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~“The construction is completed by means of one large “‘garbage collec-
tion" component G, involving internal elements g,[k]€X and gylk]€Y,
1<k <m(n-15320d external elements of the form (] and & (/] from W.
It consists of the fonwaving set of triples:

G = (g 1o lKIRGE U,y [k, g AD:
1<k< m(n-l)?!‘\'.’__ﬁ‘n.l <j<m)

Thus each pair g,[k], g;[k] must be matched wiiwa unique (/] or /]
that does not occur in any triples of M'—G. There wa= exactly m(a—1)
such “‘uncovercd" external elements, and the structure ol T insures that
they can always be covered by choosing M'NG appropriately.  Thus G
merely guarantees that, whenever a subset of M — G satisfies all the wan-

straints imposed by the truth-setting and fan-out components, then that

subset can be extended to a matching for M.
To summarize, we set

We (ylaljl1<isn1</<m)
X =4 US| V) G|

where
A= lagUl1<ign 1< <m)

Sl - 18|U]: l</<m]
G, = (g, Ul 1< y<m(n=1)}

Y‘BUS;UG;

where
B=bl:1€i<n 1< i<m)

Sy = (sl 1€y m)
G, = &) 1< <m(n~1))

and
u= 4T
(=l

Notice that every trizi¢ in M is an element of WX X X Y as required.
Furthermore, since #f contains only

2mn + 3m + 2m*n(n—-1)

triples and since its definition in terms of the given 3SAT instance is quite
direct, it is easy to see that M can be constructed in polynomial time.

v

Oc,]uc
J=1

3.1 SIX BASIC NP-COMPLETE PROBLEMS 53

From the comments made during the description of M, it follows
immediately that M cannot contain a matching unless C is satisfiable. We
now must show that the existence of a satisfying truth assignment for C
implies that M contains a matching.

Let r; U—|{T,F} be any satisfying truth assignment for C. We con-
struct a matching M QM as foliows: For . .h clause ¢€C, let
z, € {u,,#:1<i<n) N ¢, be a literal that is set'true by ¢ (one must exist
since ¢ satisfies ¢;). We then set

M = l ur U T/]'/io {(z ), s U).s; D} |V G
J

=T tlu)=F j=1

U

where G' is an appropriately .nosen subcollection of G that includes ali the
2,[k],g2[k], and remaining «;[/] and @ (/). 1t is easy to verify that such a
G' can always be chosta and that the resuiting set M' is a matching. ®

In proving NP completeness results, the following slightly simpler and

rn-..* general vousion of 3DM can often be used in its place:

EXACT CO+FR BY 3-SETS (X3C)

INSTANCE: A hulis set X with |X| =3¢ and a coliection C of 3-element
suosets of X.

QUESTION: Does C contan.2n exact cover for X, that is, a subcollection

C’ G C such that every element o1 occurs in exactly one member of C'?

Note that every instance of 3DM can be viewed as an instance of X3C, sim-
ply by regarding it as an unordered subset of WURXL1Y, and the matchings
for that 3DM instance will be in one-to-one corresponaence with the exact
covers for the X3C instance. Thus 3DM is just a restricted veusion of X3C,
and the NP-completeness of X3C follows by a trivial transformancn from
3IDM. "

3.1.3 VERTEX COVER and CLIQUE

Despite the fact that VERTEX COVER and CLIQUE are independently
useful for proving NP-completeness results, they are really just different
ways of looking at the same problem. To see this, it iS convenient (0 con-
sider them in conjunction with a third problem, cailed INDEPENDENT
SET.

An independen: set in a graph G=(V,E) is a subset V'C V such that,
for all w,v€ V', the edge lu,v} is not in £. The INDEPENDENT SET
problem asks, for a given graph G =(V¥,E) and a positive integer J<| V|,
whether G contains an independent set ¥’ having | V'| 2 J. The foilowing
rejationships between independent sets, cliques, and vertex covers are easy
o verify.
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Lemma 3.1 For any graph G=(V. E) and subset V'C ¥V, the following
statements are equivalent:

(a) V'isa vertex cover for G.

(b) V—V'is an independent set for G.

() V—=V'is a clique in the complement G¢ of G, where G =(V E*¢)
with E€ = {u,v): u,veV and {u,v}£E).

Thus we see that, in a rather strong sense, these three problems might
be regarded simply as “‘different versions' of one another. Furthermore,
the relationships displayed in the lemma make it a trivial matter to
transform any one of the problems to either of the others,

For example, to transform VERTEX COVER to CLIQUE, let
G =(V,E) and K <| V| constitute any instance of VC. The corresponding
insu'mole of CLIQUE is provided simply by the graph G°¢ and the integer
J=|V|-K.

This implies that the NP-compieteness of all three problems will fallow
as an immediate consequence of proving that any one of them is NP-
complete. We choose to prove this for VERTEX COVER.

Theorem 3.3 VERTEX COVER is NP-complete.

Prooft 1t is easy 10 see that VC € NP since a nondeterministic algorithm
need only guess a subset of vertices and check in polynomial time whether
that subset contains at least one endpoint of every edge and has the ap-
propriate size.

We transform 3SAT to VERTEX COVER. Let U={uyuy,....u,)
and C={cy,c3....,c,) be any instance of 3SAT. We must construct a
graph G =(V,E) and a positive integer K < | V| such that G has a vertex
cover of size K or less if and only if’ C is satisfiable.

As in the previous proof, the construction will be made up of several
components. In this case, however, we will have only truth-setting com-
ponents and satisfaction testing components, augmented by some additional
edges for communicating between the various components.

For each wvariable wu €U, there is a truth-setting component
T,=(V,,E), with ¥, ={u, i) and E, ={(u,,i]}), that is, two vertices joined
by a single edge. Note that any vertex cover wiil have 10 contain at least
one of 4, and &, in order 1o cover the single edge in E,.

For each clause ¢€C, there is a satisfaction testing component
§;=(V},E)), consisting of three vertices and three edges joining them to
form a triangle:

Vi = layl/),a31/),a50/1}
Ej = {(a ), U1}, da, ), a5}, (ay L], a3 100}
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Note that any vertex cover will have to contain at least two vertices from v
in order to cover the edges in £,

The only part of the construction that depends on which literals occur
in which clauses is the collection of communication edges. These are best
viewed from the vantage point of the satisfaction testing components. For
each clause ¢;€C, let the three literals in ¢, be denoted by x;, y;, and z;.
Then the communication edges emanating from S; are given by:

Ef = {{01'Jl.X,}.[d;U]Jj).{a)Ul-ZJ}]

The construction of our instance of VC is completed by setting
K= n+2mand G=(V,E), where

v=()v)u v
i=] J=1

and

E=(UE)U(JE) u((JE)

i=l J~1 J=1

Figure 3.3 shows an example of the graph obtained when U = (u),uy,u3,u4)
and C= [{Uhij.l_l"‘{'_lhuz 154] ’

uy u, uy Uy Uy uy Uy Uy

sy

a,!l] 03“] 01[21 03[21

Figure 3.3 VERTEX COVER instance resulting from 3SAT instance in which
U = (ug,uy iy tia)s € = {{uy Tis. i), (. ttg i)}, Here K =n+2m=8.

It is easy to see how the construction can be accomplished in polyno-
mial time. All that remains to be shown is that C is satisfiable if and only if
G has a vertex cover of size K or less.

First, suppose that V'CV is a vertex cover for G with |V'|<K. By
our previous remarks, V' must contain at least one vertex from each 7, and
at jeast two vertices from each §,. Since this gives a total of at least
n+2m=K vertices, V' must in fact contain exactly one vertex from each
T, and exacty two vertices from each S,. Thus we can use the way in
which V' intersects each truth-setting component to obtain a truth assign-
ment : U—{T.F}. We merely set t(u)=T if w€V' and (i) =F if
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4, € V', To see that this truth assignment satisfies each of the clauses ¢, €C,
consider the three edges in E;'. Only two of those edges can be covered by
vertices from ¥, N V', so one of them must be covered by a vertex from
some V, that belongs o V. But that implies that the corresponding literal,
either u, or &, from clause ¢, is true under the truth assignment ¢, and
hence clause ¢; is satisfied by r. Because this holds for every ¢, €C, it fol-
lows that ¢ is a satisfying truth assignment for C.

Conversely, suppose that r: U— (T, F} is a satisfying truth assignment
for C. The corresponding vertex cover V' includes one vertex from each
T, and two vertices from each S,. The vertex from T, in V' is u; if
t(u) =T and is , if t(u;) = F. This ensures that at least one of the three
edges from each set E" is covered, because ! satisfies each clause ¢;.
Therefore we need only include in V' the endpoints from S; of the Olher
two edges in Ej' (which may or may not also be covered by vertices from
truth-setting componems). and this gives the desired vertex cover. ®

3..4 HAMILTONIAN CIRCUIT

In Chapwes 2, we saw that the HAMILTONIAN CIRCUIT problem can
be transformed (0 «:= TRAVELING SALESMAN decision problem, so the
NP-completeness of the w!ter problem will follow immediately once HC bus
been proved NP-complete. Av:he end of the proof we note several v2.ants
of HC whose NP-completeness also “«llows more or less directly f.om that
of HC.

For convenience in what follows, whenunr <Y, Waie... V> i8S A
Hamiltonian circuit, we shall refer 1o {v;, 4], lSr\- md {v,.v,) as the
edges “‘in’" that circuit. Our transformation is = wination of two
(ram{ormanons from [Karp, 1972], also describer’ in [Liu and \.:‘dmacher,
1978 :

Theorem 3.4 HAMILTONIAN CIRCU'S is NP-complete
Proof: 1t is easy to see that HC € N7 because a nondeterministic algorithm
need only guess an ordering of .ae vertices and check in polynomial time
that ali the required edges be'ung 1o the edge set of the given graph.

We transform VERTZX COVER to HC. Let an arbitrary instance of
VC be given by the grigh G = (V,E) and the positive integer K < |V|. We
must construct a #2aph G'=(¥",E’) such that G’ has a Hamiltonian circuit
il and only if G aas a vertex cover of size K or less.

Once more our consStruction can be viewed in terms of components
connecle, together by communication links. First, the graph G’ has K
‘‘selewor’” vertices ay,a;, . . ., ax, which will be used to select K vertices
from the vertex set V for G. Second, for each edge in £, G’ contains a
“cover-testing’’ component that will be used to ensure that at least one
endpoint of that edge is among the selected K vertices. The component for
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e={u,v] € E is illustrated in Figure 3.4. It has 12 vertices,
v = {(u.e,n,(v,e.):1<i<6)
and 14 edges,
E, = {{(u.e,),(u,e,i+D)], ((v,e,i), (e, i+1)): 1<i<5)
U {{(u,e,3),(v,e,D}, {(v.213), (u,e,1)}}
U ({(u,e,6),(v,e,4))51(v,e,6),(u,e,4)}]

(u,e,1) N 1 (ve,1)
(u.e,2) (v,e,2)
(u,e,3) (v,e,3)
(u,e,4) (v,ed)
(w,e.5) 1 (v.e,5)
(u.e,65_.. (vie.6)

-

Figure 3.4 Cover-testing component for edge ¢ = {u,v) used in transforming
VERTEX COVER to HAMILTONIAN CIRCUIT.

In the completed construction, the only vertices from this cover-testing
component that will be involved in any additional edges are
(u,e,1), (v,e,1), (u,e,6), and (v,e,6). This will imply, as the reader may
readily verify, that any Hamiitonian circuit of G' will have 10 meet the
edges in E, in exactly one of the three configurations shown in Figure 3.5.
Thus, for example, if the circuit ‘‘enters’’ this component at (u,e,1), it will
have to “‘exit” at (u,e,6) and visit either all 12 vertices in the component

. Or just the 6 vertices (u, e, i), 1<i<6.

. Additional edges in our overall construction wil| serve 10 join pairs of
covey ‘esting components Or t0 join a cover-testing component 10 a selector
vertex. Fuacach vertex v € ¥, let the edges incident on v be ordered (arbi-
trarily) as €z}, Swiats -+ - » € laeg(v1» Where deg(v) denotes the degree of v in
G, that is, the numbe. of edges incident on v. All the cover-testing com-
ponents corresponding 10 \oese edges (having v as endpoint) are joined
together by the foliowing connectuoe edges:

E = {[(v.e,0,6),(v.e, e D) 160 < deg(v))

As shown in Figure 3.6, this creates a single path " (" 1hat includes exactly
those vertices (x,y,z) having x = v. %



