
CHAPTER 4. STATIC TEXT ON SECONDARY STORAGE 

4.1 Partitioned Compact PAT Tkees 

In order to control the number of accesses to secondary starage required daring 
CPT opaations, we p u t ü i o n  the tree into connected components each of which 
fits in a disk block. We call each component a page because of the simüanty of 
this problem to the problem of ef6ciently laying out a tree or other data structure 
in a paged virtual memory system[21]. If the disk block size is such that it can 
hold two intemal nodes then the PAT tree of Figare 1.6 could be partitioned as 
shown in Figure 4.1. In this case we need to perform three accesses to secondary 

Figure 4.1: The Partition 

storage to reach leaf 1, 5 or 8 ftom the root. The alternative partitioning 
Figure 4.2 can reach any leaf in hro accesses and so might be preferred. 

Figure 4.2: Alternative 'Ree Partition 

 David Clark. Compact Pat Trees. 
PhD thesis, U. Waterloo, 1996



CEiAPTER 4. STATIC TEXT ON SECONDARY STORAGE 

Two possible criteria for ehoosing one partitionhg ovet 0th- are: 

the number of pages accessed whem travershg from the mot to a Id, 
averaged ovex $1 the laves, and 

the maximum number of pages accessed when traversing ftom the root to 
any leaf. 

We dl page partitionings that minimize these meastues avemge cme optimal and 
worst case optimal respectively. Let be the nnmber of pages accessed to reach 
the i'th leaf (under some ordering of the leaves). Then these partitionings 
minimbe Ci- and mmci respectively. Implicit in these measures is the 
assnmption that we consida all leaves equally important. Lukes[32] and Gii and 
Itai[21] consider more general cases whae nodes and edges can have weights 
associated witb them. 

The partitionings considered here are restricted such that each page holds a 

connected portion of the tree. Gil and Itai use the term convez to describe such 
partitionings and show that loosening this restriction does not allow for better 
average case partitioning[21]. Because of this restriction, each page will itseIf be a 

tree and can be stored nsing the CPT structure h m  Chapter 2. The only change 
requHed to the CPT strneture for storing the pages is that the leaf data may now 
point to either a s n f n x  in the text or a sub-tree page so an extra bit is required to 
distinguish these two cases. We let the value p denote the namber of intemal 
nodes in the largest sub-tree we can phce in a block. Using the representation 

P-lg n from Chapte' 39 P ~g n+lg lg lg n+* * The restriction to connected sub-trees 
~ O W S  as to r e k  to the root of the sub-tree in a page as the mot of the page. In 
addition we wil l  refér to the page containhg the sibling node of a page's root as 
the page's sibling. Note that in some cases a page's root and its sibling may be 
the same page (consider the rightmost interna1 node of Figure 4.2). 



Lukes[32] presents a dynamic progrIimming method fm hding an average case 
optimal partitioning in O(n$) the. A telated method for fiading a worst case 
optimal partitioning in O(np) t h e  is reportecl in Carlisle et d [ 9 ] .  Unfortunatdy 
both of these methods require np words of storage to cornpute the partitioning 
and so are not practid for trees of the size we are considering. Gil and Itai[21] 
devdop a similar d y n d c  programming method for the average case that 
operates in much less memory. Ho-, th& aigori th perfosms multiple passes 
over the tree and so is dikely to be efficient enough for oar purposes. 
Additiondy, these dynamic programming methods do not adapt w d  to the 
dynamic trees needed in the next chapter. Carlisle et  d.[9] also discnss a top 
down greedy heuristic that is conceptually simple and wotks well on some dasses 
of trees but can reqnire @(log n) extra page accesses on average to r d  any leaf. 

In the remainder of this chapter we present a new bottom up greedy algorithm for 
constrncting a worst case optimal partitioning of a binaty hee and demonstrate 
its use on the CPT. 

4.2 Partit ioning Algorithm 

Define the page height of a node in a partitioned tree as the maximum number of 
pages that need to be read when travershg fkom the node to any leaf in its 
sub-tree and the page height of a page as the page height of its mot. In each case 

we inclade the cment page in the page height count. For any given assignment of 
nodes to pages, also define the locd page size of a node as the number of 
descendents of that node that are on the rame page as the node, plus one for the 
original node. The page height and local page size of a node may be defined for a 
partial partitioning provided the node and $1 of its descendents have been pkced 
on pages. 
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We present a partitioning algorithm that s t a r t s  by assigning each leaf its own 
page and a page height of one. Working upward, we apply the d e  in Fignre 4.3 
at each node. 

if both children have the same page height 
if the sui of the local page rizea of the childrem is lesa than p. 

merge the pages of the children and add the node 
se t  the page height of the node t o  that of the chilàsen 

else 
close off the pages of the childrem 
create a neu page for  the cunent node 
set the page height of the node to  that of the chi leen plus one 

else 
close off the page of the child vith the l e i i e r  height 
if the local page size of the remaining child is less  than p. 

sdd the node t o  the ehild's page 

set the page height of the node to match the child 
else 

close off the page of the tenaining child 
create a new page for  the node 
set the page height of the node to  that of the child plus one 

Figure 4.3: ltee Pattitioning Rules 

Theorem 4.1 A worst cose optimal eonuez patitioning of o binury t n e  c m  be 

computed in linear time, inwpectiue of the page size. 

Proof: Using induction on the tree height, we show that the d e  in Figure 4.3 
produces a worst case optimal partitioning of the tree such that no o tha  optimal 
partitioning has a smder root page and moreover that this holds for each 

sab-tree. The basis case, k = 1, consists of a tree with a single node and so is 



trivial. Assume the statement for l..k - 1 and then consider the root of a tree of 

height &. There are several possible cases: 

1. The mot has only one child. ln which case either the root fits on the 
topmost page of the ehild or it does not. 

Root fits (the local page size of the &Id is las than p): Place the root 
in the topmost page. Any partitioning of smder page height or top 
most page m u t  contain a partitionhg for the ehild of larga page 
height that violates the induction hypothesis for k - 1. 

0 Root does not fit (the local page size of the child 5 p): Create a new 

page for the root. Clearly thae cannot be a partitioning with fewer 
than one vertex in the topmost page so any violation must be on the 
page height constraint. The existence of partitioning of lesser page 
height would imply a partitioning at height k - 1 with room for the 
new mot but the partitionhg of the height k - 1 subtree was 
completely fidl and also had s m h t  topmost page amongst all optimal 
partitioning so this situation cannot occnr. 

2. Next consider the case whae the root has hro children that diffkr in page 
height. By the d e s  above, the ehild of les= page height is dosed off. The 
root is placed in the topmost page of the o tha  child if at  all possible, and 
on a new page if not. There an tao cases that are argued exactly as case 1 
above. Case 1 is actually a specialization of case 2 so this is not surprising. 

3. F W y  assume the root ha9 h o  children each of equal page height. Under 
the d e s  above the new partitioning is formed by magiag the topmoêt 
pages of the two chüdren and adding the mot if the combined page is not 
too large. If the combined page is too large, the topmost pages of both 
children are dosed and a new page is started for the mot. 
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Root fits (sum of children's local page sizes is less than p): the page 
height of the new psrtitioning is the same as that of the chilken so the 
existence of a partitionhg of lesser page height woald vioiate the 
induction hypothesis for k - 1. If thete is a partitionhg of the same 
page height but smaüer topmost page then it must contain a height 
k - 1 partitioning for one of the two children that vidates the 
induction hypothesis. 

a Root does not fit ( m m  of children's local page sizes is at least p): Again 
the topmost page hm size one so no other partitioning of the same 
page height c m  have a smésiier topmost page. If t h a e  is a partitioning 
of smder  page height then as before, it m u t  contain a partitioning for 
one of the h o  ehildren that violates the induction hypothesis. 

The "moreovern part holds because ne never go back and indidate the 
optimality of the partitioning of sub-kees. 

The d e  in Figure 4.3 performs a constant amount of aork at each node and so 
can be applied in linear tirne. Qm 
Based on Theorem 4.1 we will sefer to a partitioning resdting from the d e s  in 
Figure 4.3 as the "optimal bottom up partitioning" of a tne. The optimal bottom 
up pastitioning is optimal in the sense that it minimir!= the namber of pages 
accessed in the worst case mot-leaf traversai. However, it can produce a large 
nnmber of very s m d  pages. This problem results &om the automatic closing off 
of a page if its sibiing hae a greater page height. Because we do not worry about 
aligning pages on block boandaries in the static text case, these s m d  pages do not 
cause serious problems. Howeva, it is still worthwhile rnnning a post-processing 
pass that merges s m d  pages into their parent whenever possible because each 
page ha9 some smail amount of storage overhead. The resdta reported later in 
this chapter indude the use of mch a pass. We wil l  have to return to this problem 
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in the next chapter rhere s m d  pages can cause storage management problems. 

In ordei to judge the overall performance of data stnictures using the optimal 
bottom up partitioning, we want to botind the psge height in tamil of the nnmber 
of nodes and the tree height, H. Betore proving the bound, two simplet resdts 
are needed. 

Lemma 4.1 In an  optimal bottom up partitioning, each sub-tne in a tree encoded 
in o page of page height k > 1 contuiw at least one node huuing c h ü d m  page 
height 6 - 1. 

Proof: If all its children have page height k - 2 or lowa, split off the snb-tree 
into its own page and obtaui a partitioning with a s m a k  mot node. The 
difference in page heights d o w s  us to make this change without increasing the 
page height of the root. Qm 
Lemma 4.1 allows the simple observation that, under an optimal bottom np 
partitioning, all nodes in a page have the same page height. 

Lemma 4.2 Wnüc on a mot-leafpath of pages in an optimal bottom u p  
partitioning, the leuvea within a page height k page where k > 1 eithet have one 
child page *th page height k - 1 containing p nodes or two chdd pages with page 
height k - 1 containing a total of ut le& p nodes. 

Pro ofi Each le& node is a sub-tree so by Lemma 4.1, it contains at least one 
page height k - 1 child. If neither of the conditions are met, then the parent 
wodd have been moved in with either or both of the children and a partitioning 
with a smder mot node obtained for that snb-tree. Q&v 
Theorem 4.2 Let O 5 t < 1 be an arbitrary constant. The page height of the 
worst case optimal partitioning of a tree is bounded aboue by 
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where H i.s the height of the tne  and n is the mmber of nodea in Me t n e .  

Proof: Our proof is based on the optimal bottom up partitioning. Given such a 
partitioning, we constnict a sequence of pages on a deepest path, in the page 
sense, mch that at each stage we either dinde the number of nodes in the cullent 
snb-tree by rpl-'1 ot teduce the height (in the node sense) of the snb-tree by rptl.  
At each point in the construction we conaider either a single page or a pair of 
sibhg pages. Start the consmiction at the mot page and select any node in the 
page that has chü&en at page height k - 1 and consider its page height k - 1 
chiidren. By Lemma 4.2, ne know that thae  are at least p nodes in these child 
pages. Because there are p nodes, one of the following two conditions must be met: 

1. there are at  least rpl-'l children pointing to child pages with page height 
k - 2, in which case we select the d3d whose page height k - 2 children 
have the smallest portion of the entire sub-tree, or 

2. there is at  least one node pointing to pages at  page height k - 2 such that 
the length of the path fkom the root of the page to the node ha9 length at 
Ieast [pt l .  Select that node's page height E - 2 children for the next step. 

If neither of these conditions are met, then we codd not be dealing with p nodes. 
Case one cari only occnt [log nl times and case two can only occar [&l 
times. Add one fot the toot page, remove the inna ceilings, and simpiify the log 
to obtain an apper bound on the length of the path constructed. Becanse this 
path is a deepest path in the page sense, the bound &O applies to the page 
height of the tree. QEn 
Tao cotollaries can be obtained by selecting specific values of t. Choosing t = i, 
we obtain a bound of the form 1 + + [210g, nl ahich is interesting for its 
sirnplicity. Choosing t = 1 - e, the bound takes the Corn 


