
Bottom-k and Priority Sampling, Set Similarity and Subset
Sums with Minimal Independence

Mikkel Thorup
AT&T Labs—Research and University of Copenhagen

mikkel2thorup@gmail.com

ABSTRACT
We consider bottom-k sampling for a set X, picking a sam-
ple Sk(X) consisting of the k elements that are smallest
according to a given hash function h. With this sample
we can estimate the frequency f = |Y |/|X| of any subset
Y as |Sk(X) ∩ Y |/k. A standard application is the esti-
mation of the Jaccard similarity f = |A ∩ B|/|A ∪ B| be-
tween sets A and B. Given the bottom-k samples from A
and B, we construct the bottom-k sample of their union as
Sk(A ∪B) = Sk(Sk(A) ∪ Sk(B)), and then the similarity is
estimated as |Sk(A ∪B) ∩ Sk(A) ∩ Sk(B)|/k.

We show here that even if the hash function is only 2-
independent, the expected relative error is O(1/

√
fk). For

fk = Ω(1) this is within a constant factor of the expected
relative error with truly random hashing.

For comparison, consider the classic approach of repeated
min-wise hashing, where we use k independent hash func-
tions h1, ..., hk, storing the smallest element with each hash
function. For min-wise hashing, there can be a constant
bias with constant independence, and this is not reduced
with more repetitions k. Recently Feigenblat et al. showed
that bottom-k circumvents the bias if the hash function is
8-independent and k is sufficiently large. We get down to
2-independence for any k. Our result is based on a sim-
ply union bound, transferring generic concentration bounds
for the hashing scheme to the bottom-k sample, e.g., getting
stronger probability error bounds with higher independence.

For weighted sets, we consider priority sampling which
adapts efficiently to the concrete input weights, e.g., bene-
fiting strongly from heavy-tailed input. This time, the anal-
ysis is much more involved, but again we show that generic
concentration bounds can be applied.

Categories and Subject Descriptors
E.1 [Data]: Data Structures; G.1.2 [Discrete Mathemat-
ics]: Probability and Statistics

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’13, June 1–4, 2013, Palo Alto, California, USA.
Copyright 2013 ACM 978-1-4503-2029-0/13/06 ...$15.00.

General Terms
Algorithms, Measurement, Performance, Reliability, Theory

Keywords
Sampling, Independence, Estimation

1. INTRODUCTION
The concept of min-wise hashing (or the “MinHash al-

gorithm” according to 1) is a basic algorithmic tool sug-
gested by Broder et al. [6, 8] for problems related to set
similarity and containment. After the initial application of
this algorithm in the early Altavista search engine to de-
tecting and clustering similar documents, the scheme has
reappeared in numerous other applications1 and is now a
standard tool in data mining where it is used for estimat-
ing similarity [6,8,9], rarity [13], document duplicate detec-
tion [7, 20,21,36], etc [2, 4, 10,29].

In an abstract mathematical view, we have two sets, A and
B, and we are interested in understanding their overlap in

the sense of the Jaccard similarity f = |A∩B|
|A∪B| . In order to do

this by sampling, we need sampling correlated between the
two sets, so we sample by hashing. Consider a hash function
h : A∪B → [0, 1]. For now we assume that h is fully random,
and has enough precision that collisions are avoided with
probability 1. The main mathematical observation is that
Pr[argminh(A) = argminh(B)] is precisely f = |A∩B| / |A∪
B|. Thus, we may sample the element with the minimal hash
from each set, and use them in [argminh(A) = argminh(B)]
for an unbiased estimate of f . Here, for a logical statement
S, [S] = 1 if S is true; otherwise [S] = 0.

For more concentrated estimators, we use repetition with
k independent hash functions, h1, ..., hk. For each set A, we
store Mk(A) = (argminh1(A), ..., argminhk(A)), which is a
sample with replacement from A. The Jaccard similarity be-
tween sets A and B is now estimated as |Mk(A)∩Mk(B)|/k
where |Mk(A)∩Mk(B)| denotes the number of agreeing co-
ordinates between Mk(A) and Mk(B). We shall refer to this
approach as repeated min-wise or k×min.

For our discussion, we consider the very related applica-
tion where we wish to store a sample of a set X that we can

use to estimate the frequency f = |Y |
|X| of any subset Y ⊆ X.

The idea is that the subset Y is not known when the sam-
ple from X is made. The subset Y is revealed later in the
form of a characteristic function that can tell if (sampled)
elements belong to Y . Using the k×min sample Mk(X), we

1See http://en.wikipedia.org/wiki/MinHash

371

http://en.wikipedia.org/wiki/MinHash

estimate the frequency as |Mk(X)∩Y |/k where |Mk(X)∩Y |
denotes the number of samples from Mk(X) in Y .
Another classic approach for frequency estimation is to

use just one hash function h and use the k elements from
X with the smallest hashes as a sample Sk(X). This is
a sample without replacement from X. As in [12], we re-
fer to this as a bottom-k sample. The method goes back
at least to [19]. The frequency of Y in X is estimated as
|Y ∩Sk(X)|/k. Even though surprisingly fast methods have
been proposed to compute k×min [3], the bottom-k signa-
ture is much simpler and faster to compute. In a single pass
through a set, we only apply a single hash function h to
each element, and use a max-priority queue to maintain the
k smallest elements with respect to h.
It is standard1 to use bottom-k samples to estimate the

Jaccard similarity between sets A and B, for this is exactly
the frequency of the intersection in the union. First we con-
struct the bottom-k sample Sk(A∪B) = Sk(Sk(A)∪Sk(B))
of the union by picking the k elements from Sk(A) ∪ Sk(B)
with the smallest hashes. Next we return |Sk(A) ∩ Sk(B) ∩
Sk(A ∪B)|/k.
Stepping back, for subset frequency, we generally assume

that we can identify samples from the subset. In the appli-
cation to set similarity, it important that the samples are
coordinated via hash functions, for this is what allows us to
identify samples from the intersection as being sampled in
both sets. In our mathematical analysis we will focus on the
simpler case of subset frequency estimation, but it the ap-
plication to set similarity that motivates our special interest
in sampling via hash functions.

Limited independence.
The two approaches k×min and bottom-k are similar in

spirit, starting from the same base 1×min = bottom-1. With
truly random hash functions, they have essentially the same
relative standard deviation (standard deviation divided by
expectation) bounded by 1/

√
fk where f is the set similarity

or subset frequency. The two approaches are, however, very
different from the perspective of pseudo-random hash func-
tions of limited independence [35]: a random hash function
h is d-independent if the hash values of any d given elements
are totally random.

With min-wise hashing, we have a problem with bias
in the sense of sets in which some elements have a bet-
ter than average chance of getting the smallest hash value.
It is known that 1 + o(1) bias requires ω(1)-independence
[26]. This bias is not reduced by repetitions as in k×min.
However, recently Porat et al. [18] proved that the bias
for bottom-k vanishes for large enough k � 1 if we use
8-independent hashing. Essentially they get an expected
relative error of O(1/

√
fk), and error includes bias. For

fk = Ω(1), this is only a constant factor worse than with
truly random hashing. Their results are cast in a new frame-
work of “d-k-min-wise hashing”, and the translation to our
context is not immediate.

Results.
In this paper, we prove that bottom-k sampling preserves

the expected relative error of O(1/
√
fk) with 2-independent

hashing, and this holds for any k including k = 1. We note
that when fk = o(1), then 1/

√
fk = ω(1), so our result does

not contradict a possible large bias for k = 1.
We remark that we also get an O(1/

√
(1− f)k) bound on

the expected relative error. This is important if we estimate

the dissimilarity 1 − f of sets with large similarity f = 1 −
o(1).

For the more general case of weighted sets, we consider
priority sampling [17] which adapts near-optimally to the
concrete input weights [31], e.g., benefiting strongly from
heavy-tailed input. We show that 2-independent hashing
suffices for good confidence intervals.

Our positive finding with 2-independence contrasts recent
negative results on the insufficiency of low independence,
e.g., that linear probing needs the 5-independence [26] that
was proved sufficient by Pagh et al. [25].

Implementation.
For 2-independent hashing we can use the fast

multiplication-shift scheme from [14], e.g., if the elements
are 32-bit keys, we pick two random 64-bit numbers a
and b. The hash of key x is computed with the C-code
(a ∗ x + b) >> 32, where ∗ is 64-bit multiplication which
discards overflow, and >> is a right shift. This is 10-20
times faster than the fastest known 8-independent hashing
based on a degree 7 polynomial tuned for a Mersenne prime
field [34]2.

Practical relevance.
We note that Mitzenmacher and Vadhan [22] have proved

that 2-independence generally works if the input has enough
entropy. However, the real world has lots of low entropy
data. In [34] it was noted how consecutive numbers with zero
entropy made linear probing with 2-independent hashing ex-
tremely unreliable. This was a problem in connection with
denial-of-service attacks using consecutive IP-addresses. For
our set similarity, we would have similar issues in scenarios
where small numbers are more common, hence where set
intersections are likely to be fairly dense intervals of small
numbers whereas the difference is more likely to consists
of large random outliers. Figure 1 presents an experiment
showing what happens if we try to estimating the dissimi-
larity with 2-independent hashing.

Stepping back, the result Mitzenmacher and Vadhan
is that 2-independence works for sufficiently random in-
put. In particular, we do not expect problems to show
up in random tests. However, this does not imply that
2-independent hashing can be trusted on real data unless
we have special reasons to believe that the input has high
entropy. In Figure 1, bottom-k performs beautifully with
2-independent hashing, but no amount of experiments can
demonstrate general reliability. However, the mathematical
result of this paper is that bottom-k can indeed be trusted
with 2-independent hashing: the expected relative error is
O(1/

√
fk) no matter the structure of the input.

Techniques.
To appreciate our analysis, let us first consider the trivial

case where we are given a non-random threshold probability
p and sample all elements that hash below p. As in [16]
we refer to this as threshold sampling. Since the hash of a
element x is uniform in [0, 1], this samples x with probability
p. The sampling of x depends only on the hash value of x, so
if, say, the hash function is d-independent, then the number

2See Table 2 in [34] for comparisons with different key
lengths and computers between multiplication-shift (TwoIn-
dep), and tuned polynomial hashing (CWtrick). The table
considers polynomials of degree 3 and 4, but the cost is linear
in the degree, so the cost for degree 7 is easily extrapolated.

372

k×min

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0 20000 40000 60000 80000 100000

90% fractile
single experiment

10% fractile
real value

bottom-k

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0 20000 40000 60000 80000 100000

90% fractile
single experiment

10% fractile
real value

Figure 1: Experiment with set consisting of 100300 32-bit keys. It has a “core” consisting of the consecutive
numbers 1, ...100000. In addition it has 300 random “outliers”. Using k samples from the whole set, we want
to estimate the frequency of the outliers. The true frequency is 300

100300
≈ 0.003. We used k = 1, ..., 100000 in

k×min and bottom-k and made one hundred experiments. For each k, we sorted the estimates, plotting the
10th and 90th value, labeled as 10% and 90% fractile in the figures. We also plotted the results from a single
experiment. For readability, only one in every 100 values of k is plotted. Both schemes converge, but due to
bias, k×min converges to a value that is 70% too large. Since bottom-k does sampling without replacement, it
becomes exact when the number of samples is the size of the whole set. The bias is a function of the structure
of the subset within the whole set, e.g., the core set must have a negative bias complimenting the positive
bias of the outliers. It is therefore not possible to correct for the bias if one only has the sample available.

of samples is the sum of d-independent 0-1 variables. This
scenario is very well understood (see, e.g., [15, 30]).

We could set p = k/n, and get an expected number of
k samples. Morally, this should be similar to a bottom-k
sample, which is what we get if we end up with exactly k
samples, that is, if we end up with h(k) < p ≤ h(k+1) where
h(i) denotes the ith smallest hash value. What complicates
the situation is that h(k) and h(k+1) are random variables
depending on all the random hash values.

An issue with threshold sampling is that the number of
samples is variable. This is an issue if we have bounded
capacity to store the samples. With k expected samples,
we could put some limit K � k on the number of samples,
but any such limit introduces dependencies that have to be
understood. Also, if we have room for K samples, then it
would seem wasteful not fill it with a full bottom-K sample.

Our analysis of bottom-k samples is much simpler than
the one in [18] for 8-independent hashing with k � 1. With
a union bound we reduce the analysis of bottom-k samples
to the trivial case of threshold sampling. Essentially we
only get a constant loss in the error probabilities. With 2-
independent hashing, we then apply Chebyshev’s inequality
to show that the expected relative error is O(1/

√
fk). The

error probability bounds are immediately improved if we use
hash functions with higher independence.

It is already known from [5] that we can use a 2-
independent bottom-k sample of a set to estimate its size
n with an expected error of O(

√
n). The estimate is simply

the inverse of the kth smallest sample. Applying this to two
Θ(n)-sized sets and their union, we can estimate |A|, |B|,
|A ∪ B| and |A ∩ B| = |A| + |B| − |A ∪ B| each with an
expected error of O(

√
n). However, |A ∩ B| may be much

smaller than O(
√
n). If we instead multiply our estimate

of the similarity f = |A ∩ B|/|A ∪ B| with the estimate of

|A ∪B|, the resulting estimate of |A ∩B| is
(1±O(1/

√
fk)f(|A∪B|±O(

√
n)) = |A∩B|±O(

√
|A ∩B).

The analysis of priority sampling for weighted sets is much
more delicate, but again, using union bounds, we show that
generic concentration bounds apply.

2. BOTTOM-K SAMPLES
We are given a set of X of n elements. A hash function

maps the elements uniformly and collision free into [0, 1].
Our bottom-k sample S consists of the k elements with the
lowest hash values. The sample is used to estimate the fre-
quency f = |Y |/|X| of any subset Y of X as |Y ∩ S|/k.
With 2-independent hashing, we will prove the following er-
ror probability bound for any r ≤ r̄ =

√
k/3:

Pr
[
||Y ∩ S| − fk| > r

√
fk

]
≤ 4/r2. (1)

The result is obtained via a simple union bound where
stronger hash functions yield better error probabilities.
With d-independence with d an even constant, the prob-
ability bound is O(1/rd).

It is instructive to compare d-independence with the idea
of storing d independent bottom-k samples, each based on
2-independence, and use the median estimate. Generally, if
the probability of a certain deviation is p, the deviation prob-
ability for the median is bounded by (2ep)d/2, so the 4/r2

from (1) becomes (2e4/r2)d/2 < (5/r)d, which is the same
type of probability that we get with a single d-independent
hash function. The big advantage of a single d-independent
hash function is that we only have to store a single bottom-k
sample.

If we are willing to use much more space for the hash
function, then we can use twisted tabulation hashing [27]

373

which is very fast, and then we get exponential decay in
r though only down to an arbitrary polynomial the space
used.

In order to show that the expected relative error is
O(1/

√
fk), we also prove the following bound for fk ≤ 1/4:

Pr[|Y ∩ S| ≥ �] = O(fk/�2 +
√

f/�). (2)

From (1) and (2) we get

Proposition 1. For bottom-k samples based on 2-
independent hashing, a fraction f subset is estimated with
an expected relative error of O(1/

√
fk).

Proof. The proof assumes (1) and (2). For the case fk >
1/4, we will apply (1). The statement is equivalent to saying
that the sample error ||Y ∩S|−fk| in expectation is bounded
by O(

√
fk). This follows immediately from (1) for errors

below r̄
√
fk = k

√|Y |/n. However, by (1), the probability

of a larger error is bounded by 4/r̄2 = O(1/k). The maximal
error is k, so the contribution to the expected error is O(1).
This is O(

√
fk) since fk > 1/4.

We will now handle the case fk ≤ 1/4 using (2). We
want to show that the expected absolute error is O(

√
fk).

We note that only positive errors can be bigger than fk,
so if the expected error is above 2fk, the expected number
of samples from Y is proportional to the expected error.
We have

√
fk ≥ 2fk, so for the expected error bound, it

suffices to prove that the expected number of samples is
|Y ∩ S| = O(

√
fk). Using (2) for the probabilities, we now

sum the contributions over exponentially increasing sample
sizes.

E[|Y ∩ S|] ≤
�lg k�∑
i=0

(
2i+1 Pr[|Y ∩ S| ≥ 2i]

)

=

�lg k�∑
i=0

O
(
2i(fk/22i +

√
f/2i)

)

= O
(
fk +

√
f(1 + lg k)

)
= O

(√
fk

)
.

2.1 A union upper bound
First we consider overestimates. For positive parameters

a and b to be chosen, we will bound the probability of the
overestimate

|Y ∩ S| > 1 + b

1− a
fk. (3)

Define the threshold probability

p =
k

n(1− a)
.

Note that p is defined deterministically, independent of any
samples. It is easy to see that the overestimate (3) implies
one of the following two threshold sampling events:

(A) The number of elements from X that hash below p is
less than k. We expected pn = k/(1− a) elements, so
k is a factor (1− a) below the expectation.

(B) Y gets more than (1 + b)p|Y | hashes below p, that is,
a factor (1 + b) above the expectation.

To see this, assume that both (A) and (B) are false. When
(A) is false, we have k hashes from X below p, so the largest

hash in S is below p. Now if (B) is also false, we have at
most (1 + b)p|Y | = (1 + b)/(1 − a) · fk elements from Y
hashing below p, and only these elements from Y could be
in S. This contradicts (3). By the union bound, we have
proved

Proposition 2. The probability of the overestimate (3)
is bounded by PA+PB where PA and PB are the probabilities
of the events (A) and (B), respectively.

Upper bound with 2-independence.
Addressing events like (A) and (B), letm be the number of

elements in the set Z considered, e.g., Z = X or Z = Y . We
study the number of elements hashing below a given thresh-
old p ∈ [0, 1]. Assuming that the hash values are uniform
in [0, 1], the mean is μ = mp. Assuming 2-independence of
the hash values, the variance is mp(1 − p) = (1 − p)μ and

the standard deviation is σ =
√

(1− p)μ. By Chebyshev’s
inequality, we know that the probability of a deviation by rσ
is bounded by 1/r2. Below we will only use that the relative
standard deviation σ bounded by 1/

√
μ.

For any given r ≤ √
k/3, we will fix a and b to give a

combined error probability of 2/r2. More precisely, we will

fix a = r/
√
k and b = r/

√
fk. This also fixes p = k/(n(1−

a)). We note for later that a ≤ 1/3 and a ≤ b. This implies

(1 + b)/(1− a) ≤ (1 + 3b) = 1 + 3r/
√

fk. (4)

In connection with (A) we study the number of elements
from X hashing below p. The mean is pn ≥ k so the rela-
tive standard deviation is less than 1/

√
k. It follows that a

relative error of a = r/
√
k corresponds to at least r standard

deviations, so

PA = Pr [#{x ∈ X|h(x) < p} < (1− a)np] < 1/r2.

In connection with (B) we study the number of elements
from Y hashing below p. Let m = |Y |. The mean is pm =
km/(n(1− a)) and the relative standard deviation less than

1/
√
pm < 1/

√
km/n. It follows than a relative error of

b = r/
√

km/n is more than r standard deviations, so

PB = Pr [#{y ∈ Y |h(y) < p} > (1 + b)mp] < 1/r2.

By Proposition 2 we conclude that the probability of (3) is
bounded by 2/r2. Rewriting (3) with (4), we conclude that

Pr
[
|Y ∩ S| > fk + 3r

√
fk

]
≤ 2/r2. (5)

This bounds the probability of the positive error in (1). The
above constants 3 and 2 are moderate, and they can easily
be improved if we look at asymptotics. Suppose we want
good estimates for subsets Y of frequency at least fmin, that
is, |Y | ≥ fmin|X|. This time, we set a = r/

√
fk, and then

we get PA ≤ f/r2. We also set b = r/
√
fk preserving PB ≤

1/r2. Now for any Y ⊆ X with |Y | > fn, we have

Pr [|Y ∩ S| > (1 + ε)fk] = (1 + f)/r2 (6)

where ε =
1 + r/

√
fk

1− r/
√
k

− 1 =
r/

√
k + r/

√
fk

1− r/
√
k

.

With f = o(1) and k = ω(1), the error is ε = (1 +
o(1))r/

√
fk, and the error probability is Pε = (1 + f)/r2 =

(1 + o(1))/r2. Conversely, this means that if we for sub-
sets of frequency f and a relative positive error ε want an
error probability around Pε, then we set r =

√
1/Pε and

k = r2/(fε2) = 1/(f Pε ε
2).

374

2.2 A union lower bound
We have symmetric bounds for underestimates:

|Y ∩ S| < 1− b′

1 + a′ fk. (7)

This time we define the threshold probability p′ = k
n(1+a′) .

It is easy to see that the overestimate (3) implies one of the
following two events:

(A′) The number of elements from X below p′ is at least
k. We expected p′n = k/(1 + a′) elements, so k is a
factor (1 + a′) above the expectation.

(B′) Y gets less than (1 − b′)p|Y | hashes below p′, that is,
a factor (1− b′) below the expectation.

To see this, assume that both (A′) and (B′) are false. When
(A′) is false, we have less than k hashes from X below p′, so
S must contain all hashes below p′. Now if (B) is also false,
we have at least (1− b)p′|Y | = (1− b)/(1 + a) · fk elements
from Y ⊆ X hashing below p′, hence which must be in S.
This contradicts (7). By the union bound, we have proved

Proposition 3. The probability of the underestimate (7)
is bounded by PA′ + PB′ where PA′ and PB′ are the proba-
bilities of the events (A′) and (B′), respectively.

Lower bound with 2-independence.
Using Proposition 3 we will bound the probability of

underestimates, complementing our previous probability
bounds for overestimates from Section 2.1. We will pro-
vide bounds for the same overall relative error as we did for
the overestimates; namely

ε =
1 + b

1− a
− 1 = (a+ b)/(1− a)

However, for the events (A′) and (B′) we are going to scale
up the relative errors by a factor (1+a), that is, we will use
a′ = a(1+a) and b′ = b(1+a). The overall relative negative
error from (7) is then

ε′ = 1− 1− b′

1 + a′ = (a′ + b′)/(1 + a′)

< (1 + a)(a+ b)/(1 + a′) < (a+ b) < ε.

Even with this smaller error, we will get better probabil-
ity bounds than those we obtained for the overestimates.
For (A) we used 1/

√
k as an upper bound on the relative

standard deviation, so a relative error of a was counted
as sA = a

√
k standard deviations. In (A′) we have mean

μ′ = np′ = k/(1 + a′), so the relative standard deviation is

bounded by 1/
√

k/(1 + a′) =
√
1 + a+ a2/

√
k. This means

that for (A′), we can count a relative error of a′ = a(1 + a)
as

s′A = a(1 + a)
√
k/

√
1 + a+ a2

= sA(1 + a)/
√

1 + a+ a2 > sA

standard deviations. In Section 2.1 we bounded PA by 1/s2A,

and now we can bound PA′ by 1/s′A
2 ≤ 1/s2A. The scaling

has the same positive effect on our probability bounds for
(B′). That is, in Section 2.1, a relative error of b was counted
as sB = b

√
fk standard deviations. With (B′) our relative

error of b′ = b(1 + a) is counted as

s′B = b(1 + a)
√

fk/
√

1 + a+ a2

= sB(1 + a)/
√

1 + a+ a2 > sB

standard deviations, and then we can bound PB′ by 1/s′B
2 ≤

1/s2B . Summing up, our negative relative error ε′ is smaller
than our previous positive error ε, and our overall negative

error probability bound 1/s′A
2
+ 1/s′B

2
is smaller than our

previous positive error probability bound 1/sA
2+1/sB

2. We
therefore translate (5) to

Pr
[
|Y ∩ S| < fk − 3r

√
fk

]
≤ 2/r2. (8)

which together with (5) establishes (1). Likewise (6) trans-
lates to

Pr [||Y ∩ S| − fk| > εfk)] ≤ 2(1 + f)/r2 (9)

where ε =
1 + r/

√
fk

1− r/
√
k

− 1.

As for the positive error bounds we note that with f = o(1)
and k = ω(1), the error is ε = (1 + o(1))r/

√
fk and the

error probability is Pε = (2 + o(1))/r2. Conversely, this
means that if we for a target relative error ε want an error
probability around Pε, then we set r =

√
2/Pε and k =

r2/(fε2) = 2/(f Pε ε
2).

2.3 Rare subsets
We now consider the case where the expected number fk

of samples from Y is less than 1/4. We wish to prove (2)

Pr[|Y ∩ S| ≥ �] = O(fk/�2 +
√

f/�).

For some balancing parameter c ≥ 2, we use the threshold
probability p = ck/n. The error event (A) is that less than
k elements from X sample below p. The error event (B) is
that at least � elements hash below p. As in Proposition 2,
we observe that � bottom-k samples from Y implies (A) or
(B), hence that Pr[|Y ∩ S| ≥ �] ≤ PA + PB .

The expected number of elements from X that hash below
p is ck. The error event (A) is that we get less than k, which
is less than half the expectation. This amounts to at least√
ck/2 standard deviations, so by Chebyshev’s inequality,

the probability of (A) is PA ≤ 1/(
√
ck/2)2 = 4/(ck).

The event (B) is that at least � elements from Y hash
below p, while the expectation is only fck. Assuming that
� ≥ 2fck, the error is by at least (�/2)/

√
fck standard de-

viations. By Chebyshev’s inequality, the probability of (B)
is PB ≤ 1/((�/2)/

√
fck)2 = 4fck/�2. Thus

PA + PB ≤ 4/(ck) + 4fck/�2.

We wish to pick c for balance, that is,

4/ck = 4fck/�2 ⇐⇒ c = �/(
√

fk)

However, we have assumed that c ≥ 2 and that � ≥ 2fck.
The latter is satisfied because 2fck = 2fk�/(

√
fk) = 2

√
f�

and f ≤ 1/4. Assuming that c = �/(
√
fk) ≥ 2, we get

PA + PB ≤ 8/(k(�/(
√

fk))) = 8
√

f/�.

When �/(
√
fk) < 2, we set c = 2. Then

PA + PB ≤ 2/k + 8fk/�2 ≤ 16fk/�2.

375

Again we need to verify that � ≥ fck = 2fk, but that follows
because � ≥ 1 and fk ≤ 1/4. We know that at one of the
above two cases applies, so we conclude that

P [|Y ∩ S| ≥ �] ≤ PA + PB = O(fk/�2 +
√

f/�),

completing the proof of (2).

3. PRIORITY SAMPLING
We now consider the more general situation where we are

dealing with a set I of weighted items with wi denoting the
weight of item i ∈ I. Let

∑
I =

∑
i∈I wi denote the total

weight of set I.
Now that we are dealing with weighted items, we will use

priority sampling [17] which generalizes the bottom-k sam-
ples we used for unweighted elements. The input is a set of
I of weighted items. Each item or element i is identified by
a unique key which is hashed uniformly to a random number
hi ∈ (0, 1). The item is assigned a priority qi = wi/hi > wi.
We assume that all priorities end up distinct and different
from the weights. If not, we could break ties based on an
ordering of the items. The priority sample S of size k con-
tains the k samples of highest priority, but it also stores a
threshold τ which is the (k + 1)th highest priority. Based
on this we assign a weight estimate ŵi to each item i. If
i is not sampled, ŵi = 0; otherwise ŵi = max{wi, τ}. A
basic result from [17] is that E[ŵi] = wi if the hash function
is truly random (in [17], the hi were described as random
numbers, but here they are hashes of the keys).

We note that priority sampling generalize the bottom-k
sample we used for unweighted items, for if all weights are
unit, then the k highest priorities correspond to the k small-
est hash values. In fact, priority sampling predates [12],
and [12] describes bottom-k samples for weighted items as
a generalization of priority sampling, picking the first k
items according to an arbitrary randomized function of the
weights.

The original objective of priority sampling [17] was subset
sum estimation. A subset J ⊆ I of the items is selected, and
we estimate the total weight in the subset as ŵJ =

∑{ŵi|i ∈
J ∩ S}. By linearity of expectation, this is an unbiased
estimator. A cool application from [17] was that as soon as
the signature of the Slammer worm [23] was identified, we
could inspect the priority samples from the past to track its
history and identify infected hosts. An important point is
that the Slammer worm was not known when the samples
were made. Samples are made with no knowledge on which
subsets will later turn out to be of interest.

Trivially, if we want to estimate the relative subset weight∑
J/

∑
I and we do not know the exact total, we can divide

ŵJ with the estimate ŵI of the total. As with the bottom-
k sampling for unweighted items, we can easily use priority
sampling to estimate the similarity of sets of weighted items:
given the priority sample from two sets, we can easily con-
struct the priority sample of their union, and estimate the
intersection as a subset. This is where it is important that
we use a hash function so that the sampling from different
sets is coordinated, e.g., we could not use iterative sampling
procedures like the one in [11]. In the case of histogram
similarity, it is natural to allow the same item to have dif-
ferent weights in different sets. More specifically, allowing
zero weights, every possible item has a weight in each set.
For the similarity we take the sum of the minimum weight
for each item, and divide it by the sum of the maximum

weight for each item. This requires a special sampling that
we shall return to at the end.

Priority sampling is not only extremely easy to implement
on-line with a standard min-priority queue; it also has some
powerful universal properties in its adaption to the concrete
input weights. As proved in [31], given one extra sample,
priority sampling has smaller variance sum

∑
i Var[ŵi] than

any off-line sampling scheme tailored for the concrete input
weights. In particular, priority sampling benefits strongly
if there are dominant weights wi in the input, estimated
precisely as ŵi = max{wi, τ} = wi. In the important case
of heavy tailed input distributions [1], we thus expect most
of the total weight to be estimated without any error. The
quality of a priority sample is therefore often much better
than what can be described in terms of simple parameters
such as total weight, number of items, etc. The experiments
in [17] on real and synthetic data show how priority sampling
sometimes gains orders of magnitude in estimate quality over
competing methods.

The quality of a priority estimate depends completely on
the distribution of weights in the input, and often we would
like to know how much we can trust a given estimate. What
we really want from a sample is not just an estimate, but a
confidence interval for the subset sum [32]: from the sample
we want to compute lower and upper bounds that capture
the true value with some desired probability. The confidence
interval does not have to be a simple nice function. It has
to be efficiently computable, and we want it to be as tight
as possible.

All the current analysis of priority sampling [17, 31, 32] is
heavily based on true randomness, assuming that the pri-
orities are independent random variables, e.g., the proof
from [17] that E[ŵi] = wi starts by fixing the priorities qj of
all the other items j �= i. However, in this paper, we want to
use hash functions with independence as low as 2, and then
any such approach breaks down. Estimates will no longer
be unbiased, but we will show that good confidence intervals
can still be computed.

To the best of our knowledge, our paper is the first to
show that anything useful can be said about subset sum
estimates based on given number of k samples made using
< 8-independent random variables. The essence of our result
is that priority sampling gets reasonable performance with
any hashing scheme as long as it is 2-independent.

Below we first develop error probability bounds for prior-
ity sampling with limited independence applied to a given
set of input weights. Afterwards we show how confidence
intervals can be derived from a sample. At the very end, we
show how to estimate histogram similarity.

3.1 Threshold sampling
Generalizing the pattern for unweighted sets, our basic

goal is to relate the error probabilities with priority sampling
to the much simpler case of threshold sampling for weighted
items [16]. In our description of threshold sampling, we will
develop notation and basic results that will later be used for
priority sampling.

In threshold sampling, we do not have a predefined sample
size. Instead we have a given threshold t. We will still use
exactly the same random priorities as above, but now an
item is sampled if and only if qi > t. The weight estimate is

ŵt
i =

{
0 if qi ≤ t
max{wi, t} if qi > t

(10)

376

Thus, if priority sampling leads to threshold τ , then the
priority estimates are ŵi = ŵτ

i . We shall use It to denote
the items sampled with threshold t, that is, items i with
qi > t. The priority threshold τ is the (k + 1)st largest
priority, hence the smallest value such that |Iτ | ≤ k.

We note that threshold sampling is well-known from
statistics (see, e.g., [28]). With fully random and indepen-
dent hi, each item i is sampled independently: a so-called
a Poisson sampling scheme. With the given weights wi and
threshold t, let kt be the expected number of samples with
threshold t. Among all possible Poisson sampling schemes
with unbiased estimators ŵi and an expected number of kt
samples, threshold sampling is the unique scheme that min-
imizes the variance sum

∑
i∈I Var[ŵi] [28, p 86].

Fractional subsets and inner products.
It is convenient to generalize from regular subsets to

fractional subsets. For each i ∈ I, there is a fraction
fi ∈ [0, 1]. We want to estimate fw denoting the in-
ner product

∑
i∈I fiwi. We estimate it as fŵt denoting∑

i∈I fiŵ
t
i =

∑
i∈S fiŵ

t
i . Note that for this estimate, we

only need to know fi for i ∈ S. To emulate a standard
subset J , we let f be the characteristic function of J , that
is, fi = 1 if i ∈ J ; otherwise fi = 0 otherwise. Using in-
ner products will simplify a lot of notation in our analysis.
The generalization to fractional subsets comes for free in our
analysis which is all based on concentration bounds for sums
of random variables Xi ∈ [0, 1].

Notation for smaller weights.
Whenever we with threshold or priority sampling end up

with a threshold t, we know that variability in the estimate
is from items i with weight below t. We will generally use a
subscript <t to denote the restriction to items i with weights
wi < t, e.g., I<t = {i ∈ I|wi < t} and w<t = (wi)i∈I<t is the
vector of these smaller weights. Then fw<t =

∑
i∈I<t

fiwi.

Notice that fw<t does not include i with wi ≥ t even if
fiwi < t.
Above we defined w<t to denote the vector (wi)i∈I<t of

weights below t, and used it for the inner product fw<t =∑
i∈I<t

fiwi. When it is clear from the context that we need

a number, not a vector, we will use w<t to denote the sum
of these weights, that is, w<t =

∑
i∈I<t

wi = 1w<t where 1

is the all 1s vector. Since fi ≤ 1 for all i, we always have
fw<t ≤ w<t.

We shall use subscript ≤t, ≥t, and >t to denote the corre-
sponding restriction to items with weight ≤ t, ≥ t, and > t,
respectively.

For a subset J of I, we let fJ =
∑

i∈J fi, thus identifying
J with its characteristic vector. As an example, we can write
our estimate with threshold t as

fŵt = fw≥t + t(fIt<t). (11)

Error probability functions.
As in the unweighted case, the point in relating to thresh-

old sampling is that error probability bounds for threshold
sampling are easily derived. For items with unit weights,
we reduced the bottom-k sampling error event to the union
of four threshold sampling error events (A), (B), (A’), and
(B’). However, now with weighted items, we are going to
reduce the priority sampling error event to the union of an
unbounded number of threshold sampling error events that

happen with geometrically decreasing probabilities. Our
reduction will hold for most hash functions, including 2-
independent hash functions, but to make such a claim clear,
we have to carefully describe what properties of the hash
functions we rely on.

Assume that the threshold t is fixed. With reference to
(11), the variability in our estimate is all from fIt<t. An
item i ∈ I<t is sampled and included in It<t if qi = wi/hi >
t ⇐⇒ hi < wi/t, hence with probability wi/t. If i is
sampled, it adds fi ∈ [0, 1] to fIt<t; otherwise 0.

The above is an instance of bounded random variables
Xi ∈ [0, 1], i ∈ I<t, where eachXi is a function of hi; namely
Xi = fi[hi < wi/t]. With the fixed threshold t, Xi depends
only on the hash hi. Therefore, if the hash values hi are, say
d-independent, then so are the Xi. Let X =

∑
i∈I<t

Xi and

μ = E[X]. We are interested in an error probability function
℘ such that for every μ > 0, δ > 0, if μ = E[X], then

Pr[|X − μ| > δμ] ≤ ℘(μ, δ).

The error probability function ℘ that we can use depends on
the quality of the hash function. For example, if the hash
function is 2-independent, then Var[X] ≤ μ, and then by
Chebyshev’s inequality, we can use

℘(μ, δ) = 1/(δ2μ). (12)

For most of our results, it is more natural to think of δ as a
function of μ and some target error probability P ∈ (0, 1),
defining δ(μ, P) such that

μ(μ, δ(μ, P)) = P. (13)

Returning to threshold sampling with threshold t, for i ∈
I<t, we have Xi = fi[i ∈ It<t], X = fIt<t, and μ = fw<t/t.
Moreover, by (11), fŵ t − fw = t(fIt<t)− fw<t. Hence

Pr[|fŵ t − fw| > δ(fw<t/t, P)fw<t] ≤ P. (14)

When we start analyzing priority sampling, we will need
to relate the probabilities of different threshold sampling
events. This places some constraints on the error probabil-
ity function ℘. Mathematically, it is convenient to allow ℘
to attain values above 1, but only the values below 1 are
probabilistically intersting.

Definition 4. An error probability function ℘ : R≥0 ×
R≥0 → R≥0 is well-behaved if

(a) ℘ is continuous and strictly decreasing in both argu-
ments.

(b) If with the same absolute error we decrease the ex-
pectancy, then the probability goes down. Formally if
μ′ < μ and μ′δ′ ≥ μδ, then ℘(μ′, δ′) < ℘(μ, δ).

(c) If δ ≤ 1 and ℘(μ, δ) < 1, then ℘(μ, δ) falls at least
inversely proportional to μδ2. Formally, if δ0, δ1 ≤ 1,
℘(μ0, δ0) < 1, and μ0δ

2
0 < μ1δ

2
1, then

℘(μ0, δ0) ≥ μ0δ
2
0

μ1δ21
℘(μ1, δ1). (15)

The conditions are trivially satisfied with our Chebyshev
bound ℘(μ, δ) = 1/(μδ2). We will use (c) to argue that
probabilities of different events fall geometrically. The some-
what cryptic formulation in (c) is relevant in connection with
higher independence, e.g., for full randomness we have the
standard Chernoff bounds (see, e.g., [24]) that for δ ≤ 1

377

give ℘(μ, δ) = 2 exp(−δ2μ/3). This ℘ only satisfies (15) if
μ0δ

2
0 ≥ 3. Obviously the Chernoff bounds give much faster

decrease as μδ2 increases. The point in our results is that
we only require the decrease in (15).

As an application of (a) and (b) we get

Lemma 5. For thresholds t′, t, and relative errors δ′, δ, if
t′ < t and ℘(fw<t′/t

′, δ<t′) = ℘(fw≤t/t, δ≤t), then

δ′fw<t′ < δfw<t.

Hence, for any fixed target error probability P in (14), the
target error

δ(fw<t/t, P)fw<t

is strictly decreasing in the threshold t.

Proof. We will divide the decrease from t to t′ into a
series of atomic decreases. The first atomic “decrease” is
from fw≤t to fw<t. This makes no difference unless there
are weights equal to t so that fw<t < fw≤t. Assume this
is the case and suppose ℘(fw<t/t, δ<t) = ℘(fw≤t/t, δ≤t).
Since fw≤t/t < fw<t/t, it follows directly from (b) that
δ<tfw<t/t < δ≤tw≤t/t, hence that δ<tfw<t < δ≤tw≤t.

The other atomic decrease we consider is from fw<t

to fw≤t′ where t′ < t and with no weights in (t′, t),
hence with fw≤t′ = fw<t. Suppose ℘(fw≤t′/t

′, δ≤t′) =
℘(fw<t/t, δ<t). Since t′ < t, fw≤t′/t

′ > fw<t/t, so by (a),
δ≤t′ < δ<t′ . It follows that δ≤t′fw≤t′ < δ<tfw<t. Alternat-
ing between these two atomic decreases, we can implement
an arbitrary decrease in the threshold as required for the
lemma.

Threshold confidence intervals.
In the case of threshold sampling with a fixed threshold

t, it is now trivial to derive confidence intervals for the true
value fw. The sample gives us the exact value fw≥t for
weights at least as big as t, and an estimate fŵt

<t for those
below. Setting

fŵ−
<t = min{x | (1 + δ(x/t, P))x ≥ fŵt

≥t}
fŵ+

<t = max{x | (1− δ(x/t, P))x ≤ fŵt
≥t}

we get

Pr
[
fw≥t + fŵ−

<t ≤ fw ≤ fw≥t + fŵ+
<t

] ≥ 1− 2P.

3.2 Priority sampling: the main result
We are now ready to present our main technical result.

Theorem 6. For items i ∈ I, let be given a weight vector
(wi)i∈I with corresponding fractions (fi)i∈I . With a given
target error probability P and sample size k, consider a ran-
dom priority sampling event, assigning to each item i ∈ I,
a hash hi ∈ (0, 1) and priority qi = wi/hi. Let τ be the
resulting priority threshold, i.e, the k + 1th largest priority.
Let

δ = 6 δ(fŵ<τ/(3τ), P).

If δ < 2, then

Pr[|fŵτ − fw| > δfw<τ] = O(P).

The above constants are not optimized, but with pure O-
notation, it is not as easy to make a formally clear statement.
Ignoring the constants and the restriction δ < 2, we see that
our error bound for priority sampling with threshold τ is of

the same type as the one in (14) for threshold sampling with
fixed threshold t = τ . In our case, the priority threshold τ is
variable, and from Lemma 5 it follows that our probabilistic
error bound

6 δ(fŵ<τ/(3τ), P) fw<τ

decreases with the priority threshold τ .
The proof of Theorem 6 is rather convoluted. With some

target error probability P , we will identify tmin, tmax such
that

(i) With probability 1−O(P), the priority threshold τ ∈
[tmin, tmax].

(ii) With probability 1−O(P), with a single random choice
of the hi but simultaneously for all t ∈ [tmin, tmax], if
δ = 6 δ(fŵ<t/(3t), P) < 2, then |fŵτ − fw| ≤ δfw<t.

A union bound on ¬(i)∨¬(ii) implies Theorem 6. What
makes (ii) very tricky to prove is that δ(fŵ<t/(3t), P) can
vary a lot for different t ∈ [tmin, tmax].

Priority confidence intervals.
The format of Theorem 6 makes it very easy to derive

confidence intervals like those for threshold sampling. A
priority sample with priority threshold τ gives us the exact
value fw≥τ for weights at least as big as τ , and an estimate
fŵτ

<τ for those below. For an upper bound on fw<τ , we
compute

fŵ+
<τ = max{x | δ = 6 δ(x/(3τ), P)) ∧ (1− δ)x ≤ fŵτ

≥τ}.
Note that here in the upper bound, we only consider δ ≤ 1,
so we do not need to worry about the restriction δ < 2 in
Theorem 6. For the lower bound, we use

fŵ−
<τ = min{x | δ = 6 δ(x/(3τ), P)) < 2∧(1+δ)x ≥ fŵτ

≥τ}.
Here in the lower bound, the restriction δ =
6 δ(x/(3τ), P)) < 2 prevents us from deriving a lower
bound x = fŵ−

<τ ≤ fŵτ
≥τ/3. In such cases, we use the

trivial lower bound x = fŵ−
<τ = 0 which in distance from

fŵτ
<τ is at most 1.5 times bigger. Now, by Theorem 6,

Pr
[
fw≥τ + fŵ−

<τ ≤ fw ≤ fw≥τ + fŵ+
<τ

] ≥ 1−O(P).

In cases where the exact part fw≥τ of an estimate is small
compared with the variable part fŵτ

≥τ , we may be interested

in a non-zero lower bound fŵ−
<τ even if it is smaller than

fŵτ
≥τ/3. To do this, we need bounds for larger δ.

Large errors.
We are now going to present bounds that works for arbi-

trarily large relative errors δ. The bounds are not as clean
as those from Theorem 6, but we include them to show that
something can be done also for δ ≥ 2. In particular, this
means that we only worry about positive errors.

Theorem 7. For items i ∈ I, let be given a weight vector
(wi)i∈I with corresponding fractions (fi)i∈I , a target error
probability P , and a sample size k. Based on (wi)i∈I , let
tmax the smallest upper bound on a random priority thresh-
old that is exceeded with probability at most P , that is, the
probability of generating at least k + 1 priorities above tmax

is at most P . Consider a random priority sampling event.
Set

� = 1 + log2(tmax/τ)

δ = δ(fw<τ/τ, P/�
2
τ).

378

Then

Pr[fŵτ
<τ > (2 + 2δτ)fw<τ] = O(P)

Complementing Theorem 6, we only intend to use Theo-
rem 7 for large errors where (1 + 2δτ) = O(δτ). We wish
to provide a probabilistic lower bound for fw<τ . Unfortu-
nately, we do not know tmax which depends on the whole
weight vector (wi)i∈I . However, based our priority sample,
it is not hard to generate a probabilistic upper bound tmax

on tmax such that Pr[tmax < tmax] ≤ P . We then compute

�τ = 1 + log2(tmax/τ) and set

fŵ−
<τ = min{x | δ = δ(x/τ, P/�

2
)) ∧ 2(1 + δ)x ≥ fŵτ

<τ}.
Then by Theorem 7,

Pr
[
fw<τ ≥ fŵ−

<τ

]
= 1−O(P).

To see this, let fŵ∗
<τ be the value we would have obtained

if we had computed fŵ−
<τ using the real tmax. Our error

event is that tmax < tmax or fw<τ < fŵ∗
<τ . The former

happens with probability at most P , and Theorem 7 states
that the latter happens with probability O(P). Hence none
of these error events happen with probability 1−O(P), but
then tmax ≥ tmax, implying fŵ−

<τ ≤ fŵ∗
<τ ≤ fw<τ .

For space reasons, the proofs of Theorems 6 and 7 are
deferred to the full version [33] of this paper.

3.3 Histogram similarity
As mentioned earlier, with weighted items, given the pri-

ority samples of sets A and B, we can easily estimate the
weight of their intersection and union. As for bottom-k sam-
ple, the point is that we can construct the priority sample
of their union. This priority sample involves the top k + 1
priorities from A ∪ B. If one of these is in A, then it must
also be among the top k + 1 priorities from A.

However, if we want to compare histograms, then it
is natural to say that the same item i may have differ-
ent weights in different sets. The item i has weight wA

i

in A and weight wB
i in B. Let wmax

i = max{wA
i , w

B
i }

and wmin
i = min{wA

i , w
B
i }. The histogram similarity is

wmin/wmax = (
∑

i w
min
i)/(

∑
i w

max
i).

This would seem a perfect application of our fractional
subsets with wi = wmax

i and fi = wmin
i /wmax

i . The issue
is as follows. From our priority samples over the wA

i and
wB

i we can easily get the priority sample for the wi = wmax
i .

However, for the i sampled, we would typically not have a
sample with wmin

i , and then we cannot compute fi.
Our solution is to keep the instances of an item i in A and

B separate as twins iA and iB with priorities qAi = wA
i /hi

and qBi = wB
i /hi. For coordination, we still use the same

hash value hi to determine the priorities. If wA
i = wB

i , we
get qAi = qBi , and then we break the tie in favor of iA. The
priority sample for A ∪ B consists of the top k split items,
and the priority threshold τ is the k + 1 biggest among all
priorities. Estimation is done as usual. The important point
here is the interpretation of the results. If wA

i ≥ wB
i , then

the priority of iA is higher than that of iB . Thus, in our
sample, when we see an item iC , C ∈ {A,B}, we count it
for the union ŵmax if it is not preceded by its twin; otherwise
we count it for the intersection ŵmin.
The resulting estimators ŵmin and ŵmax will no longer be

unbiased with truly random hashing. However, for our prob-
abilistic error bounds with pseudo-random hashing, there is
no asymptotic effect to our analysis. All the current analysis
is using union bounds over threshold sampling events, using

the fact that each hash value hi contributes at most 1 to
the number of items with priorities above a given threshold
t. Now hi affects 2 twins, but this is fine since all we need
is that the contribution of each random variable is bounded
by a constant.

4. REFERENCES
[1] R. Adler, R. Feldman, and M. Taqqu. A Practical

Guide to Heavy Tails. Birkhauser, 1998.

[2] Y. Bachrach, R. Herbrich, and E. Porat. Sketching
algorithms for approximating rank correlations in
collaborative filtering systems. In Proc. 16th SPIRE,
pages 344–352, 2009.

[3] Y. Bachrach and E. Porat. Fast pseudo-random
fingerprints. CoRR, abs/1009.5791, 2010.

[4] Y. Bachrach, E. Porat, and J. S. Rosenschein.
Sketching techniques for collaborative filtering. In
Proc. 21st IJCAI, pages 2016–2021, 2009.

[5] Z. Bar-Yossef, T. S. Jayram, R. Kumar,
D. Sivakumar, and L. Trevisan. Counting distinct
elements in a data stream. In International Workshop
on Randomization and Approximation Techniques in
Computer Science (RANDOM), pages 1–10, 2002.

[6] A. Z. Broder. On the resemblance and containment of
documents. In Proc. Compression and Complexity of
Sequences (SEQUENCES), pages 21–29, 1997.

[7] A. Z. Broder. Identifying and filtering near-duplicate
documents. In Proc. 11th CPM, pages 1–10, 2000.

[8] A. Z. Broder, M. Charikar, A. M. Frieze, and
M. Mitzenmacher. Min-wise independent
permutations. Journal of Computer and System
Sciences, 60(3):630–659, 2000. See also STOC’98.

[9] A. Z. Broder, S. C. Glassman, M. S. Manasse, and
G. Zweig. Syntactic clustering of the web. Computer
Networks, 29:1157–1166, 1997.

[10] E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk,
R. Motwani, J. D. Ullman, and C. Yang. Finding
interesting associations without support pruning.
IEEE Trans. Knowl. Data Eng., 13(1):64–78, 2001.

[11] E. Cohen, N. Duffield, H. Kaplan, C. Lund, and
M. Thorup. Efficient stream sampling for
variance-optimal estimation of subset sums. SIAM
Journal on Computing, 40(5):1402–1431, 2011.
Announced at SODA’09.

[12] E. Cohen and H. Kaplan. Summarizing data using
bottom-k sketches. In Proc. 26th PODC, pages
225–234, 2007.

[13] M. Datar and S. Muthukrishnan. Estimating rarity
and similarity over data stream windows. In Proc.
10th ESA, pages 323–334, 2002.

[14] M. Dietzfelbinger. Universal hashing and k-wise
independent random variables via integer arithmetic
without primes. In Proc. 13th STACS, pages 569–580,
1996.

[15] M. Dietzfelbinger, J. Gil, Y. Matias, and
N. Pippenger. Polynomial hash functions are reliable
(extended abstract). In Proc. 19th ICALP, pages
235–246, 1992.

[16] N. Duffield, C. Lund, and M. Thorup. Learn more,
sample less: control of volume and variance in network
measurements. IEEE Transactions on Information
Theory, 51(5):1756–1775, 2005.

379

[17] N. Duffield, C. Lund, and M. Thorup. Priority
sampling for estimation of arbitrary subset sums. J.
ACM, 54(6):Article 32, 2007. Announced at
SIGMETRICS’04.

[18] G. Feigenblat, E. Porat, and A. Shiftan. Even better
framework for min-wise based algorithms. CoRR,
abs/1102.3537, 2011. Accepted as “Exponential space
improvement for min-wise based algorithms” for
FSTTCS’12.

[19] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online
aggregation. In Proc. SIGMOD Conference, pages
171–182, 1997.

[20] M. R. Henzinger. Finding near-duplicate web pages: a
large-scale evaluation of algorithms. In Proc. 29th
SIGIR, pages 284–291, 2006.

[21] G. S. Manku, A. Jain, and A. D. Sarma. Detecting
near-duplicates for web crawling. In Proc. 16th
WWW, pages 141–150, 2007.

[22] M. Mitzenmacher and S. P. Vadhan. Why simple hash
functions work: exploiting the entropy in a data
stream. In Proc. 19th ACM/SIAM Symposium on
Discrete Algorithms (SODA), pages 746–755, 2008.

[23] D. Moore, V. Paxson, S. Savage, C. Shannon,
S. Staniford, and N. Weaver. Inside the slammer
worm. IEEE Security and Privacy Magazine,
1(4):33–39, 2003.

[24] R. Motwani and P. Raghavan. Randomized algorithms.
Cambridge University Press, 1995.

[25] A. Pagh, R. Pagh, and M. Ružić. Linear probing with
constant independence. SIAM Journal on Computing,
39(3):1107–1120, 2009. See also STOC’07.

[26] M. Pǎtraşcu and M. Thorup. On the k-independence
required by linear probing and minwise independence.

In Proc. 36th ICALP, Part I, LNCS 6198, pages
715–726, 2010.

[27] M. Pǎtraşcu and M. Thorup. Twisted tabulation
hashing. In Proc. 23nd SODA, pages 209–228, 2013.

[28] C.-E. Särndal, B. Swensson, and J. Wretman. Model
Assisted Survey Sampling. Springer, 1992.

[29] S. Schleimer, D. S. Wilkerson, and A. Aiken.
Winnowing: Local algorithms for document
fingerprinting. In Proc. SIGMOD, pages 76–85, 2003.

[30] J. P. Schmidt, A. Siegel, and A. Srinivasan.
Chernoff-Hoeffding bounds for applications with
limited independence. SIAM Journal on Discrete
Mathematics, 8(2):223–250, 1995. See also SODA’93.

[31] M. Szegedy. The DLT priority sampling is essentially
optimal. In Proc. 38th STOC, pages 150–158, 2006.

[32] M. Thorup. Confidence intervals for priority sampling.
In Proc. SIGMETRICS, pages 252–263, 2006.

[33] M. Thorup. Bottom-k and priority sampling, set
similarity and subset sums with minimal
independence. CoRR, 2013.

[34] M. Thorup and Y. Zhang. Tabulation-based
5-independent hashing with applications to linear
probing and second moment estimation. SIAM
Journal on Computing, 41(2):293–331, 2012.
Announced at SODA’04 and ALENEX’10.

[35] M. N. Wegman and L. Carter. New classes and
applications of hash functions. Journal of Computer
and System Sciences, 22(3):265–279, 1981. See also
FOCS’79.

[36] H. Yang and J. P. Callan. Near-duplicate detection by
instance-level constrained clustering. In Proc. 29th
SIGIR, pages 421–428, 2006.

380

	Introduction
	Bottom-k samples
	A union upper bound
	A union lower bound
	Rare subsets

	Priority sampling
	Threshold sampling
	Priority sampling: the main result
	Histogram similarity

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

