
The rsync algorithm

https://rsync.samba.org/tech_report/tech_report.html

An easy problem

• I have two files A and B. I want to make B
equals to A

• What is the cost?
– CPU
– Data moved (reads, writes)

The problem of rsync

• A is stored in computer alpha and B in
computer beta

• The network link can be slow (at least it is
much slower than CPU)

• How can I save bandwidth?

A naïve approach

• Beta compute a hash of the file B and send it to
alpha

• Alpha compute the hash of A and send back to beta
either the hash (if the two hash are the same) or the
content of A if they differ

• Beta check if the message is the hash or has to
update B

• What is the cost?
• What is the hash function?

Cryptographic hash

1. Deterministic
2. Quick to compute
3. Infeasible to generate a message from the

hash
4. A small change in the message should

drastically change the hash
5. It is infeasible to find collisions

Cryptographic hash

1. Deterministic
2. Quick to compute
3. Infeasible to generate a message from the

hash
4. A small change in the message should

drastically change the hash
5. It is infeasible to find collisions

Can I do better?

• Can I save bandwidth when A and B are
similar?

Solution 1 - bucketing

• Weakness?
• Can I do better?

Beta

Alpha

Solution 2 - rolling

Alpha

Beta

Can I do better?

• Intense use of cpu in alpha

Solution 3 – rolling hashing

• A two hashing strategy

!"#$%&'(= *+,*-… */	
	

0(2, 3) = 	67*8
9

8:;
<%"=	>	

?(2, 3) = 	67(3 − A + 1)*8
9

8:;
<%"=	>	

D(2, 3) = 	0(2, 3) + 	2+F	?(2, 3)	
	

Solution 3 – rolling hashing

• Is it M=216 a good idea?
• Collisions?

!(# + 1, ' + 1) = (!(#, ') +	+,-. − 	+0)	123	4	
	
5(# + 1, ' + 1) 																																																															

= 	(5(#, ') − (' − # + 1)+0														
+ 	!(# + 1, ' + 1))	123	4	

	

• A convenient way to derive next hash

Update an example (1)

• Sequence: ABCDE
• Window size: 4
• Get rid of the modulo for simplicity

• a(1,4) = A + B + C + D
• a(2, 5) = a(1,4) - A + E =

= A + B + C + D – A + E =
= B + C + D + E

Update an example (2)

• Sequence: ABCDE, window size = 4

• b(1,4) = 4A + 3B + 2C + 1D
• b(2,5) = b(1,4) - 4A + a(2,5) =

= 4A + 3B + 2C + 1D - 4A + a(2,5) =
= 3B + 2C + 1D + a(2,5) =
= 3B + 2C + 1D + B + C + D + E =
= 4B + 3C + 2D + E

Can I do better?

• Collision probability high enough to ensure
equality of blocks

• One scan of the file A in alpha for each block
of B in beta

Solution 4 - rsync

• Use two hash functions
• The rolling hashing for each possible offset
• A stronger 128bit hash in case a collision is

detected
– Rsync uses MD4

Solution 4 - rsync

• Use two hash functions
• The rolling hashing for each possible offset
• A stronger 128bit hash in case a collision is

detected
– Rsync uses MD4

• How to generate collisions in MD4
– https://eprint.iacr.org/2005/151.pdf

Checksum searching

• Beta send several checksums
• For each test alpha performs a search on

these checksums

• Is linear scanning an option?

Checksum searching: possible
solutions

• Binary search
– Preprocessing requires sorting O(n lg n)
– Searching requires O (lg n0

• Bloom filters
– Constant time insert and query, but can have false

positives
• Perfect hashing
– Preprocessing space/time tradeoff
– Constant time searching

The rsync three way test

16bit

Rolling checksum

216 enties

• Search for a match in
the table
– If nul the block is not

found

The rsync three way test

• Scan the sorted list
to find a match with
the second half of
the checksum

16bit

Rolling checksum

216 enties

The rsync three way test

• Use the strong
fingerprint to
confirm the match

16bit

Rolling checksum

216 enties

The rsync three way test

• What happens if two blocks in B have the
same fingerprint?

• How the list of blocks can be organized?
• Is it possible to copy a corrupted file?

Things you may want to try and
discuss next week

• Test binary search or perfect hashing
• Test the impact of the length of the block
• Small vs huge files

