
25 All-Pairs Shortest Paths

In this chapter, we consider the problem of finding shortest paths between all pairs
of vertices in a graph. This problem might arise in making a table of distances be-
tween all pairs of cities for a road atlas. As in Chapter 24, we are given a weighted,
directed graph G D .V; E/ with a weight function w W E ! R that maps edges
to real-valued weights. We wish to find, for every pair of vertices u; ! 2 V , a
shortest (least-weight) path from u to !, where the weight of a path is the sum of
the weights of its constituent edges. We typically want the output in tabular form:
the entry in u’s row and !’s column should be the weight of a shortest path from u
to !.
We can solve an all-pairs shortest-paths problem by running a single-source

shortest-paths algorithm jV j times, once for each vertex as the source. If all
edge weights are nonnegative, we can use Dijkstra’s algorithm. If we use
the linear-array implementation of the min-priority queue, the running time is
O.V 3 C VE/ D O.V 3/. The binary min-heap implementation of the min-priority
queue yields a running time of O.VE lgV /, which is an improvement if the graph
is sparse. Alternatively, we can implement the min-priority queue with a Fibonacci
heap, yielding a running time of O.V 2 lgV C VE/.
If the graph has negative-weight edges, we cannot use Dijkstra’s algorithm. In-

stead, we must run the slower Bellman-Ford algorithm once from each vertex. The
resulting running time is O.V 2E/, which on a dense graph is O.V 4/. In this chap-
ter we shall see how to do better. We also investigate the relation of the all-pairs
shortest-paths problem to matrix multiplication and study its algebraic structure.
Unlike the single-source algorithms, which assume an adjacency-list represen-

tation of the graph, most of the algorithms in this chapter use an adjacency-
matrix representation. (Johnson’s algorithm for sparse graphs, in Section 25.3,
uses adjacency lists.) For convenience, we assume that the vertices are numbered
1; 2; : : : ; jV j, so that the input is an n ! n matrix W representing the edge weights
of an n-vertex directed graph G D .V; E/. That is, W D .wij /, where

Chapter 25 All-Pairs Shortest Paths 685

wij D

!
0 if i D j ;

the weight of directed edge .i; j / if i ¤ j and .i; j / 2 E ;

1 if i ¤ j and .i; j / 62 E :

(25.1)

We allow negative-weight edges, but we assume for the time being that the input
graph contains no negative-weight cycles.
The tabular output of the all-pairs shortest-paths algorithms presented in this

chapter is an n ! n matrix D D .dij /, where entry dij contains the weight of a
shortest path from vertex i to vertex j . That is, if we let ı.i; j / denote the shortest-
path weight from vertex i to vertex j (as in Chapter 24), then dij D ı.i; j / at
termination.
To solve the all-pairs shortest-paths problem on an input adjacency matrix, we

need to compute not only the shortest-path weights but also a predecessor matrix
… D ."ij /, where "ij is NIL if either i D j or there is no path from i to j ,
and otherwise "ij is the predecessor of j on some shortest path from i . Just as
the predecessor subgraph G! from Chapter 24 is a shortest-paths tree for a given
source vertex, the subgraph induced by the i th row of the … matrix should be a
shortest-paths tree with root i . For each vertex i 2 V , we define the predecessor
subgraph of G for i as G!;i D .V!;i ; E!;i/ , where
V!;i D fj 2 V W "ij ¤ NILg [fig

and
E!;i D f."ij ; j / W j 2 V!;i " figg :

If G!;i is a shortest-paths tree, then the following procedure, which is a modified
version of the PRINT-PATH procedure from Chapter 22, prints a shortest path from
vertex i to vertex j .

PRINT-ALL-PAIRS-SHORTEST-PATH.…; i; j /

1 if i == j
2 print i
3 elseif "ij == NIL
4 print “no path from” i “to” j “exists”
5 else PRINT-ALL-PAIRS-SHORTEST-PATH.…; i;"ij /
6 print j

In order to highlight the essential features of the all-pairs algorithms in this chapter,
we won’t cover the creation and properties of predecessor matrices as extensively
as we dealt with predecessor subgraphs in Chapter 24. Some of the exercises cover
the basics.

686 Chapter 25 All-Pairs Shortest Paths

Chapter outline
Section 25.1 presents a dynamic-programming algorithm based on matrix multi-
plication to solve the all-pairs shortest-paths problem. Using the technique of “re-
peated squaring,” we can achieve a running time of‚.V 3 lgV /. Section 25.2 gives
another dynamic-programming algorithm, the Floyd-Warshall algorithm, which
runs in time ‚.V 3/. Section 25.2 also covers the problem of finding the tran-
sitive closure of a directed graph, which is related to the all-pairs shortest-paths
problem. Finally, Section 25.3 presents Johnson’s algorithm, which solves the all-
pairs shortest-paths problem in O.V 2 lgV C VE/ time and is a good choice for
large, sparse graphs.
Before proceeding, we need to establish some conventions for adjacency-matrix

representations. First, we shall generally assume that the input graph G D .V; E/
has n vertices, so that n D jV j. Second, we shall use the convention of denoting
matrices by uppercase letters, such as W , L, or D, and their individual elements
by subscripted lowercase letters, such as wij , lij , or dij . Some matrices will have
parenthesized superscripts, as in L.m/ D

!
l .m/
ij

" or D.m/ D
!
d .m/

ij

", to indicate
iterates. Finally, for a given n ! n matrix A, we shall assume that the value of n is
stored in the attribute A:rows.

25.1 Shortest paths and matrix multiplication

This section presents a dynamic-programming algorithm for the all-pairs shortest-
paths problem on a directed graph G D .V; E/. Each major loop of the dynamic
program will invoke an operation that is very similar to matrix multiplication, so
that the algorithm will look like repeated matrix multiplication. We shall start by
developing a ‚.V 4/-time algorithm for the all-pairs shortest-paths problem and
then improve its running time to ‚.V 3 lgV /.
Before proceeding, let us briefly recap the steps given in Chapter 15 for devel-

oping a dynamic-programming algorithm.
1. Characterize the structure of an optimal solution.
2. Recursively define the value of an optimal solution.
3. Compute the value of an optimal solution in a bottom-up fashion.
We reserve the fourth step—constructing an optimal solution from computed in-
formation—for the exercises.

25.1 Shortest paths and matrix multiplication 687

The structure of a shortest path
We start by characterizing the structure of an optimal solution. For the all-pairs
shortest-paths problem on a graph G D .V; E/, we have proven (Lemma 24.1)
that all subpaths of a shortest path are shortest paths. Suppose that we represent
the graph by an adjacency matrix W D .wij /. Consider a shortest path p from
vertex i to vertex j , and suppose that p contains at most m edges. Assuming that
there are no negative-weight cycles, m is finite. If i D j , then p has weight 0
and no edges. If vertices i and j are distinct, then we decompose path p into
i

p0

! k ! j , where path p0 now contains at most m " 1 edges. By Lemma 24.1,
p0 is a shortest path from i to k, and so ı.i; j / D ı.i; k/ C wkj .

A recursive solution to the all-pairs shortest-paths problem
Now, let l .m/

ij be the minimum weight of any path from vertex i to vertex j that
contains at most m edges. When m D 0, there is a shortest path from i to j with
no edges if and only if i D j . Thus,

l .0/
ij D

(
0 if i D j ;

1 if i ¤ j :

For m # 1, we compute l .m/
ij as the minimum of l .m!1/

ij (the weight of a shortest
path from i to j consisting of at mostm"1 edges) and the minimum weight of any
path from i to j consisting of at most m edges, obtained by looking at all possible
predecessors k of j . Thus, we recursively define
l .m/
ij D min

#
l .m!1/
ij ; min

1"k"n

˚
l .m!1/
ik C wkj

$%

D min
1"k"n

˚
l .m!1/
ik C wkj

$
: (25.2)

The latter equality follows since wjj D 0 for all j .
What are the actual shortest-path weights ı.i; j /? If the graph contains

no negative-weight cycles, then for every pair of vertices i and j for which
ı.i; j / < 1, there is a shortest path from i to j that is simple and thus contains at
most n " 1 edges. A path from vertex i to vertex j with more than n " 1 edges
cannot have lower weight than a shortest path from i to j . The actual shortest-path
weights are therefore given by
ı.i; j / D l .n!1/

ij D l .n/
ij D l .nC1/

ij D $ $ $: (25.3)

688 Chapter 25 All-Pairs Shortest Paths

Computing the shortest-path weights bottom up
Taking as our input the matrix W D .wij /, we now compute a series of matrices
L.1/; L.2/; : : : ; L.n!1/, where for m D 1; 2; : : : ; n " 1, we have L.m/ D

!
l .m/
ij

".
The final matrix L.n!1/ contains the actual shortest-path weights. Observe that
l .1/
ij D wij for all vertices i; j 2 V , and so L.1/ D W .
The heart of the algorithm is the following procedure, which, given matrices

L.m!1/ and W , returns the matrix L.m/. That is, it extends the shortest paths com-
puted so far by one more edge.

EXTEND-SHORTEST-PATHS.L; W /

1 n D L:rows
2 let L0 D

!
l 0
ij

" be a new n ! n matrix
3 for i D 1 to n
4 for j D 1 to n
5 l 0

ij D 1
6 for k D 1 to n
7 l 0

ij D min.l 0
ij ; lik C wkj /

8 return L0

The procedure computes a matrix L0 D .l 0
ij /, which it returns at the end. It does so

by computing equation (25.2) for all i and j , using L for L.m!1/ and L0 for L.m/.
(It is written without the superscripts to make its input and output matrices inde-
pendent of m.) Its running time is ‚.n3/ due to the three nested for loops.
Now we can see the relation to matrix multiplication. Suppose we wish to com-

pute the matrix product C D A $ B of two n ! n matrices A and B . Then, for
i; j D 1; 2; : : : ; n, we compute

cij D
nX

kD1

aik $ bkj : (25.4)

Observe that if we make the substitutions
l .m!1/ ! a ;

w ! b ;

l .m/ ! c ;

min ! C ;

C ! $

in equation (25.2), we obtain equation (25.4). Thus, if we make these changes to
EXTEND-SHORTEST-PATHS and also replace 1 (the identity for min) by 0 (the

25.1 Shortest paths and matrix multiplication 689

identity for C), we obtain the same ‚.n3/-time procedure for multiplying square
matrices that we saw in Section 4.2:
SQUARE-MATRIX-MULTIPLY.A; B/

1 n D A:rows
2 let C be a new n ! n matrix
3 for i D 1 to n
4 for j D 1 to n
5 cij D 0
6 for k D 1 to n
7 cij D cij C aik $ bkj

8 return C

Returning to the all-pairs shortest-paths problem, we compute the shortest-path
weights by extending shortest paths edge by edge. Letting A $ B denote the ma-
trix “product” returned by EXTEND-SHORTEST-PATHS.A; B/, we compute the se-
quence of n " 1 matrices

L.1/ D L.0/ $ W D W ;
L.2/ D L.1/ $ W D W 2 ;
L.3/ D L.2/ $ W D W 3 ;

:::
L.n!1/ D L.n!2/ $ W D W n!1 :

As we argued above, the matrixL.n!1/ D W n!1 contains the shortest-path weights.
The following procedure computes this sequence in ‚.n4/ time.
SLOW-ALL-PAIRS-SHORTEST-PATHS.W /

1 n D W:rows
2 L.1/ D W
3 for m D 2 to n " 1
4 let L.m/ be a new n ! n matrix
5 L.m/ D EXTEND-SHORTEST-PATHS.L.m!1/; W /
6 return L.n!1/

Figure 25.1 shows a graph and the matrices L.m/ computed by the procedure
SLOW-ALL-PAIRS-SHORTEST-PATHS.

Improving the running time
Our goal, however, is not to compute all the L.m/ matrices: we are interested
only in matrix L.n!1/. Recall that in the absence of negative-weight cycles, equa-

690 Chapter 25 All-Pairs Shortest Paths

2

1 3

5 4

3 4

82

6

7 1–4 –5

L.1/ D

"
0 3 8 1 "4

1 0 1 1 7
1 4 0 1 1
2 1 "5 0 1

1 1 1 6 0

˘
L.2/ D

"
0 3 8 2 "4
3 0 "4 1 7

1 4 0 5 11
2 "1 "5 0 "2
8 1 1 6 0

˘

L.3/ D

"
0 3 "3 2 "4
3 0 "4 1 "1
7 4 0 5 11
2 "1 "5 0 "2
8 5 1 6 0

˘
L.4/ D

"
0 1 "3 2 "4
3 0 "4 1 "1
7 4 0 5 3
2 "1 "5 0 "2
8 5 1 6 0

˘
Figure 25.1 A directed graph and the sequence of matrices L.m/ computed by SLOW-ALL-PAIRS-
SHORTEST-PATHS. You might want to verify that L.5/, defined as L.4/ $ W , equals L.4/, and thus
L.m/ D L.4/ for all m # 4.

tion (25.3) implies L.m/ D L.n!1/ for all integers m # n " 1. Just as tradi-
tional matrix multiplication is associative, so is matrix multiplication defined by
the EXTEND-SHORTEST-PATHS procedure (see Exercise 25.1-4). Therefore, we
can compute L.n!1/ with only dlg.n " 1/e matrix products by computing the se-
quence

L.1/ D W ;
L.2/ D W 2 D W $ W ;
L.4/ D W 4 D W 2 $ W 2

L.8/ D W 8 D W 4 $ W 4 ;
:::

L.2dlg.n!1/e/ D W 2dlg.n!1/e D W 2dlg.n!1/e!1 $ W 2dlg.n!1/e!1
:

Since 2dlg.n!1/e # n " 1, the final product L.2dlg.n!1/e/ is equal to L.n!1/.
The following procedure computes the above sequence of matrices by using this

technique of repeated squaring.

25.1 Shortest paths and matrix multiplication 691

1 2

3

5–12

1 2 3

4 5 6

–4 –8107

Figure 25.2 A weighted, directed graph for use in Exercises 25.1-1, 25.2-1, and 25.3-1.

FASTER-ALL-PAIRS-SHORTEST-PATHS.W /

1 n D W:rows
2 L.1/ D W
3 m D 1
4 while m < n " 1
5 let L.2m/ be a new n ! n matrix
6 L.2m/ D EXTEND-SHORTEST-PATHS.L.m/; L.m//
7 m D 2m
8 return L.m/

In each iteration of the while loop of lines 4–7, we compute L.2m/ D
!
L.m/

"2,
starting with m D 1. At the end of each iteration, we double the value
of m. The final iteration computes L.n!1/ by actually computing L.2m/ for some
n " 1 % 2m < 2n " 2. By equation (25.3), L.2m/ D L.n!1/. The next time the test
in line 4 is performed, m has been doubled, so now m # n " 1, the test fails, and
the procedure returns the last matrix it computed.
Because each of the dlg.n " 1/e matrix products takes ‚.n3/ time, FASTER-

ALL-PAIRS-SHORTEST-PATHS runs in ‚.n3 lgn/ time. Observe that the code
is tight, containing no elaborate data structures, and the constant hidden in the
‚-notation is therefore small.

Exercises
25.1-1
Run SLOW-ALL-PAIRS-SHORTEST-PATHS on the weighted, directed graph of
Figure 25.2, showing the matrices that result for each iteration of the loop. Then
do the same for FASTER-ALL-PAIRS-SHORTEST-PATHS.
25.1-2
Why do we require that wi i D 0 for all 1 % i % n?

692 Chapter 25 All-Pairs Shortest Paths

25.1-3
What does the matrix

L.0/ D

!
0 1 1 $ $ $ 1
1 0 1 $ $ $ 1
1 1 0 $ $ $ 1
:::

:::
:::

: : :
:::

1 1 1 $ $ $ 0

"
used in the shortest-paths algorithms correspond to in regular matrix multiplica-
tion?
25.1-4
Show that matrix multiplication defined by EXTEND-SHORTEST-PATHS is asso-
ciative.
25.1-5
Show how to express the single-source shortest-paths problem as a product of ma-
trices and a vector. Describe how evaluating this product corresponds to a Bellman-
Ford-like algorithm (see Section 24.1).
25.1-6
Suppose we also wish to compute the vertices on shortest paths in the algorithms of
this section. Show how to compute the predecessor matrix … from the completed
matrix L of shortest-path weights in O.n3/ time.
25.1-7
We can also compute the vertices on shortest paths as we compute the shortest-
path weights. Define " .m/

ij as the predecessor of vertex j on any minimum-weight
path from i to j that contains at most m edges. Modify the EXTEND-SHORTEST-
PATHS and SLOW-ALL-PAIRS-SHORTEST-PATHS procedures to compute the ma-
trices ….1/; ….2/; : : : ; ….n!1/ as the matrices L.1/; L.2/; : : : ; L.n!1/ are computed.
25.1-8
The FASTER-ALL-PAIRS-SHORTEST-PATHS procedure, as written, requires us to
store dlg.n " 1/e matrices, each with n2 elements, for a total space requirement of
‚.n2 lg n/. Modify the procedure to require only ‚.n2/ space by using only two
n ! n matrices.
25.1-9
Modify FASTER-ALL-PAIRS-SHORTEST-PATHS so that it can determine whether
the graph contains a negative-weight cycle.

25.2 The Floyd-Warshall algorithm 693

25.1-10
Give an efficient algorithm to find the length (number of edges) of a minimum-
length negative-weight cycle in a graph.

25.2 The Floyd-Warshall algorithm

In this section, we shall use a different dynamic-programming formulation to solve
the all-pairs shortest-paths problem on a directed graph G D .V; E/. The result-
ing algorithm, known as the Floyd-Warshall algorithm, runs in ‚.V 3/ time. As
before, negative-weight edges may be present, but we assume that there are no
negative-weight cycles. As in Section 25.1, we follow the dynamic-programming
process to develop the algorithm. After studying the resulting algorithm, we
present a similar method for finding the transitive closure of a directed graph.

The structure of a shortest path
In the Floyd-Warshall algorithm, we characterize the structure of a shortest path
differently from how we characterized it in Section 25.1. The Floyd-Warshall algo-
rithm considers the intermediate vertices of a shortest path, where an intermediate
vertex of a simple path p D h!1; !2; : : : ; !li is any vertex of p other than !1 or !l ,
that is, any vertex in the set f!2; !3; : : : ; !l!1g.
The Floyd-Warshall algorithm relies on the following observation. Under our

assumption that the vertices of G are V D f1; 2; : : : ; ng, let us consider a subset
f1; 2; : : : ; kg of vertices for some k. For any pair of vertices i; j 2 V , consider all
paths from i to j whose intermediate vertices are all drawn from f1; 2; : : : ; kg, and
let p be a minimum-weight path from among them. (Path p is simple.) The Floyd-
Warshall algorithm exploits a relationship between path p and shortest paths from i
to j with all intermediate vertices in the set f1; 2; : : : ; k " 1g. The relationship
depends on whether or not k is an intermediate vertex of path p.
" If k is not an intermediate vertex of path p, then all intermediate vertices of
path p are in the set f1; 2; : : : ; k " 1g. Thus, a shortest path from vertex i
to vertex j with all intermediate vertices in the set f1; 2; : : : ; k " 1g is also a
shortest path from i to j with all intermediate vertices in the set f1; 2; : : : ; kg.

" If k is an intermediate vertex of path p, then we decompose p into i
p1
! k

p2
! j ,

as Figure 25.3 illustrates. By Lemma 24.1, p1 is a shortest path from i to k
with all intermediate vertices in the set f1; 2; : : : ; kg. In fact, we can make a
slightly stronger statement. Because vertex k is not an intermediate vertex of
path p1, all intermediate vertices of p1 are in the set f1; 2; : : : ; k " 1g. There-

694 Chapter 25 All-Pairs Shortest Paths

i

k

j
p1 p2

p: all intermediate vertices in f1; 2; : : : ; kg

all intermediate vertices in f1; 2; : : : ; k " 1gall intermediate vertices in f1; 2; : : : ; k " 1g

Figure 25.3 Path p is a shortest path from vertex i to vertex j , and k is the highest-numbered
intermediate vertex of p. Path p1, the portion of path p from vertex i to vertex k, has all intermediate
vertices in the set f1; 2; : : : ; k " 1g. The same holds for path p2 from vertex k to vertex j .

fore, p1 is a shortest path from i to k with all intermediate vertices in the set
f1; 2; : : : ; k " 1g. Similarly, p2 is a shortest path from vertex k to vertex j with
all intermediate vertices in the set f1; 2; : : : ; k " 1g.

A recursive solution to the all-pairs shortest-paths problem
Based on the above observations, we define a recursive formulation of shortest-
path estimates that differs from the one in Section 25.1. Let d .k/

ij be the weight
of a shortest path from vertex i to vertex j for which all intermediate vertices
are in the set f1; 2; : : : ; kg. When k D 0, a path from vertex i to vertex j with
no intermediate vertex numbered higher than 0 has no intermediate vertices at all.
Such a path has at most one edge, and hence d .0/

ij D wij . Following the above
discussion, we define d .k/

ij recursively by

d .k/
ij D

(
wij if k D 0 ;

min !
d .k!1/

ij ; d .k!1/
ik C d .k!1/

kj

" if k # 1 :
(25.5)

Because for any path, all intermediate vertices are in the set f1; 2; : : : ; ng, the ma-
trix D.n/ D

!
d .n/

ij

" gives the final answer: d .n/
ij D ı.i; j / for all i; j 2 V .

Computing the shortest-path weights bottom up
Based on recurrence (25.5), we can use the following bottom-up procedure to com-
pute the values d .k/

ij in order of increasing values of k. Its input is an n!nmatrixW

defined as in equation (25.1). The procedure returns the matrix D.n/ of shortest-
path weights.

25.2 The Floyd-Warshall algorithm 695

FLOYD-WARSHALL.W /

1 n D W:rows
2 D.0/ D W
3 for k D 1 to n

4 let D.k/ D
!
d .k/

ij

" be a new n ! n matrix
5 for i D 1 to n
6 for j D 1 to n

7 d .k/
ij D min !

d .k!1/
ij ; d .k!1/

ik C d .k!1/
kj

"

8 return D.n/

Figure 25.4 shows the matrices D.k/ computed by the Floyd-Warshall algorithm
for the graph in Figure 25.1.
The running time of the Floyd-Warshall algorithm is determined by the triply

nested for loops of lines 3–7. Because each execution of line 7 takes O.1/ time,
the algorithm runs in time ‚.n3/. As in the final algorithm in Section 25.1, the
code is tight, with no elaborate data structures, and so the constant hidden in the
‚-notation is small. Thus, the Floyd-Warshall algorithm is quite practical for even
moderate-sized input graphs.

Constructing a shortest path
There are a variety of different methods for constructing shortest paths in the Floyd-
Warshall algorithm. One way is to compute the matrix D of shortest-path weights
and then construct the predecessor matrix … from the D matrix. Exercise 25.1-6
asks you to implement this method so that it runs in O.n3/ time. Given the pre-
decessor matrix …, the PRINT-ALL-PAIRS-SHORTEST-PATH procedure will print
the vertices on a given shortest path.
Alternatively, we can compute the predecessor matrix … while the algorithm

computes the matrices D.k/. Specifically, we compute a sequence of matrices
….0/; ….1/; : : : ; ….n/, where … D ….n/ and we define " .k/

ij as the predecessor of
vertex j on a shortest path from vertex i with all intermediate vertices in the set
f1; 2; : : : ; kg.
We can give a recursive formulation of " .k/

ij . When k D 0, a shortest path from i
to j has no intermediate vertices at all. Thus,

" .0/
ij D

(
NIL if i D j or wij D 1 ;

i if i ¤ j and wij < 1 :
(25.6)

For k # 1, if we take the path i ! k ! j , where k ¤ j , then the predecessor
of j we choose is the same as the predecessor of j we chose on a shortest path
from k with all intermediate vertices in the set f1; 2; : : : ; k " 1g. Otherwise, we

696 Chapter 25 All-Pairs Shortest Paths

D.0/ D

"
0 3 8 1 "4

1 0 1 1 7
1 4 0 1 1
2 1 "5 0 1

1 1 1 6 0

˘
….0/ D

"
NIL 1 1 NIL 1
NIL NIL NIL 2 2
NIL 3 NIL NIL NIL
4 NIL 4 NIL NIL
NIL NIL NIL 5 NIL

˘

D.1/ D

"
0 3 8 1 "4

1 0 1 1 7
1 4 0 1 1
2 5 "5 0 "2

1 1 1 6 0

˘
….1/ D

"
NIL 1 1 NIL 1
NIL NIL NIL 2 2
NIL 3 NIL NIL NIL
4 1 4 NIL 1
NIL NIL NIL 5 NIL

˘

D.2/ D

"
0 3 8 4 "4

1 0 1 1 7
1 4 0 5 11
2 5 "5 0 "2

1 1 1 6 0

˘
….2/ D

"
NIL 1 1 2 1
NIL NIL NIL 2 2
NIL 3 NIL 2 2
4 1 4 NIL 1
NIL NIL NIL 5 NIL

˘

D.3/ D

"
0 3 8 4 "4

1 0 1 1 7
1 4 0 5 11
2 "1 "5 0 "2

1 1 1 6 0

˘
….3/ D

"
NIL 1 1 2 1
NIL NIL NIL 2 2
NIL 3 NIL 2 2
4 3 4 NIL 1
NIL NIL NIL 5 NIL

˘

D.4/ D

"
0 3 "1 4 "4
3 0 "4 1 "1
7 4 0 5 3
2 "1 "5 0 "2
8 5 1 6 0

˘
….4/ D

" NIL 1 4 2 1
4 NIL 4 2 1
4 3 NIL 2 1
4 3 4 NIL 1
4 3 4 5 NIL

˘

D.5/ D

"
0 1 "3 2 "4
3 0 "4 1 "1
7 4 0 5 3
2 "1 "5 0 "2
8 5 1 6 0

˘
….5/ D

" NIL 3 4 5 1
4 NIL 4 2 1
4 3 NIL 2 1
4 3 4 NIL 1
4 3 4 5 NIL

˘

Figure 25.4 The sequence of matrices D.k/ and ….k/ computed by the Floyd-Warshall algorithm
for the graph in Figure 25.1.

25.2 The Floyd-Warshall algorithm 697

choose the same predecessor of j that we chose on a shortest path from i with all
intermediate vertices in the set f1; 2; : : : ; k " 1g. Formally, for k # 1,

" .k/
ij D

(
" .k!1/

ij if d .k!1/
ij % d .k!1/

ik C d .k!1/
kj ;

" .k!1/
kj if d .k!1/

ij > d .k!1/
ik C d .k!1/

kj :
(25.7)

We leave the incorporation of the ….k/ matrix computations into the FLOYD-
WARSHALL procedure as Exercise 25.2-3. Figure 25.4 shows the sequence of….k/

matrices that the resulting algorithm computes for the graph of Figure 25.1. The
exercise also asks for the more difficult task of proving that the predecessor sub-
graph G!;i is a shortest-paths tree with root i . Exercise 25.2-7 asks for yet another
way to reconstruct shortest paths.

Transitive closure of a directed graph
Given a directed graph G D .V; E/ with vertex set V D f1; 2; : : : ; ng, we might
wish to determine whether G contains a path from i to j for all vertex pairs
i; j 2 V . We define the transitive closure of G as the graph G# D .V; E#/, where
E# D f.i; j / W there is a path from vertex i to vertex j in Gg :

One way to compute the transitive closure of a graph in ‚.n3/ time is to assign
a weight of 1 to each edge of E and run the Floyd-Warshall algorithm. If there is a
path from vertex i to vertex j , we get dij < n. Otherwise, we get dij D 1.
There is another, similar way to compute the transitive closure of G in ‚.n3/

time that can save time and space in practice. This method substitutes the logical
operations _ (logical OR) and ^ (logical AND) for the arithmetic operations min
and C in the Floyd-Warshall algorithm. For i; j; k D 1; 2; : : : ; n, we define t .k/

ij to
be 1 if there exists a path in graph G from vertex i to vertex j with all intermediate
vertices in the set f1; 2; : : : ; kg, and 0 otherwise. We construct the transitive closure
G# D .V; E#/ by putting edge .i; j / into E# if and only if t .n/

ij D 1. A recursive
definition of t .k/

ij , analogous to recurrence (25.5), is

t .0/
ij D

(
0 if i ¤ j and .i; j / 62 E ;

1 if i D j or .i; j / 2 E ;

and for k # 1,
t .k/
ij D t .k!1/

ij _
!
t .k!1/
ik ^ t .k!1/

kj

"
: (25.8)

As in the Floyd-Warshall algorithm, we compute the matrices T .k/ D
!
t .k/
ij

" in
order of increasing k.

698 Chapter 25 All-Pairs Shortest Paths

1 2

4 3

T .0/ D

#
1 0 0 0
0 1 1 1
0 1 1 0
1 0 1 1

$
T .1/ D

#
1 0 0 0
0 1 1 1
0 1 1 0
1 0 1 1

$
T .2/ D

#
1 0 0 0
0 1 1 1
0 1 1 1
1 0 1 1

$

T .3/ D

#
1 0 0 0
0 1 1 1
0 1 1 1
1 1 1 1

$
T .4/ D

#
1 0 0 0
1 1 1 1
1 1 1 1
1 1 1 1

$
Figure 25.5 A directed graph and the matrices T .k/ computed by the transitive-closure algorithm.

TRANSITIVE-CLOSURE.G/

1 n D jG:Vj
2 let T .0/ D

!
t .0/
ij

" be a new n ! n matrix
3 for i D 1 to n
4 for j D 1 to n
5 if i == j or .i; j / 2 G:E
6 t .0/

ij D 1

7 else t .0/
ij D 0

8 for k D 1 to n

9 let T .k/ D
!
t .k/
ij

" be a new n ! n matrix
10 for i D 1 to n
11 for j D 1 to n

12 t .k/
ij D t .k!1/

ij _
!
t .k!1/
ik ^ t .k!1/

kj

"

13 return T .n/

Figure 25.5 shows the matrices T .k/ computed by the TRANSITIVE-CLOSURE
procedure on a sample graph. The TRANSITIVE-CLOSURE procedure, like the
Floyd-Warshall algorithm, runs in ‚.n3/ time. On some computers, though, log-
ical operations on single-bit values execute faster than arithmetic operations on
integer words of data. Moreover, because the direct transitive-closure algorithm
uses only boolean values rather than integer values, its space requirement is less

25.2 The Floyd-Warshall algorithm 699

than the Floyd-Warshall algorithm’s by a factor corresponding to the size of a word
of computer storage.

Exercises
25.2-1
Run the Floyd-Warshall algorithm on the weighted, directed graph of Figure 25.2.
Show the matrix D.k/ that results for each iteration of the outer loop.
25.2-2
Show how to compute the transitive closure using the technique of Section 25.1.
25.2-3
Modify the FLOYD-WARSHALL procedure to compute the….k/ matrices according
to equations (25.6) and (25.7). Prove rigorously that for all i 2 V , the predecessor
subgraph G!;i is a shortest-paths tree with root i . (Hint: To show that G!;i is
acyclic, first show that " .k/

ij D l implies d .k/
ij # d .k/

il C wlj , according to the
definition of " .k/

ij . Then, adapt the proof of Lemma 24.16.)
25.2-4
As it appears above, the Floyd-Warshall algorithm requires ‚.n3/ space, since we
compute d .k/

ij for i; j; k D 1; 2; : : : ; n. Show that the following procedure, which
simply drops all the superscripts, is correct, and thus only ‚.n2/ space is required.

FLOYD-WARSHALL0.W /

1 n D W:rows
2 D D W
3 for k D 1 to n
4 for i D 1 to n
5 for j D 1 to n
6 dij D min .dij ; dik C dkj /
7 return D

25.2-5
Suppose that we modify the way in which equation (25.7) handles equality:

" .k/
ij D

(
" .k!1/

ij if d .k!1/
ij < d .k!1/

ik C d .k!1/
kj ;

" .k!1/
kj if d .k!1/

ij # d .k!1/
ik C d .k!1/

kj :

Is this alternative definition of the predecessor matrix … correct?

700 Chapter 25 All-Pairs Shortest Paths

25.2-6
How can we use the output of the Floyd-Warshall algorithm to detect the presence
of a negative-weight cycle?
25.2-7
Another way to reconstruct shortest paths in the Floyd-Warshall algorithm uses
values #.k/

ij for i; j; k D 1; 2; : : : ; n, where #.k/
ij is the highest-numbered interme-

diate vertex of a shortest path from i to j in which all intermediate vertices are
in the set f1; 2; : : : ; kg. Give a recursive formulation for #.k/

ij , modify the FLOYD-
WARSHALL procedure to compute the #.k/

ij values, and rewrite the PRINT-ALL-
PAIRS-SHORTEST-PATH procedure to take the matrix ˆ D

!
#.n/

ij

" as an input.
How is the matrix ˆ like the s table in the matrix-chain multiplication problem of
Section 15.2?
25.2-8
Give an O.VE/-time algorithm for computing the transitive closure of a directed
graph G D .V; E/.
25.2-9
Suppose that we can compute the transitive closure of a directed acyclic graph in
f .jV j ; jEj/ time, where f is a monotonically increasing function of jV j and jEj.
Show that the time to compute the transitive closure G# D .V; E#/ of a general
directed graph G D .V; E/ is then f .jV j ; jEj/ C O.V C E#/.

25.3 Johnson’s algorithm for sparse graphs

Johnson’s algorithm finds shortest paths between all pairs in O.V 2 lgV C VE/
time. For sparse graphs, it is asymptotically faster than either repeated squaring of
matrices or the Floyd-Warshall algorithm. The algorithm either returns a matrix of
shortest-path weights for all pairs of vertices or reports that the input graph contains
a negative-weight cycle. Johnson’s algorithm uses as subroutines both Dijkstra’s
algorithm and the Bellman-Ford algorithm, which Chapter 24 describes.
Johnson’s algorithm uses the technique of reweighting, which works as follows.

If all edge weights w in a graph G D .V; E/ are nonnegative, we can find short-
est paths between all pairs of vertices by running Dijkstra’s algorithm once from
each vertex; with the Fibonacci-heap min-priority queue, the running time of this
all-pairs algorithm is O.V 2 lgV C VE/. If G has negative-weight edges but no
negative-weight cycles, we simply compute a new set of nonnegative edge weights

25.3 Johnson’s algorithm for sparse graphs 701

that allows us to use the same method. The new set of edge weights yw must satisfy
two important properties:
1. For all pairs of vertices u; ! 2 V , a path p is a shortest path from u to ! using
weight function w if and only if p is also a shortest path from u to ! using
weight function yw.

2. For all edges .u; !/, the new weight yw.u; !/ is nonnegative.
As we shall see in a moment, we can preprocess G to determine the new weight
function yw in O.VE/ time.

Preserving shortest paths by reweighting
The following lemma shows how easily we can reweight the edges to satisfy the
first property above. We use ı to denote shortest-path weights derived from weight
function w and yı to denote shortest-path weights derived from weight function yw.

Lemma 25.1 (Reweighting does not change shortest paths)
Given a weighted, directed graph G D .V; E/ with weight function w W E ! R,
let h W V ! R be any function mapping vertices to real numbers. For each edge
.u; !/ 2 E, define
yw.u; !/ D w.u; !/ C h.u/ " h.!/ : (25.9)
Let p D h!0; !1; : : : ; !ki be any path from vertex !0 to vertex !k. Then p is a
shortest path from !0 to !k with weight function w if and only if it is a shortest path
with weight function yw. That is, w.p/ D ı.!0; !k/ if and only if yw.p/ D yı.!0; !k/.
Furthermore, G has a negative-weight cycle using weight function w if and only
if G has a negative-weight cycle using weight function yw.

Proof We start by showing that
yw.p/ D w.p/ C h.!0/ " h.!k/ : (25.10)
We have

yw.p/ D
kX

iD1

yw.!i!1; !i /

D
kX

iD1

.w.!i!1; !i / C h.!i!1/ " h.!i //

D
kX

iD1

w.!i!1; !i / C h.!0/ " h.!k/ (because the sum telescopes)

D w.p/ C h.!0/ " h.!k/ :

702 Chapter 25 All-Pairs Shortest Paths

Therefore, any path p from !0 to !k has yw.p/ D w.p/ C h.!0/ " h.!k/. Be-
cause h.!0/ and h.!k/ do not depend on the path, if one path from !0 to !k is
shorter than another using weight function w, then it is also shorter using yw. Thus,
w.p/ D ı.!0; !k/ if and only if yw.p/ D yı.!0; !k/.
Finally, we show that G has a negative-weight cycle using weight function w if

and only if G has a negative-weight cycle using weight function yw. Consider any
cycle c D h!0; !1; : : : ; !ki, where !0 D !k. By equation (25.10),
yw.c/ D w.c/ C h.!0/ " h.!k/

D w.c/ ;

and thus c has negative weight using w if and only if it has negative weight us-
ing yw.

Producing nonnegative weights by reweighting
Our next goal is to ensure that the second property holds: we want yw.u; !/ to be
nonnegative for all edges .u; !/ 2 E. Given a weighted, directed graph G D
.V; E/ with weight function w W E ! R, we make a new graph G0 D .V 0; E 0/,
where V 0 D V [fsg for some new vertex s 62 V and E 0 D E [f.s; !/ W ! 2 V g.
We extend the weight function w so that w.s; !/ D 0 for all ! 2 V . Note that
because s has no edges that enter it, no shortest paths in G0, other than those with
source s, contain s. Moreover, G0 has no negative-weight cycles if and only if G
has no negative-weight cycles. Figure 25.6(a) shows the graph G0 corresponding
to the graph G of Figure 25.1.
Now suppose that G and G0 have no negative-weight cycles. Let us define

h.!/ D ı.s; !/ for all ! 2 V 0. By the triangle inequality (Lemma 24.10),
we have h.!/ % h.u/ C w.u; !/ for all edges .u; !/ 2 E 0. Thus, if we de-
fine the new weights yw by reweighting according to equation (25.9), we have
yw.u; !/ D w.u; !/ C h.u/ " h.!/ # 0, and we have satisfied the second property.
Figure 25.6(b) shows the graph G0 from Figure 25.6(a) with reweighted edges.

Computing all-pairs shortest paths
Johnson’s algorithm to compute all-pairs shortest paths uses the Bellman-Ford al-
gorithm (Section 24.1) and Dijkstra’s algorithm (Section 24.3) as subroutines. It
assumes implicitly that the edges are stored in adjacency lists. The algorithm re-
turns the usual jV j ! jV j matrix D D dij , where dij D ı.i; j /, or it reports that
the input graph contains a negative-weight cycle. As is typical for an all-pairs
shortest-paths algorithm, we assume that the vertices are numbered from 1 to jV j.

25.3 Johnson’s algorithm for sparse graphs 703

2

1

5
4

3 4

82

6

7 1

0
0

0

0

0

0

0

2/1

2/–3

2/20/–4

2/3 0/–4

0/12/–1

2/7

0/4

0/52/3

2/2

0/–1

0/–5

2/–2

4/8

2/5

2/1

2/6

(a)

(c)

(b)

–4

–4

–1

–5

–5

3

2

1

5
4

4 0

132

2

10 0

5
1

0

4

0

0

0

0

–4

–1

–5

0

3

2

1

5 4

4 0

132

2

10 0
0 0

3

(d)

2

1

5 4

4 0

132

2

10 0
0 0

3

(e)

2

1

5 4

4 0

132

2

10 0
0 0

3

(f)

2

1

5 4

4 0

132

2

10 0
0 0

3

(g)

2

1

5 4

4 0

132

2

10 0
0 0

3

0/00/0

0/0

0/0

0/0

00

Figure 25.6 Johnson’s all-pairs shortest-paths algorithm run on the graph of Figure 25.1. Ver-
tex numbers appear outside the vertices. (a) The graph G0 with the original weight function w.
The new vertex s is black. Within each vertex ! is h.!/ D ı.s; !/. (b) After reweighting each
edge .u; !/ with weight function yw.u; !/ D w.u; !/ C h.u/ " h.!/. (c)–(g) The result of running

is black, and shaded edges are in the shortest-paths tree computed by the algorithm. Within each
vertex ! are the values yı.u; !/ and ı.u; !/, separated by a slash. The value du" D ı.u; !/ is equal to
yı. !/ C h.!/ " h.u/

Dijkstra’s algorithm on each vertex of G using weight function wy. In each part, the source vertex u

.u;

704 Chapter 25 All-Pairs Shortest Paths

JOHNSON.G; w/

1 compute G0, where G0:V D G:V [fsg,
G0:E D G:E [f.s; !/ W ! 2 G:Vg, and
w.s; !/ D 0 for all ! 2 G:V

2 if BELLMAN-FORD.G0; w; s/ == FALSE
3 print “the input graph contains a negative-weight cycle”
4 else for each vertex ! 2 G0:V
5 set h.!/ to the value of ı.s; !/

computed by the Bellman-Ford algorithm
6 for each edge .u; !/ 2 G0:E
7 yw.u; !/ D w.u; !/ C h.u/ " h.!/
8 let D D .du"/ be a new n ! n matrix
9 for each vertex u 2 G:V
10 run DIJKSTRA.G; yw; u/ to compute yı.u; !/ for all ! 2 G:V
11 for each vertex ! 2 G:V
12 du" D yı.u; !/ C h.!/ " h.u/
13 return D

This code simply performs the actions we specified earlier. Line 1 produces G0.
Line 2 runs the Bellman-Ford algorithm on G0 with weight function w and source
vertex s. If G0, and hence G, contains a negative-weight cycle, line 3 reports the
problem. Lines 4–12 assume thatG0 contains no negative-weight cycles. Lines 4–5
set h.!/ to the shortest-path weight ı.s; !/ computed by the Bellman-Ford algo-
rithm for all ! 2 V 0. Lines 6–7 compute the new weights yw. For each pair of ver-
tices u; ! 2 V , the for loop of lines 9–12 computes the shortest-path weight yı.u; !/
by calling Dijkstra’s algorithm once from each vertex in V . Line 12 stores in
matrix entry du" the correct shortest-path weight ı.u; !/, calculated using equa-
tion (25.10). Finally, line 13 returns the completed D matrix. Figure 25.6 depicts
the execution of Johnson’s algorithm.
If we implement the min-priority queue in Dijkstra’s algorithm by a Fibonacci

heap, Johnson’s algorithm runs inO.V 2 lgV CVE/ time. The simpler binary min-
heap implementation yields a running time of O.VE lgV /, which is still asymp-
totically faster than the Floyd-Warshall algorithm if the graph is sparse.

Exercises
25.3-1
Use Johnson’s algorithm to find the shortest paths between all pairs of vertices in
the graph of Figure 25.2. Show the values of h and yw computed by the algorithm.

Problems for Chapter 25 705

25.3-2
What is the purpose of adding the new vertex s to V , yielding V 0?
25.3-3
Suppose that w.u; !/ # 0 for all edges .u; !/ 2 E. What is the relationship
between the weight functions w and yw?
25.3-4
Professor Greenstreet claims that there is a simpler way to reweight edges than
the method used in Johnson’s algorithm. Letting w# D min.u;"/2E fw.u; !/g, just
define yw.u; !/ D w.u; !/ " w# for all edges .u; !/ 2 E. What is wrong with the
professor’s method of reweighting?
25.3-5
Suppose that we run Johnson’s algorithm on a directed graph G with weight func-
tion w. Show that if G contains a 0-weight cycle c, then yw.u; !/ D 0 for every
edge .u; !/ in c.
25.3-6
Professor Michener claims that there is no need to create a new source vertex in
line 1 of JOHNSON. He claims that instead we can just useG0 D G and let s be any
vertex. Give an example of a weighted, directed graph G for which incorporating
the professor’s idea into JOHNSON causes incorrect answers. Then show that if G
is strongly connected (every vertex is reachable from every other vertex), the results
returned by JOHNSON with the professor’s modification are correct.

Problems

25-1 Transitive closure of a dynamic graph
Suppose that we wish to maintain the transitive closure of a directed graph G D
.V; E/ as we insert edges into E. That is, after each edge has been inserted, we
want to update the transitive closure of the edges inserted so far. Assume that the
graph G has no edges initially and that we represent the transitive closure as a
boolean matrix.
a. Show how to update the transitive closureG# D .V; E#/ of a graphG D .V; E/
in O.V 2/ time when a new edge is added to G.

b. Give an example of a graph G and an edge e such that $.V 2/ time is required
to update the transitive closure after the insertion of e into G, no matter what
algorithm is used.

706 Chapter 25 All-Pairs Shortest Paths

c. Describe an efficient algorithm for updating the transitive closure as edges are
inserted into the graph. For any sequence of n insertions, your algorithm should
run in total timePn

iD1 ti D O.V 3/, where ti is the time to update the transitive
closure upon inserting the i th edge. Prove that your algorithm attains this time
bound.

25-2 Shortest paths in !-dense graphs
A graph G D .V; E/ is !-dense if jEj D ‚.V 1C#/ for some constant % in the
range 0 < % % 1. By using d -ary min-heaps (see Problem 6-2) in shortest-paths
algorithms on %-dense graphs, we can match the running times of Fibonacci-heap-
based algorithms without using as complicated a data structure.
a. What are the asymptotic running times for INSERT, EXTRACT-MIN, and
DECREASE-KEY, as a function of d and the number n of elements in a d -ary
min-heap? What are these running times if we choose d D ‚.n˛/ for some
constant 0 < ˛ % 1? Compare these running times to the amortized costs of
these operations for a Fibonacci heap.

b. Show how to compute shortest paths from a single source on an %-dense directed
graph G D .V; E/ with no negative-weight edges in O.E/ time. (Hint: Pick d
as a function of %.)

c. Show how to solve the all-pairs shortest-paths problem on an %-dense directed
graph G D .V; E/ with no negative-weight edges in O.VE/ time.

d. Show how to solve the all-pairs shortest-paths problem in O.VE/ time on an
%-dense directed graph G D .V; E/ that may have negative-weight edges but
has no negative-weight cycles.

Chapter notes

Lawler [224] has a good discussion of the all-pairs shortest-paths problem, al-
though he does not analyze solutions for sparse graphs. He attributes the matrix-
multiplication algorithm to the folklore. The Floyd-Warshall algorithm is due to
Floyd [105], who based it on a theorem of Warshall [349] that describes how to
compute the transitive closure of boolean matrices. Johnson’s algorithm is taken
from [192].
Several researchers have given improved algorithms for computing shortest

paths via matrix multiplication. Fredman [111] shows how to solve the all-
pairs shortest paths problem using O.V 5=2/ comparisons between sums of edge

Notes for Chapter 25 707

weights and obtains an algorithm that runs in O.V 3.lg lgV= lg V /1=3/ time, which
is slightly better than the running time of the Floyd-Warshall algorithm. Han [159]
reduced the running time to O.V 3.lg lgV= lg V /5=4/. Another line of research
demonstrates that we can apply algorithms for fast matrix multiplication (see the
chapter notes for Chapter 4) to the all-pairs shortest paths problem. Let O.n!/ be
the running time of the fastest algorithm for multiplying n ! n matrices; currently
! < 2:376 [78]. Galil and Margalit [123, 124] and Seidel [308] designed algo-
rithms that solve the all-pairs shortest paths problem in undirected, unweighted
graphs in .V !p.V // time, where p.n/ denotes a particular function that is poly-
logarithmically bounded in n. In dense graphs, these algorithms are faster than
the O.VE/ time needed to perform jV j breadth-first searches. Several researchers
have extended these results to give algorithms for solving the all-pairs shortest
paths problem in undirected graphs in which the edge weights are integers in the
range f1; 2; : : : ; W g. The asymptotically fastest such algorithm, by Shoshan and
Zwick [316], runs in time O.W V !p.V W //.
Karger, Koller, and Phillips [196] and independently McGeoch [247] have given

a time bound that depends on E#, the set of edges in E that participate in some
shortest path. Given a graph with nonnegative edge weights, their algorithms run in
O.VE# C V 2 lgV / time and improve upon running Dijkstra’s algorithm jV j times
when jE#j D o.E/.
Baswana, Hariharan, and Sen [33] examined decremental algorithms for main-

taining all-pairs shortest paths and transitive-closure information. Decremen-
tal algorithms allow a sequence of intermixed edge deletions and queries; by
comparison, Problem 25-1, in which edges are inserted, asks for an incremen-
tal algorithm. The algorithms by Baswana, Hariharan, and Sen are randomized
and, when a path exists, their transitive-closure algorithm can fail to report it
with probability 1=nc for an arbitrary c > 0. The query times are O.1/ with
high probability. For transitive closure, the amortized time for each update is
O.V 4=3 lg1=3 V /. For all-pairs shortest paths, the update times depend on the
queries. For queries just giving the shortest-path weights, the amortized time per
update is O.V 3=E lg2 V /. To report the actual shortest path, the amortized up-
date time is min.O.V 3=2

plgV /; O.V 3=E lg2 V //. Demetrescu and Italiano [84]
showed how to handle update and query operations when edges are both inserted
and deleted, as long as each given edge has a bounded range of possible values
drawn from the real numbers.
Aho, Hopcroft, and Ullman [5] defined an algebraic structure known as a “closed

semiring,” which serves as a general framework for solving path problems in di-
rected graphs. Both the Floyd-Warshall algorithm and the transitive-closure algo-
rithm from Section 25.2 are instantiations of an all-pairs algorithm based on closed
semirings. Maggs and Plotkin [240] showed how to find minimum spanning trees
using a closed semiring.

