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Figure 2: The embedding of a search tree with height 4 and size 10 in a complete
tree with height 5

2 Memory Layouts of Static Trees

In this section we discuss four memory layouts for static trees: DFS, inorder,
BFS, and van Emde Boas layouts. We assume that each node is represented
by a node record and that all node records for a tree are stored in one array.
We distinguish between pointer based and implicit layouts. In pointer based
layouts the navigation between a node and its children is done via pointers
stored in the node records. In implicit layouts no pointers are stored; the
navigation is based solely on address arithmetic. Whereas all layouts have
pointer based versions, implicit versions are only possible for layouts where the
address computation is feasible. In this paper we will only consider implicit
layouts of complete trees. A complete tree of size n is stored in an array of n
node records.

DFS layout The nodes of T are stored in the order they are visited by a
left-to-right depth first traversal of T (i.e. a preorder traversal).

Inorder layout The nodes of T are stored in the order that they are visited
by a left-to-right inorder traversal of T .

BFS layout The nodes of T are stored in the order they are visited by a
left-to-right breath first traversal of T .

van Emde Boas layout The layout is defined recursively: A tree with only
one node is a single node record. If a tree T has two or more nodes, let
H0 = !h(T )/2", let T0 be the tree consisting of all nodes in T with depth
at most H0, and let T1, . . . , Tk be the subtrees of T rooted at nodes with
depth H0 + 1, numbered from left to right. We will denote T0 the top
tree and T1, . . . , Tk the bottom trees of the recursion. The van Emde
Boas layout of T consists of the van Emde Boas layout of T0 followed by
the van Emde Boas layouts of T1, . . . , Tk.

Figure 3 gives the implicit DFS, inorder, BFS, and van Emde Boas layouts for
a complete tree with height four.

We now discuss how to calculate the position of the children of a node v
at position i in the implicit layouts. For the BFS layout, the children are at
position 2i and 2i + 1—a fact exploited already in the 1960s in the design of
the implicit binary heap [23]. For the DFS layout, the two children are at
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Figure 3: The DFS, inorder, BFS, and van Emde Boas layouts for a complete tree
with height 4. Numbers designate positions in the array of node records

positions i + 1 and i + 2h(v)−1, and in the inorder layout the two children are
at positions i − 2h(v)−2 and i + 2h(v)−2.

For the implicit van Emde Boas layout the computations are more involved.
Our solution is based on the fact that if we for a node in the tree unfold the
recursion in the van Emde Boas layout until this node is the root of a bottom
tree, then the unfolding will be the same for all nodes of the same depth. In a
precomputed table of size O(log n), we for each depth d store the size B[d] of
this bottom tree, the size T [d] of the corresponding top tree, and the depth D[d]
of the root of the corresponding top tree. When laying out a static tree, we
build this table in O(log n) time by a straightforward recursive algorithm.

During a search from the root, we keep track of the position i in a BFS
layout of the current node v of depth d. We also store the position Pos [j] in
the van Emde Boas layout of the node passed at depth j for j < d during the
current search. As the bits of the BFS number i represents the left and right
turns made during the search, the log(T [d] + 1) least significant bits of i gives
the index of the bottom tree with v as root among all the bottom trees of the
corresponding top tree. Since T [d] is of the form 2k−1, these bits can be found
as i and T [d]. It follows that for d > 1, we can calculate the position Pos [d]
of v by the expression

Pos [d] = Pos[D[d]] + T [d] + (i and T [d]) · B[d] .

At the root, we have i = 1, d = 1, and Pos [1] = 1. Navigating from a node
to a child is done by first calculating the new BFS position from the old, and
then finding the value of the expression above.

The worst case number of memory transfers during a top down traversal of
a path using the above layout schemes is as follows, assuming each block stores
B nodes. With the BFS layout, the topmost $log(B + 1)% levels of the tree
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will be contained in at most two blocks, whereas each of the following blocks
read only contains one node from the path. The total number of memory
transfers is therefore Θ(log(n/B)). For the DFS and inorder layouts, we get
the same worst case bound when following the path to the rightmost leaf, since
the first !log(n + 1)" − !log B" nodes have distance at least B in memory,
whereas the last $log(B + 1)% nodes are stored in at most two blocks. As
Prokop [19, Section 10.2] observed, in the van Emde Boas layout there are at
most O(logB n) memory transfers. Note that only the van Emde Boas layout
has the asymptotically optimal bound achieved by B-trees [4].

We note that DFS, inorder, BFS, and van Emde Boas layouts all support
efficient range queries (i.e. the reporting of all elements with keys within a
given query interval), by the usual recursive inorder traversal of the relevant
part of the tree, starting at the root.

We argue below that the number of memory transfers for a range query in
each of the four layouts equals the number of memory transfers for two searches
plus O(k/B), where k is the number of elements reported. If a range report-
ing query visits a node that is not contained in one of the search paths to the
endpoints of the query interval, then all elements in the subtree rooted at the
node will be reported. As a subtree of height !log(B + 1)" stores between B
and 2B − 1 elements, at most k/B nodes with height larger than !log(B + 1)"
are visited which are not on the search paths to the two endpoints. Since sub-
trees are stored contiguously for both the inorder and DFS layouts, a subtree
of height !log(B + 1)" is stored in at most three blocks. The claimed bound
follows for these layouts. For the van Emde Boas layout, consider a subtree T
of height !log(B + 1)". There exists a level in the recursive layout where the
topmost levels of T will be stored in a recursive top tree and the remaining
levels of T will be stored in a contiguous sequence of bottom trees. Since the
top tree and each bottom tree has size less than 2B − 1 and the bottom trees
are stored contiguously in memory, the bound for range reportings in the van
Emde Boas layout follows.

For the BFS layout, we prove the bound under the assumption that the
memory size is Ω(B log B). Observe that the inorder traversal of the relevant
nodes consists of a left-to-right scan of each level of the tree. Since each level
is stored contiguously in memory, the bound follows under the assumption
above, as the memory can hold one block for each of the lowest !log(B + 1)"
levels simultaneously.

3 Search Trees of Small Height

In the previous section, we considered how to lay out a static complete tree
in memory. In this section, we describe how the static layouts can be used
to store dynamic balanced trees. We first describe an insertions only scheme
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