplotypes. The heuristic works well for the HuRef
sequence data, but results indicate that it can be improved. Recently,
we described HASH (Bansal et al., 2008), a Markov Chain Monte
Carlo (MCMC) algorithm for the haplotype assembly problem and
demonstrated that the HuRef haplotypes based on HASH were much
more accurate than those using the greedy heuristic. In related work,
Li et al. (2003) and Kim er al. (2007) have described statistical
methods (based on Gibbs sampling) for this problem, focusing on
resolution in the presence of different sources of error. They apply
their method to the genome of Ciona intestinalis.

In this article, we describe a novel combinatorial approach for
the Haplotype Assembly problem based on a problem related to
the MAX-CUT problem. Our algorithm HapCUT tries to minimize
the MEC score of the reconstructed haplotypes by iteratively
computing max-cuts in graphs derived from the sequenced
fragments. Our algorithm is motivated by the HuRef sequence
data and is applicable to sequenced fragments of any length
with an arbitrary number of gaps. Using the HuRef sequence
data, we demonstrate that our algorithm is significantly more
accurate than the greedy heuristic of Levy et al. (2007). We
also compare the performance of HapCUT with a previously
proposed heuristic for this problem, namely Fast Hare (Panconesi
and Sozio, 2004), and find that our algorithm consistently
outperforms this heuristic. The MEC score of the haplotypes
reconstructed using HapCUT is comparable to those using a
MCMC algorithm (Bansal et al., 2008) while being much faster
to compute. While the problem of optimizing the MEC score
is NP-hard even for gapless fragments (Cilibrasi et al., 2005),
and unlikely to admit an efficient algorithm, HapCUT represents
a fast and accurate heuristic for haplotype assembly using real
sequence data.

The article is organized as follows. In Section 2.1, we describe
our optimization formulation, and follow it up with a solution
based on computing weighted max-cuts in an associated graph
(Section 2.2). In Section 3, we show the performance of our
methods on a combination of simulated and real (HuRef) datasets.

In Section 4, we describe a maximum likelihood (ML) estimator of
the switch error rate of the HuRef haplotypes based on the CEU
HapMap haplotypes and show that the HuRef haplotypes inferred
using HapCUT have a low switch error rate (1.1 —1.4%).

2 METHODS

2.1 Preliminaries and optimization

The genome sequence assembly for a chromosome is a mix of the two
haploid chromosomes. If we align all of the fragments to the assembly, certain
sites (columns in the alignment) will show identical values (homozygous)
for all fragments, while others will have different values (heterozygous)
for different fragments. Note that heterozygous sites in the alignment
could correspond to a single base pair (SNPs) or multiple base pairs,
e.g. deletion/insertion variant. Sites that are homozygous are discarded,
as they are not useful for haplotype phasing (Fig. 1). Likewise, all sites
with more than two alleles are discarded, as all variant sites should
be bi-allelic for a diploid genome. Arbitrarily re-labelling the variant
alleles as 0 and 1, the input data can be represented as a ternary matrix
X of size mxn, where m is the number of fragments and n is the
number of heterozygous sites. The i-th fragment (row i of X) is described
by a ternary string X;€{0,1,—}", where ‘-’ corresponds to the variant
loci not covered by the fragment. The objective of haplotype assembly
is to reconstruct the two haplotypes, i.e. determine the combination
of alleles present on a single chromosome at the heterozygous sites.
The haplotypes can be represented as an unordered pair H=(h;,hy) of
binary strings, each of length n. Since we only consider sites that are
heterozygous in the individual genome, &, is constrained to be the bit-wise
complement of 7.

In the absence of any errors, the rows of the fragment matrix can be
partitioned into two disjoint sets such that every column is homozygous in
each set (Lancia et al., 2001). Further, the consensus values can be used
to reconstruct the two haplotypes. However, such a perfect bi-partition is
not possible when there are errors in the fragment matrix. In the presence
of errors, the objective of haplotype assembly is to find a bi-partition or
a pair of haplotypes that minimizes some objective function. Under the
MEC criterion, the objective is to change the smallest number of entries
in the fragment matrix such that the resulting matrix admits a perfect
bi-partition. The MEC objective is also equivalent to finding a pair of
haplotypes H for which the MEC score of the fragment matrix MEC(X, H)
is minimum.

If d(X;,h) denotes the number of mismatches between the fragment X;
and haplotype & (ignoring the ‘—’ in X;), then

MEC(X;, H) = min{d(X;, h),d(X;, h)}
and the overall score is given by

MEC(X,H)= Y "MEC(X;,H)
1

This leads to the natural parsimony-based optimization problem of
computing haplotypes with minimum MEC score. For notational
convenience, we will denote the error for a haplotype pair H as MEC(H),
whenever X is implicit. The MEC optimization can also be related to a natural
likelihood-based formulation. Assume that ¢ is the probability that a base is
miscalled. More generally, we can assume knowledge of a vector ¢, where
gilj]is the probability of base miscall at fragment i, position j. The likelihood
of data, given the haplotype pair H is given by

Pr(X;|h, q)+Pr(X;|h,
Pr(XlH,q):HPr(X,-H,q):H( r(X;| q>2 r(Xi| q))

To compute the likelihood of a fragment, define 8,[i,j]1=1 if (X;[j1=~Al[j]),
and 8y [i,j]=0 otherwise. Then,
Pr(X;|h,q)= H (I =giliD8nli,jD+qiF1(1 = 8xli, /1)

JXiljl# =
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In this article, we focus on designing an algorithm for the MEC objective
function. Other objective functions for haplotype assembly have previously
been proposed, such as MFR where the objective is to remove the smallest
number of fragments to make the fragment matrix error free, and MSR which
models false variant sites. However, the simplest (and most common) source
of error is due to base miscalling and the MEC objective serves as a good
model for this type of error. Moreover, MEC can also indirectly model other
sources of error, e.g. a haplotype assembly with a low MEC score is also
likely to be good under the MFR objective.

2.2 MEC optimization using max-cuts

Among the various objective functions for the haplotype assembly problem,
MEC seems to be the most difficult to optimize. While MFR and MSR can be
solved optimally for gapless fragments, finding the optimal MEC solution has
been shown to be NP-hard even for gapless fragments (Cilibrasi et al., 2005;
Lippert et al., 2002). MEC has been shown to be O(log n)-approximable
in the general case by Panconesi and Sauzio (2004), who also describe a
heuristic Fast Hare for the problem. Here, we provide a formulation for
MEC optimization based on graph cuts, which leads to a simple but effective
algorithm.

Given a fragment matrix X, and a haplotype pair H, we define the graph
Gx(H), with vertices defined by columns of X. We abuse notation slightly by
referring to the vertex set as X. The set Ey of edges of this graph is defined
by pairs of columns that are linked by some fragment. Let X;[j, k] and H[j,k]
represent the fragment i and haplotype pair H, respectively, when restricted
to the pair of columns (j,k). The weight of the edge (j,k) € Ey connecting
columns j, k is defined as

wr (j,k) = [{{IMEC(Xi[j, k], H[j, k])= 1}
— I{iIMEC(Xi[j. k], H[j, k1) =0}

Informally, the weight of the edge (j,k) is the number of fragments
inconsistent with the current phase between the pair minus the number
of fragments consistent with the phase H[j,k]. In other words, the weight
represents the ‘weakness’ of the phasing between columns i and j. A Cut in
the graph Gx(H) is defined by a subset S CX of vertices. The weight of a
cut S in Gx(H) is given by

wiS)=" Y wu(k)
jeS.keX-S

Given a haplotype pair H, and a cut S in Gx(H), the haplotype obtained by
flipping the values of the columns in S is denoted by Hyg, as illustrated in the
example below:

H Hg
S={3.4,5,11)

-

[10111000101]

10000000100]

01000111010 01111111011

Such transformations are effective for improving the MEC score, as
exemplified by the following theorem.

THEOREM 1. Let X be a fragment matrix with each fragment of length 2.
For any haplotype pair H, let S CX be a positive weighted cut wy(S)>0 in
the graph Gx(H). Then

MEC(Hs)=MEC(H)—wn(S) <MEC(H)

If S is a MAX-CUT in the graph Gx(H), then Hg is an optimal MEC
solution for X.

PRrROOF. Consider a cut S in the graph Gx(H). Let Hg be the haplotype
obtained by flipping the columns S of H. Clearly, MEC(H)—MEC(Hy) is
equal to the value of this cut wy(S). The maximum value of this difference
is reached when the cut is a max-cut and therefore Hg is an optimal MEC
solution.

The above theorem implies that given a current haplotype pair H, any
positive weight (wg(S)>0) cut leads to a haplotype (Hs) with a lower
MEC score. This can be repeated iteratively resulting in haplotypes with
decreasing MEC scores. If we can compute the MAX-CUT in a single step,
we can find the optimal MEC solution, however this is not necessary. Based
on this observation, an algorithm that looks for positive cuts in Gx(H) can
be used to optimize the MEC score as below.

Procedure HapCUT

Initialization: Choose an initial haplotype configuration H' randomly.
Iteration: Forr=1,2,...

1. Construct the graph Gx(H")

2. Compute a cut S in Gx(H") such that wg(S)>0
3. If MEC(H{) <MEC(H"), H'*! =Hj{

4. Else H' =H'

The iterative procedure HapCUT is run until we can no longer get an
improvement in the MEC score. While Theorem 1 holds only when all
fragments have length 2 (and also for fragments of length 3 as we show in the
next section), the algorithm HapCUT as described above works for arbitrary
sized fragments. In order to ensure that HapCUT has good performance on
real data, it is important to be able to compute high-scoring cuts in the graph
Gx(H). First, we show how the edge weights of the graph Gx(H) can be
weighted appropriately for long fragments.

2.3 Assigning weights to edges of Gy (H)

In the previous section, we described a simple formula to assign a weight
to each edge of the graph Gx(H). This formula gives disproportionately
more weight to longer fragments, i.e. a fragment of length & contributes
a total absolute weight of (g) to the graph. The weighting scheme can be
modified to ensure that Theorem 1 also holds for fragments of length 3.
We simply scale the contribution of the fragment to each edge by 1/2.
Now, a fragment of length 3 can have a MEC of 0 or 1. An MEC of 0
corresponds to the three vertices (columns of the fragment) being on the
same side of the cut and therefore contributing O to the cut value. An MEC
of 1 corresponds to two of the vertices being on one side and therefore
the fragment contributes exactly 1 to the cut after scaling. As the scaling
of 1/(k—1) for a fragment of length k is consistent with the weights for
fragments of length 2 and 3, we adopt it for computing the edge weights of
arbitrary length fragments. Results on real data indicate that this works well,
even though we do not know of a scaling under which Theorem 1 holds for
arbitrary length fragments.

2.4 Computing max-cuts

The problem of computing a maximum-weighted cut is known to be
NP-complete (Garey and Johnson, 1979), even when all edge weights are
restricted to be one. However, we only need to find a positive-weighted cut
in order to improve the MEC score. Simple heuristics can find good cuts if
all weights are positive. Indeed, a greedy heuristic (Sahni and Gonzalez,
1974) will give a cut which has at least 0.5 of the total weight of the edges
of the graph. When the MEC score of H is poor and far away from the
optimal MEC value (e.g. for a random haplotype pair), most of the edges of
the graph Gx(H) have positive weights and finding a positive-weighted cut
is easy. However, when the MEC score of H is close to the optimum, most
of the edges of the graph Gx(H) have negative weights, and the greedy
algorithm is not guaranteed to find a positive-weight cut. On the other hand,
presence of a highly negative weight edge between two vertices s and ¢ of
the graph also implies that a positive-weight cut is unlikely to separate s
and ¢. Therefore, for the purpose of computing a positive-weight cut, we can
‘contract’ the edge (s,1). We use a two-step greedy algorithm for computing
a max-cut in Gy (H). First, we find a cut where most of the negative weight
edges do not go across the cut. In the second step, we move vertices from
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one side of the cut to the other if this improves the weight of the cut. The
complete greedy heuristic is described below:

Greedy-Cut(Gx(H))

Initialization: BestCut = —oo
Iteration: Iterate O(m log m) times

1. Chose an edge (s,1) of the graph uniformly at random
2. Initialize S} ={s} and S, ={r}
3. While S;US, #V

(a) For each vertex v¢S;US, compute the score A(v)=
2 esy WHW S =20 o, WH(V,52)

(b) Let vimax be the vertex for which |A(v)| is maximum

(¢) If A(vmax) <0, S1 =851 Uv

(d) else if A(vipax) >0, S =S, Uv

(e) else add v uniformly at random to S; or S
4. repeat

(a) OldCut=wg(S)
(b) If ve S| and A(v) >0, move v from S; to S,

(c) If veS; and A(v) <0, move v from S, to S;

until wg (S1) <OIldCut
5. If wy(S1) > BestCut, BestCut = wy(S)

Final: Return BestCut

The first phase of the above algorithm (Step 1-3) is designed to find a
cut in which the highly negative weight edges do not cross the cut. The
cut is initialized using an edge of the graph and the algorithm is repeated
enough times to make sure that every edge is considered. Step 4 by itself
is exactly the well-known Greedy algorithm for computing max-cuts (Sahni
and Gonzalez, 1974).

3 RESULTS

We used the filtered HuRef data from Levy ez al. (2007) to evaluate
our algorithm HapCUT. The data contains a total of 1.85 million
heterozygous variants for the 22 autosomes. As a typical example,
chromosome 22 contained 24968 variants encoded by 103356
fragments. Only 53279 of these cover more than one variant and are
therefore useful for haplotype assembly. Of these fragments 18119
correspond to mate-pairs. The chromosome is partitioned into 609
dis-connected variant ‘blocks’ or connected component based on the
links between variants in addition to 921 isolated variants. These
blocks provide large haplotypes, clearly illustrating the power of
this haplotype assembly. However, as the length of our haplotypes
is predetermined by the connected components, we do not discuss
this further, referring the interested reader to Levy et al. (2007). The
haplotypes for each of these blocks are assembled independently.
The average number of calls for a variant is 6.7 (see Fig. 2a for
distribution of the number of variant calls per fragment). A fragment
spans 9.67 variants but has only 3.25 variant calls on the average
(see Fig. 2b for distribution of the difference between span and
length). This clearly indicates the highly ‘gapped’ nature of the
fragment data.

Number of Variant calls per fragment

No. of fragments

2 3 4 5 6 7 8 9-10 11-1516-2020-30
variant calls

(b) 2500

2000 1

1500 1

1000 1

No. of fragments

500 ]

0 — N
0 20 40 60 80 100 120

(Span-Length) of fragment

Fig. 2. (a) Distribution of number of variant calls per fragment. Fragments
that cover only one variant site (about half of the total fragments) are not
shown. (b) Distribution of the difference between the ‘span’ of a fragment
(difference between the last variant call and the first variant call) and
the ‘length’ (No. of variant calls). Fragments with span equal to length
(35159/53278 fragments) are not included to improve clarity. Both plots
are for chromosome 22 from HuRef genome.

3.1 MEC scores for HuRef chromosomes

We ran HapCUT for each of the HuRef chromosomes. For each
chromosome, the algorithm was initialized with a randomly chosen
haplotype. We found that the MEC score improves as we iteratively
compute cuts and change the haplotypes. Most of the improvement
in the MEC score happens in the first few iterations with no further
improvement after 40-50 iterations. We compared the MEC scores
for the HuRef data using four different algorithms: (i) the greedy
heuristic of Levy er al. (2007), (ii) Fast Hare (implemented as
described in Panconesi and Sozio, 2004), (iii) the MCMC algorithm
HASH (Bansal et al., 2008) and (iv) our algorithm HapCUT (see
Fig. 3).

HapCUT performs significantly better than the greedy heuristic
(the MEC scores are 20-25% lower for all chromosomes) and
very similar to HASH. The performance of the heuristic Fast Hare
is generally worse than that of the greedy heuristic. For a few
connected components, the MEC score for HASH was slightly
lower than that of HapCUT (run for 100 iterations). On all of these
cases, a greedy choice of the cut did not improve the MEC score
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Fig. 3. MEC scores (divided by the number of variant calls) for the HuRef
chromosomes for four different methods. The performance of HapCUT and
HASH is comparable, and significantly better than the greedy heuristic and
Fast Hare.

(data not shown). Clearly, an MCMC sampling approach has the
advantage of being able to make sub-optimal choices and thereby
sample a slightly better haplotype. On the other hand, for some of
the chromosomes, we observed that the total MEC score of HapCUT
was better than that of HASH. A possible explanation is that while
the objective of HapCUT is to find the optimal MEC solution,
HASH is geared towards finding the maximum likelihood solution.
The two may be different when fragments have lengths greater than
two. HapCUT also offers the advantage of fast computation time
in comparison to MCMC sampling algorithms such as HASH. For
chromosome 22, HapCUT takes less than 30 min to compute the
MEC score while HASH takes more than 10 h. For all chromosomes,
HapCUT was an order of magnitude faster than HASH (data not
shown).

3.2 Simulations using HuRef data

We tested the performance of HapCUT on simulated data
generated using the HuRef chromosomes. The fragment matrix
for a chromosome was suitably modified to make it ‘error free’
or perfectly consistent with a particular haplotype. To generate a
fragment matrix with error rate of ¢ (0 <& <0.5), each variant call in
the fragment matrix was flipped with probability ¢. We ran HapCUT
on this modified fragment matrix and compared the reconstructed
haplotypes with the true haplotypes. In Figure 4a, we plot the best
MEC score (scaled by the number of variant calls) against the
simulated error rate, i.e. the fraction of variant calls that were flipped.
We observe that the MEC score is always less than the number of
flipped calls and ratio of the MEC score to the number of flips
decreases as the error rate increases. This is to be expected, because
as the number of flipped variant calls increases, some calls might
become consistent with a different (lower MEC) haplotype.
Flipped base calls could also result in errors in the reconstructed
haplotypes. If the depth of coverage is low, very little can be done
to recover from the error. Also, if ¢ is high, the optimal haplotype
could well be different from the one we started with. However, we
expect that at high depths of coverage and low-error rates, a correct
haplotype can be recovered accurately. In Figure 4b we plot the
switch error (number of switches between the original haplotype
and the reconstructed haplotype) against the depth of coverage,
i.e. for a particular value on the x-axis, we ignore variants with

Flipped versus computed MEC

18.00%
16.00%

14.00%
12.00%

10.00%

eSeries 1
8.00%

6.00%
4.00%
200% | @

@
0.00%
0.00% 5.00%  10.00% 15.00% 20.00%  25.00%

Computed MEC error
®

% Alleles Flipped

Switch error vs. coverage

200

150
Series 1

switch error

100

50

1 2 3 4 5 6 7 8 9 10

depth of coverage

Fig. 4. (a): Number of simulated versus estimated errors and (b) haplotype
switch error as a function of depth of coverage (number of calls for a variant),
for e =0.02. The switch error decreases with increasing depth.

coverage below that value for computing the switch error. One can
clearly see that as the depth increases, the switch error decreases
from 198(1.11% of the sites) to 17(0.098%).

Not surprisingly, we also find that the flipped variants are largely
the same as the one that mismatch the computed haplotype. Of
the 3321 fragments for which some variant call was flipped,
we identified 3213 that also mismatched against the computed
haplotype. An additional 146 fragments that did not contain
flipped alleles mismatched with the computed haplotype. Overall,
these results indicate the robustness of our solution to errors in
the data.

4 ML ESTIMATE OF THE ACCURACY OF
HAPLOTYPE ASSEMBLY

The MEC score measures the consistency of the haplotype assembly
with the fragment matrix. However, we are also interested in
the absolute accuracy of the inferred haplotypes. The absolute
accuracy can be measured using the switch error rate, which is the
fraction of adjacent pairs of sites in the HuRef individual whose
phase is incorrect. We have used the phased haplotypes from the
HapMap project (Altshuler et al., 2005) to obtain a ML estimate
of the absolute accuracy of the HuRef haplotypes. As the HuRef
individual is European in origin, we compare the HuRef haplotypes
H against the set of 120 CEU HapMap haplotypes restricted to the
set of SNPs heterozygous in the HuRef individual. The two HuRef
haplotypes are a mosaic of the population haplotypes and a direct
comparison of the full haplotypes with the HapMap haplotypes
is not possible. We compute the likelihood of the haplotype H
conditional on the CEU haplotypes and as a function of the switch
error rate.
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Consider a pair of adjacent SNPs i,j heterozygous in the HuRef
individual. Let f,f01./10 and f11 be the frequencies of the four pairs
in the HapMap CEU sample. If H; denote the true HuRef haplotypes
(unobserved), the likelihood of the phasing H;[i, j] being (00, 11) is
given by

Joofi1
Joofi1+fo1f10
We can similarly compute the probability Pr(H;[i,j]=(01, 10)). For

a switch error rate &g, the likelihood of the phasing between the pair
(i,)) is given by

Ly (i, )= —ex)Pr(H[i, j1=H[i, j) +esPr(H;[i, j1# HIi, j1)

The switch errors between H and H; are a result of sequencing
errors and likely to be distributed independent of LD. Therefore we
can assume the switch error rate &5 to be uniform for all pairs. We
approximate the likelihood of the full haplotype H as

Pr(H,[i, j1=(00,11))=

n—1
Ly= HLH(i,H—l)
i=1

The haplotype likelihood (Lg) is a function of the switch error
rate &g and the LD in the HapMap haplotypes. If there are very few
switch errors between H and H;, then the likelihood function Ly is
expected to be maximum for values of &g close to 0. As the number
of switch errors increases, the contribution of the second term in
the likelihood L (i,j) increases and therefore the ML estimate of &g
should increase. We have used the HapMap haplotypes to evaluate
if the ML estimator is a good estimate of the switch error rate.
The haplotypes for one of the 60 CEU individuals was chosen to
represent the true haplotypes H;. We then simulated switch errors
randomly with varying switch error rates &5 (0-0.05) to generate the
haplotype pair H. The likelihood function Ly was then plotted for
different values of the error rate (see Fig. 5 for likelihood curves
for four different values of &5). From the likelihood curves, we see
that the ML estimate is a good estimate of the switch error rate
with a tendency to slightly over-estimate the switch error rate. For
a simulated switch error rate of 0.01, the likelihood was maximum
for £,=0.013. Similarly for an error rate of 0.02, the ML estimate
was 0.022.

We then plotted the haplotype likelihood (Lg) for the HuRef
haplotypes (inferred using HapCUT) as a function of the switch
error rate &5 (see Fig. 6 for a plot for chromosome 22). The likelihood
curve is flat in the region 0.013-0.015 with a maxima at 0.014. From
this, we can infer that the switch error rate of the HuRef haplotypes
is slightly more than 1% but not more than 1.4%. In comparison, the
switch error rate of haplotypes inferred from CEU population data
is 5.4% for unrelated individuals and 0.53% for parent—child trios
(Marchini et al., 2006).

5 DISCUSSION

With the advent of high-throughput and cost-effective sequencing
technologies, personalized genomics is a distinct possibility.
The availability of individual genomic sequences enables the
identification of structural and copy-neutral variation, but also the
separation of the maternal and paternal chromosomes.

Here, we tackle the problem of haplotype assembly, developing
a novel combinatorial approach for this problem. Our approach is
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Fig. 5. Haplotype log-likelihood curves for four different values of the
switch error rate.
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Fig. 6. The log-likelihood curve for the HuRef haplotypes for
chromosome 22.

fundamentally different from previous methods for this problem
[e.g. greedy heuristic (Levy et al., 2007) and Fast Hare (Panconesi
and Sozio, 2004)]. Previous methods attempt to reconstruct the
haplotypes by clustering the fragments in a sequential fashion. On
the other hand, we use the overlap structure of the fragment matrix to
compute max-cuts that allow our method to find better haplotypes.
Given the NP-hardness of the MEC problem, our method is also
a heuristic and not guaranteed to find a provably good solution.
However, results on the HuRef sequence data and comparison to an
MCMC algorithm suggest that the algorithm HapCUT is able to
find solutions close to the optimum MEC solution.

We have shown that HapCUT does as well as an MCMC
algorithm, HASH, that we have recently developed, while being
much faster. The MCMC algorithm uses graph cut computations
to construct the Markov chain used for sampling the haplotype
space. In comparison, HapCUT uses max-cut computations in
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an associated graph to greedily move towards the optimal MEC
solution. A cut corresponds to a subset of columns of the fragment
matrix and choosing the right cuts is crucial for optimizing MEC and
sampling the haplotype space. To develop the intuition of choosing
cuts to move across solutions, we have performed a rigorous analysis
of convergence on a representative family of fragment matrices (V.B.
Bansal and V.B. Bafna, unpublished data). Our analysis is based
on novel techniques relying upon graph conductance, and coupling
arguments. As many problems in bioinformatics admit combinatorial
and stochastic sampling-based solutions, such techniques could be
of independent interest.

Conflict of Interest: none declared.
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