
Theoretical Computer Science 250 (2001) 1–30
www.elsevier.com/locate/tcs

Fundamental Study

Enumerating all connected maximal common subgraphs in
two graphs

Ina Koch ∗

MDC - Max-Delbr�uck-Centrum, Walter-Friedrich-Haus, Robert-R�ossle-Str. 10, 13092 Berlin, Germany

Received March 1999; accepted June 2000
Communicated by M. Nivat

Abstract

We represent a new method for �nding all connected maximal common subgraphs in two
graphs which is based on the transformation of the problem into the clique problem. We have
developed new algorithms for enumerating all cliques that represent connected maximal common
subgraphs. These algorithms are based on variants of the Bron–Kerbosch algorithm. In this paper
we explain the transformation of the maximal common subgraph problem into the clique problem.
We give a short summary of the variants of the Bron–Kerbosch algorithm in order to explain
the modi�cation of that algorithm such that the detected cliques represent connected maximal
common subgraphs. After introducing and proving several variants of the modi�ed algorithm we
discuss the runtimes for all variants by means of random graphs. The results show the drastical
reduction of the runtimes for the new algorithms. c© 2001 Elsevier Science B.V. All rights
reserved.

Keywords: Graph theory; Connected maximal common subgraphs; Cliques; Bron–Kerbosch
algorithm

Contents

1. Introduction : 2
2. Transformation of the MCS problem : 3
3. The clique problem : 6
3.1. Algorithms : 7

4. The modi�ed clique problem : 13
4.1. Algorithms : 14

5. Data structure : 22

∗ Corresponding author. Tel.: +49-30-9406-2733; fax: +49-30-9406-2834.
E-mail address: ikoch@mdc-berlin.de (I. Koch).

0304-3975/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(00)00286 -3

2 I. Koch / Theoretical Computer Science 250 (2001) 1–30

6. Runtime results : 25
6.1. Results from graphs derived from protein structures : 25
6.2. Results for random graphs : 26

7. Conclusions : 28

Acknowledgement : 29
References : 30

1. Introduction

In many applications it is important to �nd maximal common subgraphs in two
graphs. Because the problem is NP-complete it cannot be solved for arbitrarily large
graphs. Searching for connected maximal common subgraphs can reduce the complexity
of the problem drastically, although it remains NP-complete.
The initiation for this work has been assumed from theoretical biology, where it is

of great interest to compare proteins at di�erent structural description levels in order
to �nd structural motifs [17]. Proteins are complex structures. They consist of several
10 000 of atoms. There is no method comparing two proteins without using any addi-
tional information which is used for placing a seed before starting the comparison at
the atomic description level. Therefore, proteins are considered at di�erent abstraction
levels. On the one side, to reduce the computational complexity and, on the other side,
to detect hidden structural similarities, proteins are often considered at their secondary
structure level. Secondary structure elements represent repetitive structural subunits.
A protein can consist of up to 80 secondary structure elements. We can model pro-
tein structures as undirected labelled graphs, where the vertices represent secondary
structure elements and the edges spatial neighbourhoods between them. Applying the
clique algorithm for �nding all structural similarities in two protein graphs often the
complexity arises in such a way that the runtime increases up to some days and more.
For a comparison of protein structures in an acceptable time we needed to develop
a method which overcomes this problem. This was the motivation for beginning this
work. Among other things the results are new algorithms which should be presented
and discussed in this paper.
First of all we want to give some de�nitions. The terminology is based on that

given by Harary [12]. Let us consider undirected labelled graphs G=(V; E), which are
de�ned by �nite vertex sets V and sets of undirected edges E⊆P2(V): P2(V) is the
set of all subsets of V with exactly two di�erent vertices. Maximal common subgraphs
(MCSs) are subgraphs which cannot be extended, i.e., a maximal subgraph cannot be
a real subgraph of another maximal subgraph. We can formulate the maximal common
subgraph problem as follows.

De�nition 1.1 (MCS problem).
Instance: Two graphs G1 = (V1; E1); G2 = (V2; E2).
Solution: All MCSs H =(V; E) such that H is isomorphic to subgraph G′

1 = (V
′
1 ; E

′
1)

of G1 and G′
2 = (V

′
2 ; E

′
2) of G2, and the appropriate isomorphic mappings f1 : V (H)→

V (G1) and f2 : V (H)→V (G2).

I. Koch / Theoretical Computer Science 250 (2001) 1–30 3

We can solve the problem by transforming the MCS problem into the clique problem.
This has been suggested by Levi [18] for the calculation of maximal common-induced
subgraphs. Note that we want to consider maximal common, and not maximal common-
induced subgraphs. A clique is a complete maximal subgraph. If we want to �nd a
clique with largest possible cardinality we speak of the maximum-clique problem. Be-
cause this problem is important for many practical applications, a lot of algorithms have
been developed, for example the branch and bound algorithm of Balas and Samuels-
son [3], the recursive backtracking method of Tarjan and Trojanowski [23], the recent
methods by Balas and Yu [4], and Babel and Tinhofer [2]. These methods work for
arbitrary graphs and have exponential runtimes. Other algorithms solve the problem for
special graph classes with polynomial runtimes, for example for chordal graphs [8], for
transitive free orientable graphs [10], and for K1;3 free graphs [14].
For many applications all MCSs in two graphs are required, i.e., we have to enumer-

ate all cliques in a graph. Outgoing from the fastest and most widely used algorithm,
the Bron–Kerbosch [6] algorithm, 1973, we have modi�ed this algorithm and its vari-
ants [15]. We distinguish between cliques which describe connected subgraphs and
those which describe disconnected subgraphs. The new algorithms consider only those
cliques which represent connected subgraphs during the search. So the solution tree
is reduced drastically. The resulting runtimes make it possible to consider very large
graphs. Thus, in our application for the comparison of protein structures now large
proteins can be compared in a reasonable amount of time and space.
First, we want to explain the transformation of the maximal common

subgraph problem into the clique problem (Section 2). Then we repeat shortly vari-
ants of the Bron–Kerbosch algorithm and prove their invariants (Section 3). Second
we de�ne the modi�ed clique problem and discuss the new algorithms (Section 4). In
Section 5, we explain some the used data structure. Finally in Section 6, we discuss
the runtime results of all algorithms for protein graphs and random graphs. We �nish
with the conclusions in Section 7.

2. Transformation of the MCS problem

The transformation of one problem into another problem for which algorithms exist
is a widely used technique in computer science. We can transform the MCS problem
into the clique problem. The aim is to reduce the search space before using a rigorous
algorithm.
Let us consider two undirected labelled graphs G1 = (V1; E1) and G2 = (V2; E2) with

n and m vertices, respectively. We can map parts of both graphs onto another. In
this case we say that certain vertices and edges of graph G1 are compatible to certain
vertices and edges of graph G2. We store the information of all possible compatibilities
in a new graph, the so-called product graph or compatibility graph. Depending on
searching induced subgraphs or subgraphs, we can generate a vertex product graph
and an edge product graph resp.

4 I. Koch / Theoretical Computer Science 250 (2001) 1–30

De�nition 2.1 (Vertex product graph or vertex compatibility graph). The vertex prod-
uct graph Hv=G1 ◦v G2 includes the vertex set VH =V1×V2, in which the vertex pairs
(u; v) with u∈V1 and v∈V2 have the same labels.
An edge between two vertices uH ; vH ∈VH with uH =(u1; u2) and vH =(v1; v2) exists

exactly then, if u1 6= v1 and u2 6= v2, and if the vertex pair u1; v1 shares a common edge
in G1 with the same label as the common edge shared by u2 6= v2 in G2, or if u1; v1
and u2; v2 are not adjacent in G1 and G2, respectively.

If some vertices (u1; v1); (u2; v2); : : : ; (uk ; vk), for 16k6|V1| · |V2|, in the vertex prod-
uct graph are pairwise adjacent, then the subgraph in G1 induced by the vertices
u1; u2; : : : ; uk is isomorphic to the subgraph in G2 induced by the vertices v1; v2; : : : ; vk .
The isomorphism is implicitly given by the vertices (u1; v1); (u2; v2); : : : ; (uk ; uk) of the
vertex product graph, i.e., h(ui)= vi for i=1; 2; : : : ; k. Consequently, a maximal com-
mon induced subgraph corresponds to a maximal complete subgraph bijectively, i.e.,
to a clique in the vertex product graph H . This was proved by Levi [18].
The de�nition of the edge product graph is analogous to that of the vertex product

graph.

De�nition 2.2 (Edge product graph or edge compatibility graph). The edge product
graph He=G1◦eG2 includes the vertex set VH =E1×E2, in which the edge pairs (ei; ej)
with 16i6n and 16j6m have to coincide in their edge labels and the corresponding
end vertex labels.
There is an edge between two vertices eH ; fH ∈VH with eH =(e1; e2) and fH =

(f1; f2), if e1 6=f1 and e2 6=f2, and if either e1; f1 in G1 are connected via a vertex
of the same label as the vertex shared by e2; f2 in G2, or e1; f1 and e2; f2 are not
adjacent in G1 and in G2, respectively.

Fig. 1 gives an example for the construction of the product graph He from two
graphs G1 and G2. For more clearness only parts of He, G1, and G2 are depicted.
The vertices in He are formed by compatible edges in G1 and G2, for example the
edge pairs (1; 1′) and (2; 2′). For the edge pair (2; 1′) the corresponding edges are
incompatible, because the edge labels di�er, although the labels of the end vertices are
equal.
The edges (straight lines) in He are formed by compatible edge pairs of G1 and G2.

So, the edge pairs (2; 2′) and (3; 3′) in He are compatible, because both edges 2 and
3 in G1 and 2′ and 3′ in G2 are connected via a common vertex of the same label.
Also the edge pairs (1; 1′) and (4; 4′) are compatible, because both (1; 4) in G1 and
(1′; 4′) in G2 do not share a common vertex. On the other hand, the edge pairs (2; 2′)
and (3; 4′) in He are incompatible, because edges 2 and 3 in G1 are connected via a
common vertex, but not edges 2′ and 4′ in G2. These incompatibilities of two vertices
in He are depicted by dotted lines.
To get a common subgraph in G1 and G2 each edge pair in G1 and G2 (vertex

in He) has to be compatible to the all those edge pairs in G1 and G2 (edges in He),

I. Koch / Theoretical Computer Science 250 (2001) 1–30 5

Fig. 1. A part of the construction of the edge product graph He from G1 and G2.

Fig. 2. An example in which cliques with three vertices do not necessarily de�ne isomorphic subgraphs.
Though the edge product graph He exibits a clique (bold edges) with the edge set VH = {(e1; f1); (e2; f2);
(e3; f3)}, G1 (the Y-shape or triod) is not isomorphic to G2 (the triangle).

which are forming a common subgraph. Thus, a clique in He corresponds to a maximal
common subgraph in G1 and G2 [18].
If some vertices (e1; f1); (e2; f2); : : : ; (ek ; fk) with 16k6|E1| · |E2| in the edge prod-

uct graph are pairwise adjacent, then the subgraph in G1 represented by the edges
e1; e2; : : : ; ek is isomorphic to the subgraph in G2 represented by the edges f1; f2; : : : ; fk .
This edge isomorphism is valid if and only if there is no interchange of so-called Y-
shapes or triods and triangles (see [24] for connected graphs and [22] for disconnected
graphs). Fig. 2 shows an example for cliques with three vertices, which do not nec-
essarily de�ne isomorphic subgraphs, because of a triod\triangle interchange. To �nd
MCSs we can also start from the edge graphs L(G1) and L(G2), and search for max-
imal common-induced subgraphs in the resulting vertex product graph (see Fig. 3).
Outgoing from the edge product graph we �nd MCSs in G1 and G2. We yield the
same result if we calculate the edge graphs L(G1) and L(G2), and search in the vertex
product graph for maximal common induced subgraphs. After a conversion into vertex
graphs these maximal-induced subgraphs correspond to MCSs in G1 and G2.

6 I. Koch / Theoretical Computer Science 250 (2001) 1–30

Fig. 3. The correlations between maximal subgraph and maximal-induced subgraph in two graphs and their
edge graphs.

Because we want to �nd subgraphs and not induced subgraphs, only the edge product
graph is of interest. We call the edge product graph He in this paper as product graph
G. The product graph G contains all possible matches of edge pairs of the original
graphs G1 and G2. Maximal common subgraphs in the original graphs G1 and G2
correspond to cliques in G. Consequently, we have transformed the MCS problem into
the clique problem. All noncompatible edge pairs were excluded at the outset by this
transformation.

3. The clique problem

The clique problem is one of the six basic problems of known NP-complete problems
[7]. It is de�ned as a decision question in the following way:

De�nition 3.1 (Clique problem).
Instance: A graph G=(V; E), 06k6|V |.
Solution: Is there a complete subgraph H =(V ′; E′) of size k or larger?

This question is also equivalent both for complete and maximal complete subgraphs,
because there must exists at least one maximal common subgraph if one has found a
complete subgraph.
If we want to �nd a clique of maximal cardinality we have to solve the maximum-

clique problem. Recent results demonstrate that the maximum-clique problem is hard
to approximate in polynomial time within a factor n1−� [13]. We want to consider the
more complex problem of enumerating all cliques in a graph, the all-clique problem.

De�nition 3.2 (All-clique problem).
Instance: A graph G=(V; E).
Solution: All maximal complete subgraphs H =(V ′; E′) of G.

I. Koch / Theoretical Computer Science 250 (2001) 1–30 7

Fig. 4. A graph that consists of eight vertices which can be considered as the four vertex pairs (1; 1′), (2; 2′),
(3; 3′), and (4; 4′). The vertices of these pairs are not adjacent, whereas all other vertices are adjacent.

In contrast to the maximum-clique problem which is NP-complete the all-clique
problem is NP-hard. The number of cliques can go up exponentially. Fig. 4 shows
an example that illustrates that the number of cliques increases with the number of
vertices exponentially. Because the vertices of the n vertex pairs are not adjacent, a
vertex does not belong to a clique which involves the other vertex of the pair. Each
clique contains exactly one vertex of a pair, because otherwise no maximal complete
subgraph exists. Thereby, the choice of the vertex in the pair is arbitrary. Thus, 2n

cliques arise in that graph.
Moon and Moser [21] show also the exponential relation between the maximum

number of cliques f(n) and the number of vertices n in a graph G. For n¿2 holds that
f(n)= 3n=3, if n≡ 0 (mod 3); f(n)= 4:3[n=3]−1, if n≡ 1 (mod 3), and f(n) = 2:3n=3, if
n ≡ 2 (mod 3). Additionally, they report for any graph Gn with n vertices for n¿4 that
for the maximal number of the di�erent clique sizes the upper bound is g(n)6n−[log n]
and the lower bound is g(n)¿n−2[log n]−1. These results emphasize the complexity
of the all-clique problem.

3.1. Algorithms

The branch-and-bound algorithm of Bron and Kerbosch [6] (BK-algorithm) works
recursively and is reported as the fastest enumeration algorithm [5, 9]. It is a robust
algorithm which can be modi�ed easily. Several variants of the algorithm are known
(see [15, 1]). The algorithms will be repeated shortly because they serve as basis for
the new algorithms which �nd maximal connected common subgraphs.

3.1.1. The simple BK-algorithm
The algorithm �nds all cliques in a graph exactly once. It works on the three sets

C, P, and S.
Set C contains the set of vertices belonging to the current clique. Set P contains

all vertices which can be used for the completion of C because they are adjacent to
the vertex added at last to C. In S all vertices are collected, which can no longer be

8 I. Koch / Theoretical Computer Science 250 (2001) 1–30

Table 1
Algorithm 1 – the BK-algorithm

ENUMERATE-CLIQUES (C; P; S)
B enumerates all cliques in an arbitrary graph G
C: set of vertices belonging to the current clique
P: set of vertices which can be added to C
S: set of vertices which are not allowed to be added to C
N [u]: set of neighbours of vertex u in G

01 Let P be the set {u1; : : : ; uk};
02 if P = ∅ and S = ∅
03 then REPORT CLIQUE;
04 else for i←1 to k
05 do P←P\{ui};
06 P′←P;
07 S′←S;
08 N←{v∈V | {ui; v}∈E};
09 ENUMERATE CLIQUES (C∪{ui}; P′∩N; S′∩N);
10 S←S∪{ui};
11 od;
12 �;

used for the completion of C, because all cliques containing these vertices are always
generated.
The algorithm (see Table 1) starts with the empty sets C and S. Initially, P includes

all vertices of the graph G. If P and S are empty, a clique was found and will be
reported (line 03). Besides each vertex of P is considered in a loop (lines 04–11),
where the arbitrarily chosen vertex ui is eliminated from P. P and S are copied into
P′ and S ′, respectively (line 06 and 07) for the recursion. The neighbours of vertex
ui are generated and stored in N (line 08). Vertex ui is added to C and the recursion
call with P′ ∩N and S ′ ∩N takes place.

Theorem 3.3. Algorithm 1 has following invariants:
(i) All vertices in C are pairwise adjacent; i.e.; C is a vertex set of a complete

subgraph. Each vertex in G which is adjacent to all other vertices in C is either
in P or in S.

(ii) Each vertex u∈P is adjacent to all vertices in C. The vertices from P are used
for the extension of C. Once a vertex from P is used for the extension of C it
will be moved to S.

(iii) Each vertex u∈ S is adjacent to all vertices in C. The vertex sets of all cliques
containing C∪{u} are already enumerated once.

(iv) If the call of the function ENUMERATE CLIQUES() is �nished; the vertex sets of all
cliques containing C are enumerated exactly once.

Proof. (i) At the beginning C is empty. Next, an arbitrary vertex u∈P will be added
to C. In the following, C is only extended by vertices from P which are all neighbours
of all vertices in C. Thus the vertices in C build a complete subgraph which must not

I. Koch / Theoretical Computer Science 250 (2001) 1–30 9

be a maximal one. Because P contains all vertices from G at the beginning, and P
and S are always intersected with the neighbours of vertex u ∈ P before the recursion
call, each vertex from G, which is adjacent to all vertices in C, is either in P or in S.
(ii) From the stepwise intersection of P with the neighbours of the newly added

vertices mentioned in proof (i) follows that each vertex u∈P is adjacent to all vertices
in C. The other statements follow directly from the algorithm. Lines 01, 04, and 09
indicate that only vertices from P are used for the extension of C. In line 05 vertex
u∈P which extends C is removed from P and added to S (line 10).
(iii) From the stepwise intersection of S with the neighbours of the newly added

vertices mentioned in proof (i) follows that each vertex u∈ S is adjacent to all ver-
tices in C. In the for-loop all neighbours of vertex u∈P added to C are proved one
after another for their possible extension of C ∪{u} by the recursive calls of the func-
tion ENUMERATE CLIQUES(). Thus, it is ensured that all cliques containing C ∪{u} are
enumerated after the recursion step.
(iv) It follows from (iii) that all cliques containing C ∪{u} are reported. Because

each vertex u∈P added to C is written to S after the recursion step, S contains
those vertices u at the respective recursion level which were already considered in the
recursion. If P is empty anytime, i.e., no vertex exists which can be added to C, two
possibilities arise for S:
(a) Set S is not empty if vertices in S are neighbours of vertex u such that the

originating complete subgraph is not a maximal one because of (iii).
(b) Set S is empty if the vertex set of neighbours of vertex u is disjoint to S of the

previous recursion level. So a new clique was found.
It is guaranteed by S that each clique is reported only once.

Fig. 5 represents the solution tree or recursion tree for a graph G. The vertices
u∈P are used for the completion of C in increasing order. In this example the cliques
were found during the �rst steps because vertex 1 added �rst to set C is a member of
all cliques.

3.1.2. Recognition of equal subtrees
The recursion tree in Algorithm 1 can be reduced by some simple modi�cations.

Theorem 3.4. It is su�cient to consider only those vertices from P in the for-loop
which are not adjacent to a vertex u∈P.

Proof. Assume, vertex ui ∈P which is passed through the for-loop in Algorithm 1
is neighboured to all other vertices ui+1; : : : ; uk ∈P, which have not been considered
so far. Then, it is not necessary to consider these vertices ui+1; : : : ; uk ∈P anymore,
because due to (iii) in Theorem 3.3 all cliques, which contain C ∪{ui} and so possibly
contain also the vertices ui+1; : : : ; uk , are found by addition of ui to C and by the
following recursion. If the vertices ui+1; : : : ; uk ∈P would be considered in the for-loop
nevertheless vertex ui would be always in S. The vertex would remain in S ′ after the
intersection because vertex ui is adjacent to all ui+1; : : : ; uk ∈P.

10 I. Koch / Theoretical Computer Science 250 (2001) 1–30

Fig. 5. The recursion tree of Algorithm 1 (right) for a graph G (left). The edges of the recursion tree are
labelled by vertex u added to the current set C. The gray vertex is the root of the recursion tree. Paths from
the root to a white end vertex describe cliques in G. Paths from the root to a black end vertex describe
complete subgraphs in G which are not maximal, because they can be extended by at least one vertex from
the nonempty set S.

Table 2
Algorithm 2 – a modi�cated enumeration algorithm

ENUMERATE CLIQUES (C; P; S)
B enumerates all cliques in an arbitrary graph G

01 Let P be the set {u1; : : : ; uk};
02 if P= ∅
03 then if S = ∅ then REPORT CLIQUE; �;
04 else Let ut be a vertex from P;
05 for i← 1 to k
06 do if ui is not adjacent to ut
07 then P←P\{ui};
08 P′←P;
09 S′ ← S;
10 N←{v∈V | {ui; v}∈E};
11 ENUMERATE CLIQUES (C ∪{ui}; P′ ∩N; S′ ∩N);
12 S← S ∪{ui};
13 �;
14 od;
15 �;

Table 2 depicts Algorithm 2 which is based on Algorithm 1. Merely, line 04 which
chooses vertex ut and line 06, which proves the adjacency of a vertex ui to a vertex
ut , are added. Fig. 6 represents the essentially smaller recursion tree for the graph in
Fig. 5 using Algorithm 2.
Algorithm 2 is the second version of the BK-algorithm which is used frequently

[11, 19, 20]. Because the choice of vertex ut ∈P is arbitrary we can use some heuristics,
such as the choice of that vertex with the largest vertex degree in order to decrease the
vertex set that has to pass through the for-loop. The clique containing the vertex with

I. Koch / Theoretical Computer Science 250 (2001) 1–30 11

Fig. 6. The recursion tree of Algorithm 2 (right) for the graph G (left). The edges of the recursion tree are
called by the respective vertex u added to C as black numbers. The light numbers describe the respective
vertex ut . The gray vertex is the root of the recursion tree. Paths from the root to a white end vertex describe
cliques in G. Paths from the root to a black end vertex represent complete subgraphs in G which are not
maximal.

the largest degree do not have to be the largest clique. In many cases (see Section 6)
the choice of vertex ut ∈P with the largest degree will result in the smallest recursion
tree what is not stringent (Fig. 6).

Theorem 3.5. The choice of a vertex ut ∈P with the largest degree results not nec-
essarily in a decreased recursion tree.

Proof. The recursion trees of Algorithm 2 for the disconnected graph G with 2p+ 1
vertices (see Fig. 7) should be considered in two variants. G consists of a complete
subgraph with p vertices and an astral subgraph with p + 1 vertices. The numbering
of vertices in G is chosen such that the �rst p vertices are located in the complete
subgraph and the vertex p+1 with the largest degree is located in the astral subgraph.
In the �rst variant of Algorithm 2 we select the �rst vertex in P as vertex ut (recursion
tree 1 in Fig. 7). In the second variant of Algorithm 2 we choose the �rst vertex in P
with the largest degree as vertex ut (recursion tree 2 in Fig. 7).
Variant 1: The �rst ut is vertex 1. Vertices which are not adjacent to vertex 1 pass

through the for-loop. So p + 1 branches arise at the root vertex. Let us consider the
�rst branch in the root vertex. Because of Theorem 3.3 at the branch at which �rst
vertex 1 is added to C the complete subgraph with p vertices is found. Let us consider
the second branch in the root vertex. Because of Theorem 3.3 at the branch at which
�rst vertex p+ 1 is added to C; p cliques of size 2 in the astral subgraph are found.
The branches that add the vertices p + n with n=2; 3; : : : ; p + 1 to C as the �rst

vertex already cancel at the next level, because vertex p + 1 always remains as the
only neighbour of the vertices p+1. Vertex p+1 is an element of S (resulting from
the second branch) and cannot be eliminated from S by intersection. Then, P is empty

12 I. Koch / Theoretical Computer Science 250 (2001) 1–30

Fig. 7. A disconnected graph G with 2p + 1 vertices and the recursion trees of two variants of Algorithm
2. The light numbers indicate the respective vertex ut . The bold numbers indicate vertices added to C. By
insertion of the bold edge in G a connected graph arises. The additional vertices and edges in the recursion
trees 1 and 2 are drawn lightly.

and S is not empty such that there is an abruption at this point. We yield ap=3p+2 as
the number of vertices of the recursion tree 1. The addend 3p results from the number
of the levels for building up the large clique with p vertices (p-clique) in the �rst
branch, from the vertices of depth 2 for the p cliques of size 2 (2-cliques), and the
vertices for the p abruptions of the last branches in depth 1. Additionally, we have to
involve the root vertex and the branch vertices after adding p+ 1 in depth 1.
Variant 2: Now, the �rst vertex ut is vertex p + 1, because it exhibits the largest

number of neighbours. Vertices that are not neighboured to p+1 pass through the for-
loop. So p+ 1 branches arise at the root vertex. Let us consider the �rst p branches
in the root vertex, which add the vertices of the complete subgraph to C. Because
of Theorem 3.3 the p-clique is found at the branch that �rst adds vertex 1. At the
branch that �rst adds vertex 2 a nonmaximal complete subgraph with p− 1 vertices is
found. That causes an abruption in depth 1, etc. until the abruption at the last vertex in
depth 1.

I. Koch / Theoretical Computer Science 250 (2001) 1–30 13

Let us consider that branch in the root vertex where vertex p + 1 is added to C.
Because of Theorem 3.3 the p 2-cliques are found in the astral subgraph. Counting the
vertices of the recursion tree 2, we yield bp=p+ 2 + (1 + 2 + · · ·+ p). The addend
p + 2 results from the p tree vertices in depth 1, from the root vertex, and from the
branching vertex after adding p+ 1 in depth 1. The sum 1 + 2+ · · ·+p results from
the vertices in the depths 1 to p. This part corresponds to (p2 + p)=2 such that we
yield bp=2 + (p2 + 3p)=2 as number of tree vertices for Variant 2.
We see clearly that the recursion tree in Variant 2 grows faster than in Variant 1.

In case p=3 the number of vertices in the recursion tree is 11 for both variants. If
p=4 the recursion tree of Variant 2 exhibits two vertices more than of Variant 1.

We yield a disconnected graph by inserting an edge between the astral and the
complete subgraph in G. In Fig. 7 this edge is drawn in bold formation. We yield for
both recursion trees an additional vertex such that the statement of Theorem 3.5 is also
valid for connected graphs.

Lemma 3.6. The vertex ut can also be chosen from set S or P ∪ S.

Proof. (1) ut ∈ S: Assume, if we �nd a clique C′ through a path, S ′ is empty. I.g., a
vertex v which is not adjacent to vertex ut must be added to C such that S is empty
after the intersection. If we add vertex v as �rst vertex at this branch point this clique
C′ is also reached because S becomes empty. Vertex v is passing through the for-loop
because v is not adjacent to ut . Vertex ut can belong to S, and the clique C′ will
nonetheless be found via vertex v. So C′ is not lost.
(2) ut ∈ S ∪P: Because of the proven statements that vertex ut can be chosen from

P (Theorem 3.3) and from S (see above) ut can also be chosen from S ∪P.

4. The modi�ed clique problem

A clique in the edge product graph G represents not only a pair of identical MCSs
but also an isomorphism between the MCSs of this pair. So it is possible that a set of
di�erent cliques represents equal pairs of identical common subgraphs. The size of the
automorphism group of a graph of the pair is expressed by the variety of its versions.
To reduce the number of the reported cliques and hence the runtime of the algorithm it
would be helpful to analyse symmetries in the MCs in order to circumvent the output
of cliques which only represent di�erent isomorphisms between a pair of MCSs. Large
automorphism groups exist for MCSs which consist of di�erent disconnected MCSs. If
we search for connected MCSs in a connected graph the problem simpli�es such that
the MCSs, which consist of di�erent disconnected subgraphs, must not be considered
in the recursion tree during the search.
For the realization of that improvement in both algorithms the edges in the edge

product graph G=G(G1; G2) are divided into c-edges (connected edges) and d-edges
(disconnected edges). They are labelled according to their division.

14 I. Koch / Theoretical Computer Science 250 (2001) 1–30

De�nition 4.1 (c-Edges and d-Edges). Let (e1; e2) and (f1; f2) be two edge pairs of
two graphs G1 and G2. An edge of the product graph G between the vertices (e1; e2)
and (f1; f2) is called c-edge if the edges e1; f1 in G1 or e2; f2 in G2 exhibit a common
vertex, otherwise the edge is called a d-edge.

Consequently, we search in the product graph for so-called c-cliques.

De�nition 4.2 (c-Clique). A clique in a graph G which consists of c- and d-edges is
called a c-Clique if it is formed by c-edges such that it is connected and acyclic.

Theorem 4.3. A c-Clique in the product graph G is a clique that represents connected
MCSs in the graphs G1 and G2 which form the product graph.

Proof. (⇒) A c-clique that is spanned by c-edges (De�nition 4.2) is given. A c-edge
in G means nothing else than the according edge pair e1; f1 in G1 is connected via
a common vertex of G1 and the edge pair e2; f2 in G2 is connected via a common
vertex of G2. Thus, these edge pairs represent connected subgraphs in G1 and G2. If we
consider a c-edge in G which is adjacent to that c-edge, again an edge will be added
to the connected subgraphs in G1 and G2. This c-edge forms connected subgraphs in
G1 and G2 in turn, because in the product graph G adjacent c-edges arise only then if
the according edge pairs are connected via a common edge in G1 and G2. That results
in connected MCSs, �nally.
(⇐) Connected MCSs in G1 and G2 consist of several adjacent edges. A connected

edge pair in G1 that can be mapped on a connected edge pair in G2 exhibits a c-edge
in G. If an adjacent edge is added to that connected edge pair in G1 and G2, a new
mapping possibility of the new edge and an edge of the edge pair in G1 to a new
edge and an edge of the edge pair in G2 exists. This mapping possibility is represented
via a c-edge in G which is adjacent to the �rst c-edge. Consequently, the clique
that corresponds to these MCSs is formed by c-edges such that it is connected and
acyclic.

As a result we can formulate the all-c-clique problem as follows:

De�nition 4.4 (All-c-clique problem). Instance: a graph G=(V; E) with E=Z ∪ U .
Let Z be the set of all c-edges in G, and D the set of all d-edges in G.
Solution: all maximal complete subgraphs H =(V ′; E′) whose c-edges span the

graph H .

4.1. Algorithms

4.1.1. Modi�cation of Algorithm 1
To solve the all-c-clique problem we can modify Algorithm 1 (see Table 3) easily.

The set C of a clique is extended only by those vertices u∈P which are adjacent to
at least one vertex of C via a c-edge in G. In Algorithm 1 we divide the set P into

I. Koch / Theoretical Computer Science 250 (2001) 1–30 15

Table 3
Algorithm 3 – an algorithm for the detection of all c-cliques which is based on Algorithm 1

ENUMERATE C CLIQUES (C; P; D; S)
B enumerates all c-cliques in an arbitrary graph G
P: set of vertices which can be added to C, because they are neighbours of vertex u via c-edges
D: set of vertices which cannot directly be added to C, because they are neighbours of u via d-edges

01 Let P be the set {u1; : : : ; uk};
02 if P= ∅ and S = ∅
03 then REPORT CLIQUES;
04 else for i← 1 to k
05 do P ← P\{ui};
06 P′ ← P;
07 D′ ← D;
08 S′ ← S;
09 N ← {v∈V |{ui; v}∈E};
10 for all v∈D′
11 do if v and ui are adjacent via a c-edge
12 then P′ ← P′ ∪ {v};
13 D′ ← D′\{v};
14 �;
15 od;
16 ENUMERATE C CLIQUES (C ∪ {ui}; P′ ∩ N; D′ ∩ N; S′ ∩ N);
17 S ← S ∪ {ui};
18 od;
19 �;

P and D such that P contains only vertices which are adjacent to at least one vertex
of C via a c-edge and D only vertices which are not adjacent to any vertex in C via
a c-edge. Now, as before C is extended only by vertices of P. If a vertex u∈P is
selected the vertices from D are proved whether they are adjacent to vertex u via a
c-edge (for-loop in lines 10 to 15). In this case we eliminate this vertex from D (line
13) and add it to P (line 12). For the recursion the new set D is intersected with the
neighbours of vertex u last added to C (line 16).
Analogously to Algorithms 1 and 2, we report a c-clique if P and S are empty. If

P is empty the current set C cannot be extended. If S is empty no vertex set that
contains C is reported as yet.

Lemma 4.5. A c-clique can also be reported if set D is not empty.

Proof. If D is not empty the product graph G still exhibits vertices which are adjacent
to all vertices in C, but via d-edges. That is independent on whether P and S are
empty. Fig. 8 gives an example for �nding a c-clique with a nonempty set D. Vertices
3 and 5 are in D from the beginning, because they are connected via d-edges to the
vertices of the c-clique. They remain in D also after the intersection because they are
all neighbours to all vertices in C.

16 I. Koch / Theoretical Computer Science 250 (2001) 1–30

Fig. 8. A graph, in which a c-clique is found with Algorithm 3, although the set D is not empty. The c-edges
are drawn in bold formation.

Table 4
Algorithm 4 – the initialization algorithm for Algorithms 3 and 5

INIT ALG 3 (C; P; D; S)
B initilization of Algorithms 3 and 5
T : set of vertices which have already been used for the initialization of ENUMERATE C CLIQUES

01 T ← ∅;
02 for all u∈V
03 do P ← ∅;
04 D← ∅;
05 S ← ∅;
06 N ← {v∈V |{u; v}∈E};
07 for each v∈N
08 do if u and v are adjacent via a c-edge
09 then if v∈ T
10 thenS ← S ∪ {v};
11 else P ← P ∪ {v};
12 �;
13 else if u and v are adjacent via a d-edge
14 then D← D ∪ {v};
15 �;
16 �;
17 od;
18 ENUMERATE C CLIQUES ({u}; P; D; S);
19 T ← T ∪ {u};
20 od;

In contrast to Algorithms 1 and 2, Algorithm 3 cannot be started with an empty set
C. Because each vertex in P must be connected to each vertex in C via a c-edge, P
has to be empty at the beginning. We need an initialization algorithm (see Table 4).
We could start Algorithm 3 for each vertex u∈V with the parameter list ({u}; P; D;

∅), whereby P contains the neighbours of vertex u which are connected with u via a
c-edge, and D contains the neighbours of u which are connected with u via a d-edge.
In that case Algorithm 3 would report each c-clique with n vertices exactly n times.To

I. Koch / Theoretical Computer Science 250 (2001) 1–30 17

avoid this we have to eliminate those vertices from P which have initialized Algorithm 3.
We introduce a new set T that contains these vertices. In Algorithm 3 we have to
prove at the place, where a vertex is moved from P to S, if the vertex has already
been used as a start vertex. If the vertex is an element of set T it will be moved to
S ′ otherwise to P′. We have to change line 12 in Algorithm 3 as follows:

11 if v ∈ T then S ′ = S ′ ∪ v; else P′ ←′ ∪v; �;

Theorem 4.6. Algorithm 3 exhibits the following invariants:
(i) All vertices in C are pairwise adjacent; and C is spanned by c-edges. Each

vertex of G that is adjacent to all vertices in C is in P; D; or S.
(ii) Each vertex u∈P is adjacent to all vertices in C and to at least one vertex in

C via a c-edge. Vertices from P are used for the extension of C. Is a vertex
from P once used for the extension of C or as initializing vertex of the function
ENUMERATE C CLIQUES() it will be moved to S.

(iii) Each vertex u∈ S is adjacent via c-edges or d-edges to all vertices in C. The
vertex sets of all c-cliques which contain the vertex set C ∪{u} are already
enumerated once.

(iv) Each vertex u∈D is adjacent to all vertices in C via d-edges. A vertex from D
can be used for the extension of P; if a vertex from P was moved to C; which
is adjacent to that vertex in D via a c-edge.

(v) The set T contains only vertices which already have been used once for initial-
izing the function CNUMERATE C CLIQUES().

(vi) If the call of the function ENUMERATE C CLIQUES() is �nished; the vertex sets of
all c-cliques are enumerated exactly once.

Proof. (i) The set C contains one vertex u at the beginning of the call of ENUMERATE C
CLIQUES(). C is extended only by vertices from P, i.e., by vertices which are adjacent
to all vertices in C and to at least one of them via a c-edge. During each recursion
call the sets P, D, and S are intersected with the neighbours of vertex u. Thus the sets
P, D, and S contain only neighbours to all vertices in C. In the for-loop (lines 10–15)
each vertex v that is adjacent to u is moved to P, D, or S.
(ii) Because of the stepwise intersection of P with the neighbours of the newly

added vertices mentioned in the proof of (i) it is obvious that each vertex u∈P is
adjacent to all vertices in C and to at least one vertex in C via a c-edge. From lines
01, 05, and 16 follows that only vertices from P serve for the extension of C. In line
17 vertex u is moved to S after passing through the recursion. If u∈T (line 12, the
above modi�ed line) vertex u is moved to S.
(iii) Because of the stepwise intersection of S with the neighbours of the newly

added vertices mentioned in the proof of (i) it is obvious that each vertex u∈ S is
adjacent to all vertices in C. Vertices which are adjacent to u via c-edges and which
are also in T , i.e., which were already used as initializing vertices are moved to S

18 I. Koch / Theoretical Computer Science 250 (2001) 1–30

Fig. 9. The complete recursion tree of Algorithm 3 (right) for for the graph G (left). The c-edges are drawn
as dotted lines. The vertices are labelled with the current vertex u which is added to the current set C. The
grey vertex is the root of the recursion tree. Only the paths consisting of solid edges have to be considered.
Paths from the root to a white end vertex describe c-cliques in G. Paths from the root to a black end vertex
describe complete subgraphs which are spanned by c-edges, but which are not maximal and therefore do
not represent cliques.

(line 10 in Algorithm 4). All neighbours of vertex u∈P, that was previously added
to C, are examined one after another if they could extend C ∪{u}. This is done by
the recursion calls of the function ENUMERATE C CLIQUES in the for-loop. So it is ensured
that all cliques containing C ∪{u} are enumerated.
(iv) Because of lines 13 and 14 in Algorithm 4 only those vertices are moved to D

which are adjacent to vertex u via a d-edge. They are only eliminated from D if they
are adjacent to a new vertex in C via a c-edge (line 13 in Algorithm 3).
(v) This statement follows directly from line 19 in Algorithm 4.
(vi) From (iii) follows that all c-cliques involving C ∪{u} are reported. Because

each vertex u∈P that was added previously to C is moved to S after the recursion, S
contains at the respective recursion level those vertices u which were already considered
during the recursion. If S is intersected with the neighbours of a vertex added previously
to C, two possibilities arise when P is empty.
(a) S is nonempty if vertices in S are neighbours of all vertices from C. So the

arising complete subgraph is not maximal.
(b) S is empty if all vertices previously located in S are removed because they are

not adjacent to at least one vertex in C.
The set S guarantees that each c-clique is reported only once in the function ENUME

RATE C CLIQUES(). The set T guarantees that vertices which have served as initializing
vertices are not added to P.

Fig. 9 demonstrates the decrease of the recursion tree by solving the all-c-clique
problem instead of the all-clique problem. To get all c-cliques it is su�cient to travers
the paths consisting of solid edges. The other pathes will be not considered by the
algorithm.

I. Koch / Theoretical Computer Science 250 (2001) 1–30 19

Fig. 10. An example for a state during the run of Algorithm 5 for searching a c-clique. The bold edges are
c-edges. Set C contains vertices 1; 2, and 3. Vertex v can only be moved to C if vertex u is already in C.

4.1.2. Modi�cation of Algorithm 2
A vertex v which is in D can later be added to C because it could be moved to

P. This occurs when a vertex ui ∈P is added to C which exhibits a c-edge to v∈D.
Vertex v cannot be added to P or C previously, because it is adjacent via a c-edge to
vertex ui which is in P, but not yet in C (see Fig. 10). Thus, vertices from D can move
to P one after another via a so-called c-path (see De�nition 4.7). This phenomenon
must be taken into account if we want to reduce the recursion tree by the detection
of equal subtrees as in Algorithm 2. The corresponding Algorithm 5 is represented in
Table 5. It must be examined for all neighbours v of the selected vertex ui wether they
are in P (line 13 in Algorithm 5). Then, vertex v moves to P′. If v∈ S, v moves to
S ′ (line 23). If v∈D we have to decide whether vertex v should be moved from D
to S ′ or to P′. If vertex v is adjacent to ui via a c-edge (line 16) and has not been
an initializing vertex (line 17), v moves to P′ (line 19). Otherwise, v is added to S ′

(line 18).
Although we can reduce the recursion tree by the above described modi�cation of

Algorithm 2 the e�ort for the additional comparisons is too high, such that the runtime
reduces not such drastically as by the modi�cation from Algorithms 1 to 3.

De�nition 4.7 (c-Path). For a given set D a c-path is a path from vertex u to vertex
v in the graph G such that all its edges are c-edges and all its vertices except vertex
u belong to set D.

Theorem 4.8. Although the reduction of vertices which have to pass through the
for-loop (lines 05–32); realized by the condition in line 06 of Algorithm 5; still all
c-cliques are reported exactly once.

Proof. Let C′ be an arbitrary c-clique in G. Let us consider an arbitrary place in the
recursion tree with the sets C; P; D, and S with C ⊆C′. It should be demonstrated
that the c-clique C′ with P′= S ′= ∅ is reported by the choice of a vertex ut and the
reduction of the for-loop, if only those vertices u∈P enter the for-loop,
(1) which are either not adjacent to vertex ut or
(2) which are adjacent to a vertex in D which is not adjacent to vertex ut via a c-path.

20 I. Koch / Theoretical Computer Science 250 (2001) 1–30

Table 5
Algorithm 5 – an enumeration algorithm for the detection of all c-cliques which is
based on Algorithm 2
ENUMERATE Z CLIQUES (C; P; D; S)
. enumerates all c-cliques in an arbitrary graph G

01 Let P be the set {u1; : : : ; uk};
02 if P= ∅
03 then if S = ∅ then REPORT CLIQUE; �;
04 else Let ut be a vertex from P;
05 for i← 1 to k
06 do if ui is not adjacent to ut or ui is connected via a c-path
06 with a vertex from D that is not adjacent to ut
07 then P←P\{ui};
08 P′←P;
09 D′←D;
10 S′← S;
11 N←{v∈V |{ui; v}∈E};
12 for all v∈D′
13 do if v∈P
14 then P′ =P′ ∪{v};
15 else if v∈D \\ can v be added to P?
16 then if v and ui are adjacent via a c-edge
00 \\ is v an initializing vertex?
17 then if v∈ T
18 then S′ = S′ ∪{v};
19 else P′←P′ ∪{v};
20 �;
21 D′←D′\{v};
22 �;
23 else if v∈ S then S′ = S′ ∪{v}; �;
24 �;
25 �;
26 od;
27 �;
28 ENUMERATE C CLIQUES (C ∪{ui}; P′ ∩N; D′ ∩N; S′ ∩N);
29 S← S ∪{ui};
30 od;
31 �;

Let us consider the following cases:

(i) If C′ contains a vertex u∈P which is not adjacent to ut , so vertex u ful�ls (1)
and can enter the for-loop.

(ii) Now, let C′ ∩P contain only vertices which are adjacent to vertex ut . Then, we
can distinguish the following two cases:
(a) If ut ∈C′; ut can enter the for-loop because ut is not adjacent to itself. Then,

(1) is also ful�lled.
(b) Now, let ut =∈C′. Set C′ is found at the branch point with the set C (see

Fig. 11) in the unrestricted recursion tree. P(i) and S(i) with 06i6k should
be the sets P and S, respectively, which are found at certain vertices on the

I. Koch / Theoretical Computer Science 250 (2001) 1–30 21

Fig. 11. The outline of the proof for Algorithm 5.

path from C to C′ in the unrestricted recursion tree. Because ut =∈C′, vertex
ut must be removed from P(0) and S(0) respectively anytime. But this cannot
be done by a vertex from P because all vertices from C′ ∩P are adjacent to
vertex ut (see (ii)). Consequently, it can only be reached via a vertex v from
D. Such a vertex v cannot be adjacent to vertex ut , because ut would always
remain in P(0) and S(0) respectively during the intersection.
It remains to show that in this case we can �nd a vertex u∈C′ which has

entered the for-loop, because it ful�ls (2). Thereto, it is required that this
vertex u exhibits a c-path to a vertex v∈D which is not adjacent to vertex
ut . Let us construct this path now.
We consider vertex v∈D that we have found above. Vertex v must attain

P(0) anytime in order to move to set C′ later. This occurs only if vertex v is
adjacent via a c-edge to a vertex u1 ∈P(1) which has entered C(0). If vertex
u1 ∈P holds we choose u= u1, and we have �nished. Otherwise u1 ∈D holds,
and we continue with the construction. Vertex u1 must in turn be moved from
D to P(1). That occurs only if vertex u1 is adjacent via a c-edge to a vertex
u2 ∈P(2) which has entered C(1). We can continue until we have found a
vertex uk ∈P. Thus, a c-path from vertex uk to a vertex v arises, and u= uk
ful�ls the condition (2).

Herewith, we demonstrated the possibility for the reduction of the for-loop at a
branch point in the recursion tree. Attaining the next branch point in the recursion tree
the same possibility for the reduction of the for-loop exists, etc. until we reach the
c-clique C′ also in the reduced recursion tree.

22 I. Koch / Theoretical Computer Science 250 (2001) 1–30

Table 6
The data structure for objects

typedef struct obj type
{

int vertex;
int set;
struct obj type *next set;
struct obj type *prev set;
struct obj type *next vertex;
struct obj type *prev vertex;

} OBJ TYPE;

5. Data structure

We used a special data structure with the functions insert, remove, and membership.
Usually, it is not possible to �nd an implementation where all these functions are
running in constant time. But in our special case we could realize this e�cient kind of
implementation. We have implemented a network of objects of the structure obj type
(see Table 6).
We consider two types of paths through this network realized by two lists of ad-

dresses of these objects. The �rst list set array stores the addresses of objects for
the sets C; P; S, and additionally D for Algorithms 3; 4, and 5 in the order as they
emerge during the run. The second list vertex array has the length of the cardinality of
the product graph G. It contains the addresses of those objects, which have considered
the respective vertex last. The sets and vertices are subscripted by their numbers in the
arrays set array and vertex array respectively.
Tables 7 and 8 represent the functions NEW SET(), INSERT(), MEMBERSHIP(),

REMOVE OBJECT(), REMOVE SET(), and REMOVE VERTEX FROM SET() for handling of the data
structure obj type. We always create a new object by moving the pointer next vertex to
the set M , when a new vertex u is inserted into set M . We assign the address of M in
set array to the pointer prev vertex of the new object. Analogously, we assign the ad-
dress of vertex u in vertex array to the pointer prev set of the new object. The pointer
next set of vertex u is written to the pointer next set of the new object. Via both lists
set array and vertex array we have fast entries to the network. Coevally, we have real-
ized a double catenation of the objects, once over the sets and once over the vertices.
Along the pointer chain set array[M]:next vertex→· · ·→ next vertex we yield all
vertices belonging to set M . Along the pointer chain vertex array[u]:next set→· · ·→
next set we yield all sets, which were passed by vertex u.

Lemma 5.1. The insertion of sets and vertices takes place in constant time.

Proof. The insertion of a set M takes place by appending the set to the head of the list
set array, i.e., in constant time. The insertion of a vertex u takes place by the creation
of a new object, which will be appended to the head of the list vertex array[u]. Thus,
the time for insertion remains bounded to a constant.

I. Koch / Theoretical Computer Science 250 (2001) 1–30 23

Table 7
The functions NEW SET(), INSERT(), and MEMBERSHIP()

o: object
no: number of objects
ns: number of sets
size: array for the set sizes
set array: list with the addresses of sets
vertex array: list with the addresses of vertices

int NEW SET()
B introduces a new set and returns the new set number.
01 set array[ns]:next vertex=NIL;
02 size[ns]← 0; == initializes the set size
03 ns← ns + 1; == increments the set number
04 return(ns);

void INSERT(u; s)
B inserts a vertex u to set s.
01 NEW OBJECT(); == creates a new object o
02 no← no + 1; == increases the number of objects
03 o→ vertex← u; == inserts vertex u to object o
04 o→ set← s; == inserts set s to object o
05 o→ prev vertex←&set array[s]; == inserts object o to set array
06 o→ next vertex← set array[s]:next vertex;
07 set array[s]:next vertex← o;
08 if o→ next vertex
09 then o→ next vertex→ prev vertex← o;
10 �;
11 o→ prev vertex←&vertex array[u]; == inserts o to vertex array
12 o→ next set← vertex array[u]:next set;
13 vertex array[u]:next set← o;
14 if o→ next set
15 then o→ next set→ prev set← o;
16 �;
17 size[s]← size[s] + 1; == increases the set size

int MEMBERSHIP(u; s)
B answers the question after the membership of vertex u to a set s.
01 x← 0; == initializes the counter for searched sets
02 o← vertex array[u]:next set; == sets the initial object
03 while o and o→ set 6= s
04 do o← o→ next set; == passes the next set-pointer
05 x← x + 1;
06 od;
07 if x¿8 and o == u was not found in the last 8 sets
08 then return(0);
09 �;
10 return (o 6=0 and o→ set= s);

Lemma 5.2. The question for the membership of a vertex u to a set M can be
answered in constant time.

Proof. According to Theorem 3.3(i) for Algorithms 1 and 2 and Theorem 4.6(i) for
Algorithms 3; 4, and 5 each vertex of the product graph G is situated either in C; P,

24 I. Koch / Theoretical Computer Science 250 (2001) 1–30

Table 8
The functions REMOVE OBJECT(), REMOVE SET(), and REMOVE VERTEX FROM SET()

void REMOVE OBJECT(o)
B removes an object o.
// replaces the pointers in the previous set and previous vertex
01 o→ prev set → next set ← o→ next set;
02 o→ prev vertex → next vertex ← o→ next vertex;
03 if o→ next set
04 then o→ next set → prev set ← o→ prev set;
05 �;
06 if o→ next vertex
07 then o→ next vertex → prev vertex ← o→ prev vertex;
08 �;
09 no← no− 1; // decreases the number of objects

void REMOVE SET(s)
B removes a set s.
01 ns← ns− 1;
02 if s 6= ns // decreases the number of sets
03 then exit;
04 �;
05 while set array[s]:next vertex // removes all objects in the set
06 do REMOVE OBJECT(set array[s]:next vertex);
07 od;

void REMOVE VERTEX FROM SET(u; s)
B removes a vertex u from set s.
01 o← vertex array[u]:next set;
02 if o = 0 or o→ set 6= s;
03 then exit();
04 �;
03 REMOVE OBJECT(o); // removes object o of vertex u
04 size[s]← size[s]− 1; // decreases the number of objects
in the set

or S for Algorithms 1 and 2, and also in D for Algorithms 3; 4, and 5. A vertex
can only occur in these sets which are appearing during one recursion step. Thus, we
are interested in knowing whether a vertex occurs in the last six (for Algorithms 1
and 2) or eight (for Algorithms 3–5), respectively, created sets. So it is su�cient to
consider at most eight sets, namely the sets C; P; S, and D, and the modi�ed sets for the
recursion call C′; P′; S ′, and D′. Thus, the search time through the list, which contains
the respective sets in which a vertex can occur, is bounded to a constant.

Lemma 5.3. The removing of sets and vertices takes place in constant time.

Proof. By Lemma 5.2 the access to that place in the net, where the object to be deleted
is located, takes place in constant time. The removing of a set or a vertex is performed
by moving of the pointers next vertex and prev vertex, and the pointers next set and
prev set respectively, and a deletion of the object.

I. Koch / Theoretical Computer Science 250 (2001) 1–30 25

Because of Lemmata 5.1, 5.2, and 5.3 the used data structure realizes the functions
insert, remove, and membership in constant time. The needed time for one recursion
step is constant.

6. Runtime results

6.1. Results from graphs derived from protein structures

First, we want to discuss the runtime results for those graphs which were derived
from protein structures. In this case graphs to be compared are limited in their size
by nature. They exhibit at most 80 vertices and 100 edges. About one quarter of
them has more than 10 vertices and 10 edges. The vertex degree is not larger than
�ve. Though these graphs are not very large and dense, the arising product graphs
can be large, because they have only two di�erent vertex labels and three di�erent
edge labels, so that a lot of matches can appear. Most product graphs exhibit 100–150
vertices and 2000–4000 edges. The number of circles di�ers from 1000 to 5000. The
number of triangles is mostly much lower (500–1000) than the number of circles. The
product graphs derived from protein structures cannot be assigned to a certain graph
class.
The runtimes for three examples with small, medium-sized, and large product graphs

are compiled in Table 9. They were performed on a SUN=SPARC-computer 10=30.
The algorithms are abbreviated as follows. BK stands for Algorithm 1. BKYP de-

notes Algorithm 2. The Y indicates the introduction of vertex ut , and P indicates the
set from where vertex ut was chosen. BKYPN is the name for Algorithm 2 whereas
the element with the largest number of neighbours was selected from set P as vertex
ut . Analogously, BKYS indicates that vertex ut is chosen from set S. The algorithms
containing a Y in their names are called also Y-variants. The names of the algo-
rithms, which calculate connected maximal common subgraphs, are extended by a C
for connected, e.g., BKC, BKCYP etc. The same types of variants are used. These
algorithms are called C-variants. BKC denotes Algorithm 3 and BKCYP Algorithm
5.
We see that the runtime improvement is drastically for medium-sized and large prod-

uct graphs (see Table 9). The number of cliques found by C-variants is signi�cantly
lower than in case of the other variants, especially for large cliques. The number
of possible substructures is much higher in case of searching cliques than searching
c-cliques. Consequently, much more cliques arise than c-cliques. For example, for a
clique of size 9 the di�erence between the number of cliques of 105 743 and of 16
for c-cliques is the most signi�cant one. All these 105 743 cliques had to be checked
for possible extensions by the algorithm, so that the recursion tree grows during the
search accordingly.
Using the new algorithms it became possible to solve the problem of protein structure

comparison for large proteins in a reasonable amount of time and space. Despite of
the modi�cation of the MCS-problem the results are biologically correct [16, 17].

26 I. Koch / Theoretical Computer Science 250 (2001) 1–30

Table 9
Runtimes, clique sizes, and numbers of cliques for product graphs derived from protein structures

Size Small Medium Large Size Small Medium Large

runtime runtime

alg. (s) (min:s) alg. (s) (min:s)

BK 0.02 172:55 ¿4 days BKC 0.02 0:69 18:08
BKYP 0.02 45.71 ¿4 days BKCYP 0.02 0:73 18:17
BKYPN 0.03 26.84 ¿4 days BKCYPN 0.04 0:70 18:17
BKYS 0.03 20.79 ¿4 days BKCYS 0.03 0:72 17:93

Size Number of cliques Size Number of c-cliques
1 1 2 15 65
2 3 2 1 20 75
3 2 3 1 24 48
4 1 4 1 30 62
5 55 5 7 39
6 2473 6 13 94
7 27075 7 2 73
8 90304 8 4 35
9 105743 9 16
10 47398 10 4
11 9484 11
12 738 12
13 8 13

6.2. Results for random graphs

To investigate the runtimes of the algorithms for several large and dense graphs we
have generated random graphs which serve as product graphs with 100, 300, and 600
vertices with respective di�erent edge densities. The number of edges are 1=9, 1=6,
and 1=3 of all possible edges. 1=3 of all edges are labelled as d-edges, the others as
c-edges.
The results for random graphs were performed on a SUN-Enterprise 4000 with six

processors and 765 MB main memory. The processors are Ultra-Sparc-1-processors
with a clock rate of 176 MHz. The results are compiled in the Tables 10–12. Each
table contains the graph sizes, the numbers and sizes of the reported cliques as well as
the runtimes and the sizes of the recursion trees (rec. trees) per algorithm (alg.). We
observe the same tendencies in the runtime performance as in case of graphs derived
from protein structures.
In case of small graphs (see Table 10) there are no signi�cant di�erences in the

runtimes, although the size of the recursion trees is much higher for the non-C-variants
than for the C-variants. Also the numbers of cliques are higher than the numbers of c-
cliques. The di�erences in the runtime between non-Y-variants and Y-variants are also
small in case of graphs with 100 vertices. Within the algorithms which do not calculate
c-cliques the Y-variants are exiguously faster than the simple BK-algorithm for graphs
with 100 vertices for sparse as well as for dense graphs, although the recursion trees are

I. Koch / Theoretical Computer Science 250 (2001) 1–30 27

Table 10
Runtimes, sizes of the recursion trees, clique sizes, and numbers of cliques for random graphs with 100
vertices

100 vertices

Edges 532 778 1601 532 778 1601

Runtime (s) Runtime (s)
alg. size of rec. tree alg. size of rec. tree

BK 0.07 0.11 1.43 BKC 0.02 0.05 0.37
859 1561 12389 304 547 3433

BKYP 0.06 0.12 0.99 BKCYP 0.04 0.06 0.37
782 1323 8606 298 538 3257

BKYPN 0.07 0.11 0.93 BKCYPN 0.05 0.07 0.39
737 1292 8011 298 534 3241

BKYS 0.07 0.11 1.04 BKCYS 0.04 0.06 0.39
792 1376 8588 302 544 3321

Size Clique number Size c-Clique number
1 1 2
2 158 63 1 2 95 68 3
3 182 438 197 3 37 123 151
4 6 54 1573 4 1 15 510
5 1 616 5 221
6 41 6 13
7 1 7
8 1 8

signi�cantly smaller in case of Y-variants. Comparing results of the BKYP-variant with
those of the BKYPN-variant the BKYPN-variant is always somewhat slower than the
BKYP-variant, also for dense as well as for sparse graphs. This is due to the additional
steps needed �nd the element from P with the largest number of neighbours.
The C-variants are always faster than the non-C-variants (see also Tables 3 and 6).

The number of cliques is reduced drastically by searching c-cliques. Also the runtimes
are decreased drastically. This e�ect occurs already for graphs with 100 vertices. The
numbers of the recursions give an imagination of the sizes of the solution trees, and
also demonstrate the e�ectiveness of the new algorithms.
Coevally, we see that the di�erences between the single variants of the C-algorithms

are minimal even for large graphs no matter their density. Here we observe the same
behaviour as in case of non-C-variants. It is noteworthy that the simple variant BKC
always works faster than the other three Y-variants, although the recursion trees are
signi�cantly larger for the BKC-variant, especially for large and more dense graphs.
This is caused by the additional requests in the search for a vertex ut or for vertices,
which are not adjacent to ut or which are adjacent to ut and are connected to a vertex
from set D, which is not adjacent to vertex ut via a c-path (see line 06 in Algorithm 5).
Thus, considering the Y-variants for the c-clique problem, the algorithms become not
faster, because the additional requests in the algorithms can be very time consuming.

28 I. Koch / Theoretical Computer Science 250 (2001) 1–30

Table 11
Runtimes, sizes of the recursion trees, clique sizes, and numbers of cliques for random graphs with 300
vertices

300 vertices

Edges 4938 7400 14773 4938 7400 14773

Runtime (s) Runtime (s)
alg. size of rec. tree alg. size of rec. tree

BK 1.26 5.23 254.63 BKC 0.44 1.33 64.74
11694 34762 958796 3656 9692 285640

BKYP 1.23 4.63 192.82 BKCYP 0.47 1.40 67.62
10659 30119 665217 3578 9320 264850

BKYPN 1.29 4.39 171.91 BKCYPN 0.47 1.42 67.94
10398 28715 612726 3571 9306 263523

BKYS 1.25 4.55 172.92 BKCYS 0.45 1.40 164.68
10608 29354 595304 3619 9418 595304

Size Clique number Size c-Clique number

2 139 1 2 214 18
3 3976 5336 3 1150 2019 28
4 557 5364 11973 4 164 1500 6809
5 3 291 93131 5 2 95 35737
6 2 39772 6 1 16594
7 2665 7 1347
8 43 8 30

In contrast to that the Y-variants of the non-C-algorithms always exhibit an advantage
of runtime opposite to the simple BK-variant.

7. Conclusions

We have developed novel algorithms for �nding all connected maximal common sub-
graphs in arbitrary graphs which are signi�cantly faster than algorithms for enumerating
maximal common subgraphs known so far. The new algorithms solve the problem for
searching connected maximal common subgraphs. The strong decrease of the runtime
is due to removing all cliques which represent disconnected subgraphs already during
the search. Thus, in the recursion tree the paths which lead to disconnected subgraphs
can be cut early so that the size of the recursion tree is reduced signi�cantly. Nev-
ertheless the problem remains NP-hard, now using the novel algorithms larger graphs
can be examined than it was possible hitherto.
The new algorithms are based on the Bron–Kerbosch algorithm. We have explained

the modi�cations of this algorithm to solve the all-c-clique Problem. We have presented
and discussed some variants of the modi�ed algorithm. Several heuristics were intro-
duced to improve the runtime performance. But all these variants became not faster
because it is too expensive to search for special vertices which should �rstly pass

I. Koch / Theoretical Computer Science 250 (2001) 1–30 29

Table 12
Runtimes, sizes of the recursion trees, clique sizes, and numbers of cliques for random graphs with
600 vertices

600 vertices

Edges 19 670 29 661 59 585 19 670 29 661 59 585

Runtime (s) Runtime (s)

alg. size of rec. tree alg. size of rec. tree

BK 13.09 74.49 11604.35 BKC 3.47 17.17 3156.34
76099 308464 23415175 21556 83690 7542693

BKYP 13.00 70.24 8594.01 BKCYP 3.80 18.86 3260.09
69544 266724 16000304 21016 80667 6927312

BKYPN 12.69 68.28 8738.24 BKCYPN 3.85 19.08 3293.56
68023 260102 15197537 20943 80472 6900203

BKYS 12.87 67.84 7623.95 BKCYS 3.74 19.01 3278.04
68540 257648 13972060 21173 81421 6996827

Size Clique number Size c-Clique number

2 12 2 109 1
3 21509 11115 3 6899 6392
4 8250 68846 4949 4 2322 20541 5725
5 161 8943 935205 5 44 2833 421481
6 112 1858200 6 49 804477
7 359975 7 180516
8 14410 8 8495
9 136 9 97
10 1 10 1

through the main for-loop. Maybe, for special graphs the runtime can be decreased by
some of the heuristics, but that was not yet investigated.
In case of comparing protein structures the conventional algorithms were not appli-

cable for large structures because of the size of the arising product graphs. Using the
new algorithms the comparisons could be done mostly in a few seconds or in the scope
of minutes [16]. The algorithms are robust and fast. They can be applied to arbitrary
graphs. The need to calculate maximal common substructures occurs frequently. In
many cases the connected maximal common substructures are su�cient solutions. We
think that the presented algorithms can be applied easily in many �elds.

Acknowledgements

I would like to thank Dr. Frieder Kaden and Prof. Egon Wanke for the many critical
and fruitful discussions. Also I thank the referees for the helpful comments. Parts of the
work were done during my stay at the GMD-German Research Center for Information
Technology.

30 I. Koch / Theoretical Computer Science 250 (2001) 1–30

References

[1] E.A. Akkoyunlu, The enumeration of maximal cliques of large graphs, SIAM J. Comput. 2 (1973) 1–6.
[2] L. Babel, G. Tinhofer, A branch and bound algorithm for the maximum clique problem, Methods Models

Oper. Res. 34 (1990) 207–217.
[3] E. Balas, H. Samuelsson, A node covering algorithm, Naval Res. Log. Quart. 24 (1977) 213–233.
[4] E. Balas, C.S. Yu, Finding a maximum clique in an arbitrary graph, SIAM J. Comput. 15 (1986)

1054–1068.
[5] A.T. Brint, P. Willett, Algorithms for the identi�cation of three-dimensional maximal common

substructures, J. Chem. Inform. Comput. Sci. 2 (1987) 311–320.
[6] C. Bron, J. Kerbosch, Algorithm 457 – �nding all cliques of an undirected graph, Comm. ACM 16

(1973) 575–577.
[7] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory on NP-Completeness,

W.H. Freeman and Company, San Francisco, CA, 1979.
[8] F. Gavril, Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and

maximum independent set of chordal graphs, SIAM J. Comput. 1 (1972) 180–187.
[9] L. Gerhards, W. Lindenberg, Clique detection for nondirected graphs: two new algorithms, Computing

21 (1979) 295–322.
[10] M. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.
[11] H.M. Grindley, P.J. Artymiuk, D.W. Rice, P. Willett, Identi�cation of tertiary structure resemblance in

proteins using a maximal common subgraph isomorphism algorithm, J. Mol. Biol. 229 (1993) 707–721.
[12] F. Harary, Graph Theory, R. Oldenburg Verlag, M�unchen - Wien, 1974.
[13] J. H�astad, Clique is hard to appromimate within n1−�, in: Proceedings of the 38th Ann. Symp. Found.

Comp. Science – FOCS’96, IEEE, Burlington, Vermont, Washington, Brussels, Tokyo, 1996, pp. 627–
633.

[14] W.-L. Hsu, Y. Ikura, G.L. Nemhauser, A polynomial algorithm for maximum weighted vertex packings
on graphs without long odd cycles, Math. Programming 20 (1981) 225–232.

[15] H.J. Johnston, Cliques of a graph – variations on the Bron–Kerbosch algorithm, Int. J. Comput. Inform.
Sci. 5 (1976) 209–238.

[16] I. Koch, T. Lengauer, Detection of distant structural similarities in a set of proteins using a fast
graph-based method, in: T. Gaasterland, P. Karp, K. Karplus, C. Ouzounis, C. Sander, A. Valencia
(Eds.), Proc. 5th Int. Conf. on Intelligent Systems for Molecular Biology, AAAI Press, Menlo Park,
CA, 1997, pp. 167–178.

[17] I. Koch, T. Lengauer, E. Wanke, An algorithm for �nding maximal common subtopologies in a set of
protein structures, J. Comput. Biol. 3 (1996) 289–306.

[18] G. Levi, A note on the derivation of maximal common subgraphs of two directed or undirected graphs,
Calcolo 9 (1972) 341–352.

[19] T. Madej, J.-F. Gibrat, S.H. Bryant, Threading a database of protein cores, PROTEINS:, Struct. Function
Genetics 23 (1995) 356–369.

[20] K. Mizguchi, N. G �o, Comparison of spatial arrangements of secondary structural elements in proteins,
Protein Eng. 8 (1995) 353–362.

[21] J.W. Moon, L. Moser, On Cliques in graphs, Israel. J. Math. 3 (1965) 23–28.
[22] V. Nicholson, C.-C. Tsai, M. Johnson, M. Naim, A subgraph isomorphism theorem for molecular

graphs, in: R.B. King, D.H. Rouvray (Eds.), Graph Theory and Topology in Chemistry, Elsevier Science
Publishers B.V., Amsterdam, 1987, pp. 226–230.

[23] R.E. Tarjan, A.E. Trojanowski, Finding a maximum independent set, SIAM J. Comput. 6 (1977) 537–
546.

[24] H. Whitney, Congruent graphs and the connectivity of graphs, Amer. J. Math. 54 (1932) 150–168.

