
On enumerating all minimal solutions
of feedback problems

Benno Schwikowski∗

The Institute for Systems Biology
4225 Roosevelt Way NE, Suite 200

Seattle, Washington 98105-6099, USA

and

Ewald Speckenmeyer

Inst. f. Informatik, Pohligstr. 1, 50969 Köln, Germany

Abstract

We present an algorithm that generates all (inclusion-wise) min-
imal feedback vertex sets of a directed graph G = (V, E). The
feedback vertex sets of G are generated with a polynomial delay of
O
(
|V |2(|V | + |E|)

)
. We further show that the underlying technique

can be tailored to generate all minimal solutions for the undirected
case and the directed feedback arc set problem, both with a polyno-
mial delay of O

(
|V | |E| (|V |+ |E|)

)
. Finally we prove that computing

the number of minimal feedback arc sets is #P-hard.

Keywords: Feedback vertex sets, feedback arc sets, enumeration algo-
rithm, polynomial delay, #P-hardness

1 Introduction

In a directed graph, a feedback vertex set is a subset of its vertices that con-
tains at least one vertex of any directed cycle. Equivalently, it is a vertex
set whose removal makes the graph acyclic. A feedback arc set is a set of
arcs that makes a graph acyclic when removed, and the problem of finding
feedback arc and vertex sets can also be formulated for undirected graphs.
In applications it is usually desirable to compute a feedback set that is min-
imum, i.e., of minimal size. Applications that involve feedback problems
include VLSI design [1], proving partial correctness of programs [3], cryp-
tography [5], and deadlock recovery in operating systems [10]. Speckenmeyer
[17] gives an overview.

The problem of determining a minimum feedback arc set in an undirected
graph is simple, because the solutions are the arc complements of minimal
spanning trees. In contrast to this, the three other feedback problems are

∗Corresponding author. E-mail: benno@systemsbiology.org

1

Accepted for publication by Discrete Applied Mathematics

NP-hard [8], and little structural insight could yet be applied to their algo-
rithmic treatment (for one counterexample, see [16]). Wang et al. [21] have
called the feedback vertex set problem “probably the least understood of the
classic [NP-complete] problems”.

Observe that the number of minimal, and even minimum solutions, can
be exponential in the size of the graph; Fig. 1 gives an example. Therefore
the total runtime of any enumeration algorithm cannot be expected to be
polynomial in the size of the graph.

��

��

����

��

��

��

Figure 1: A graph with 2n/2 minimal feedback vertex sets

However, certain enumeration algorithms for other combinatorial prob-
lems work with polynomial delay, i.e., the algorithm performs at most a
polynomial number of steps before the first and between successive outputs.
Known algorithms for determining minimum feedback arc sets in general
graphs (e.g., [2, 19]) do not work with polynomial delay. These algorithms
are based on enumerating the cycles of a given graph, and then treating it as
a set cover problem. Our example graph in Figure 2 shows that any approach
based on enumerating the cycles of a graph cannot work with polynomial
delay. The graph has only a linear number of minimal feedback arc and
minimal feedback vertex sets, but 2n simple cycles. With a total runtime
at least in the order of 2n for enumerating the cycles alone, any algorithm
that works on this basis necessarily has a delay at least in the order of 2n/n
between some of its outputs.

Our results. In this paper we give the first polynomial-delay enumeration
algorithms for the three structurally difficult feedback problems. Our algo-
rithm for generating all minimal feedback vertex sets for a directed graph
G = (V, E) relies on an exhaustive search in a superstructure graph Φ, whose
vertices represent the minimal feedback vertex sets of G. The vertex vF of
Φ, representing the minimal feedback vertex set F of G, is connected by
an arc to the vertex vF ′′ of Φ that represents the minimal FVS F ′′ of G, if
F ′′ can be obtained by a local operation from F as follows. Delete a vertex
v from F and add all vertices w to F reachable from F via an arc (v, w).
Denote the feedback vertex set obtained in this way by F ′. F ′ is not neces-

2

�� �� ����

Figure 2: A graph with a linear number of minimal feedback sets and 2n

simple cycles

sarily a minimal feedback vertex set. Determine a minimal feedback vertex
set F ′′ ⊆ F ′ in an arbitrary but fixed way. Note that the superstructure
graph Φ defined in this way has exactly one “successor vertex” F ′′ for every
minimal feedback vertex set F and every v ∈ F .

We will show in section 2 that Φ is strongly connected and has a diameter
of at most |V |. Applying exhaustive search to Φ then yields our first result,
that all minimal feedback vertex sets of a directed graphG can be determined
in time O

(
|V |2(|V |+ |E|)

)
for each vertex in Φ, see Theorem 1. In sections

3 and 4 we tailor the same technique to enumerating all minimal feedback
vertex sets of undirected graphs and for enumerating all minimal feedback
arc sets of directed graphs. Since the previous approaches for approximating
these problems are completely different from each other [6], it is remarkable
that we can apply the same technique to all three enumeration problems.

Relationship to transversals in planar graphs. The algorithm for
enumerating minimal feedback arc sets can also be applied to enumerate the
minimal transversals of planar directed graphs G = (V, E) as follows. Any
set of arcs going from a vertex subset X ⊆ V to V \X is called a directed cut
if there is no arc from V \X to X . A transversal is a set of arcs that contains
at least one arc of each directed cut. Since a directed cut in a planar graph
G corresponds to the set of arcs in a directed cycle in its dual graph H , a
transversal in G corresponds to a feedback arc set in H and vice versa. As
an interesting direct consequence of this correspondence and the theorem of
Lucchesi-Younger [12] we mention that, for any minimum feedback arc set
in a planar graph, one can find a set of arc-disjoint directed cycles of the
same cardinality.

Relationship to acyclic orientations. As we show in section 5, minimal
feedback arc sets can be regarded as a generalization to the problem of

3

computing acyclic orientations. An acyclic orientation assigns a direction
to each arc of an undirected graph, such that the resulting directed graph
has no directed cycle. The acyclic orientations of an undirected graph G

correspond to the minimal feedback arc sets of a closely related directed
graph. Building on a previous hardness result about acyclic orientations,
we establish that counting the minimal feedback arc sets of a graph is a
#P-hard problem.

Notice that we do not address the problem of enumerating minimal feed-
back arc sets of undirected graphs. Although the problem of finding a min-
imum feedback arc set is trivial, enumerating all instances efficiently is not
necessarily as simple. However, the enumeration problem is structurally
simpler, and has recently been solved optimally [15].

Related problems. It is interesting to note that feedback problems gen-
eralize several other well-studied problems. Minimal feedback vertex sets
are intimately related to the extremal solutions of other combinatorial opti-
mization problems. A set F of vertices in an undirected graph G = (V, E)
is a vertex cover iff F is a feedback vertex set in the directed graph G′ that
has two directed arcs for each undirected arc in G. Thus, finding feedback
vertex sets is a generalization to the problem of finding vertex covers. Fur-
ther, F is a vertex cover if and only if V − F is an independent set, and
only in this case, V −F is a clique in the arc complement graph of G. Thus,
finding minimal feedback vertex sets can be regarded as a generalization to
the problem of finding minimal vertex covers, maximal independent sets, or
maximal cliques in a graph.

Previous results for maximal independent sets, maximal cliques,
and acyclic orientations. Several authors [9, 7] have given algorithms
that compute all maximal independent sets of a given graph. The algorithm
of Tsukiyama et al.[20] uses a delay of O

(
|V | |E|

)
. Algorithms for generating

all (maximal) cliques are surveyed in [13] and [14]. [18] gives an algorithm
that computes acyclic orientations in (amortized) time O

(
|V |
)
per solution.

2 Feedback vertex sets of directed graphs

A feedback vertex set (FVS) of a directed graph G = (V, E) is a set F ⊆ V

where C ∩ F �= ∅ for any directed cycle C of G. F is a minimal feedback
vertex set (MFVS) if there is no feedback vertex set F ′ �= F , F ′ ⊆ F .
Our algorithm exploits a simple relation between MFVSs that allows for
generating all MFVSs by local modification.

Let F be a MFVS of G, v ∈ F . By N+(v) we denote the set of vertices
v′ ∈ V with (v, v′) ∈ E. The FVS F ′ = (F − v) ∪ N+(v) contains at least

4

one MFVS F ′′ as a subset. We call each MFVS F ′′ ⊆ F − v ∪ N+(v) a
(v-)successor of F .

For any MFVS F and v ∈ F there can be an exponential number of v-
successors F ′′. This can be seen by adding to the graph Gn in Fig. 1 the arcs
(v1, v2), (v1, v3), . . . , (v1, vn). Observe that F = {v1, v3, . . . , vn−1} is a MFVS
of the resulting graph G′n. Further, each set F ′′ of vertices that contains v1,
vn and exactly one vertex of each set {v2i−1, v2i}, i = 2, . . . , n/2 − 1, is a
v1-successor of F . Hence there are 2

n
2
−2 different v1-successors of F in Gn.

For our purpose we will just need one v-successor of a MFVS F that can
be chosen arbitrarily. We assume that a successor function µG : 2V ×V −→
2V assigns some fixed v-successor F ′′0 of F to any such pair (F, v). We also
call F ′′0 = µG(F, v) a µG-successor of F .

Transforming MFVSs. We now present an algorithm that, given two
arbitrary MFVSs, F and F ∗, transforms F into F ∗ by generating µG-
successors.

Algorithm Transform-Directed-MFVS (G = (V, E), F, F ∗, µG)

1 compute a topological order T of G− F ∗;
2 F0 := F , k := 0;
3 while Fk �= F ∗ do
4 let vk be the minimal vertex of Fk ∩ (V − F ∗) with respect to T ;
5 Fk+1 := µG(Fk, vk);
6 k := k + 1;
7 od
8 output (F0, . . . , Fk);

Note that Transform-Directed-MFVS is not a completely specified
algorithm; the topological ordering in line 1 contains an ambiguity which
can be resolved arbitrarily. Yet the following lemma asserts the correctness
of Transform-Directed-MFVS.

Lemma 1. For any directed graph G = (V, E), minimal feedback vertex sets
F and F ∗, and any successor function µG of G, Transform-Directed-
MFVS(G, F, F ∗, µG) computes a sequence F = F0, · · · , Fs = F ∗ where s ≤
|V | − |F ∗|, and Fi+1 is a µG-successor of Fi for i = 0, . . . , s− 1.

Proof. Because of line 3, Transform-Directed-MFVS terminates only
if Fk = F ∗. Thus it remains to show that Transform-Directed-MFVS
terminates after at most r = |V | − |F ∗| iterations of the while loop.

W.l.o.g. we can assume that |V | = {1, . . . , n} and (1, . . . , r) is the topo-
logical order T of G−F ∗. A topological order of V −F ∗ always exists, since
F ∗ is a feedback vertex set, and thus G− F ∗ is acyclic.

5

Let k be a non-negative integer. Then

(Fk ∩ (V − F ∗) = ∅) ⇐⇒ (Fk ⊆ F ∗) ⇐⇒ (Fk = F ∗),

due to the minimality of Fk and F
∗. Thus, if the condition in line 3 holds,

the statement in line 4 is well-defined.
Further note that v′ > vk holds for all v′ ∈ (Fk − vk), because of the

minimality of vk w.r.t. T , and v′ > vk for all v′ ∈ F ∗. Moreover, v′ > vk
also holds for all v′ ∈ N+(vk), according to the fact that vk ∈ V − F

∗ and
(1, . . . , r) is a topological order of G− F ∗.

Therefore we have v′ > vk for all v
′ ∈ (Fk − vk) ∪N

+(vk), and thus, all
v′ ∈ Fk+1, because Fk+1 = µG(Fk, vk) ⊆ Fk − vk ∪ N+(vk). In particular,
v′ > vk for v

′ = vk+1 ∈ Fk+1 in line 4, hence

vk+1 > vk.

Consequently, v0 < v1 < v2 < . . . Since vk ∈ (V − F ∗) = {1, . . . , r} for
all non-negative k, the algorithm can perform at most r = |V | − |F ∗| while
loops and outputs F = F0, · · · , Fs = F ∗ with s ≤ |V | − |F ∗|, which proves
the claim.

Computing all minimal feedback vertex sets. It can now be seen
that all minimal solutions can be generated by exhaustive search in the
superstructure graph Φ(G, µG).

The vertex set of Φ(G, µG) consists of all MFVSs F of G, and for each
such F there are directed arcs from F to each µG-successor of F . Starting
with an initial MFVS F = F0, all successors of F in Φ(G, µG) are generated
(“expansion” of F). Then a “still unexpanded” solution is determined and
the process reiterates until all generated solutions have been expanded.

Lemma 1 asserts that Φ(G, µG) is strongly connected. Hence indeed all
minimal solutions are generated by an exhaustive search on Φ(G, µG). For
this purpose, the following algorithm uses a queue Q and a dictionary D.

Algorithm Generate-MFVS (G, µG)

1 compute a minimal admissible solution F0;
2 insert F0 into Q and into D;
3 while Q is not empty do
4 remove any set F from Q;
5 output F ;
6 for each µG-successor F

′ of F do
7 if F ′ is not contained in D
8 insert F ′ into D and Q;
9 fi
10 od
11 od

6

Minimizing a feedback vertex set by “removing redundant ver-
tices”. Starting from a given FVS X , a MFVS F ′ ⊆ X can be computed
by checking for each v ∈ X whether X − v is a FVS for G and, if this holds,
v is removed from X . When this has been done once for each v ∈ X , the
remaining FVS F ′ ⊆ X is minimal. Concerning the computational com-
plexity of the whole operation, a single check for v ∈ F can be performed
using depth-first search in time O

(
|V | + |E|

)
. Minimizing a FVS can thus

be accomplished in O
(
|V | (|V |+ |E|)

)
.

Overall Computational Complexity. Generating the initial MFVS F0
in line 1 of Generate-MFVS is accomplished in O

(
|V | (|V | + |E|)

)
by

removing redundant vertices, starting with X = V . Removing redundant
vertices can also be used to compute a µG-successor of F in line 6. The
minimization starts with X = F −v ∪ N+(v) with v ∈ F . One µG-successor
is computed in time O

(
|V | (|V |+ |E|)

)
. Using a lexicographical order of V

and tries [4] for the implementation of D, operations on D and Q can be
executed in time O

(
|V |
)
per operation.

For a MFVS F of a directed graph, there are at most |V | µG-successors
F ′ to consider in the for loop of lines 6–10. Thus, one while loop is executed
in timeO

(
|V |2(|V |+|E|)

)
, which makes a polynomial delay for the successive

output of MFVS.
This proves the following theorem.

Theorem 1. Given any directed graph G, Algorithm Generate-MFVS
can be used to compute all minimal feedback vertex sets of G with a polyno-
mial delay of O

(
|V |2(|V |+ |E|)

)
.

Note that memory requirements are polynomial for graphs with a poly-
nomial number of MFVS, but potentially exponential for the general case.

3 Feedback vertex sets of undirected graphs

The algorithm for the undirected case and its proof of correctness are similar
to the directed case. The concepts adapt to the undirected case as follows.

Let G = (V, E) be an undirected graph. W.l.o.g. we assume G to be
connected. By N(v) we will denote the set of w ∈ V s.t. {v, w} ∈ E.

In the directed case the proof of correctness relies on the topological
order of the “remainder graph” G − F ∗. There, G − F ∗ is successively
“cleared” by replacing a vertex vk ∈ Fk by a µG-successor µG(Fk, vk). For
undirected graphs G, the arcs of G−F ∗ are undirected. In order to “clear”
G−F ∗, a direction will be associated with each of its arcs, and the additional
directionality will be reflected by a third parameter in the definition of a µG-
successor.

7

Basic definitions. For a MFVS F of G, v ∈ F , w ∈ N(v), observe that
F ′ = F − v ∪ (N(v) − w) is a FVS of G. This is because any cycle that
contains v also contains at least one vertex of N(v)−w.

We call each MFVS F ′′ ⊆ F −v ∪ (N(v)−w) a (v, w)-successor of F . In
analogy to the directed case, we assume that a function µG : 2V ×V ×V −→
2V assigns a fixed (v, w)-successor F ′′0 of F to any such triplet (F, v, w).
F ′′0 = µG(F, v, w) is also called µG-successor of F .

Let us assume that F ∗ is a MFVS of G. Then G′ = G − F ∗ is a union
of undirected trees. Choosing a vertex in each tree in G′ and directing the
arcs away from these “root vertices” yields a directed acyclic graph that we
call T (G′).

With each vertex v ∈ G′ we now associate a vertex pT (v) from G′. When
v is a root vertex in T (G′), we set pT (v) := w for any w ∈ N(v). Otherwise,
v has a unique predecessor w in T (G′) and we set pT (v) := w.

Given the undirected graph G, two feedback vertex sets F and F ∗ and
a successor function µG, the following algorithm transforms F into F ∗ by
generating µG-successors.

Algorithm Transform-Undirected-MFVS (G = (V, E), F, F ∗, µG)

1 compute a topological order T of T (G− F ∗);
2 F0 := F , k := 0;
3 while Fk �= F ∗ do
4 let vk be the minimal vertex of Fk ∩ (V − F ∗) with respect to T ;
5 Fk+1 := µG(Fk, vk, pT (vk));
6 k := k + 1;
7 od
8 output (F0, . . . , Fk);

The following lemma asserts the correctness of the algorithm.

Lemma 2. For any undirected graph G, minimal feedback vertex sets F
and F ∗, and any successor function µG of G, Transform-Undirected-
MFVS(G, F, F ∗, µG) computes a sequence F = F0, · · · , Fs = F ∗ where s ≤
|V | − |F ∗|, and Fi+1 is a µG-successor of Fi for i = 0, . . . , s− 1.

The proof translates almost literally from the directed case.

Algorithm. Analogously to the directed case, Lemma 2 asserts that the
superstructure graph Φ(G, µG) is strongly connected. We conclude that
an exhaustive search on Φ(G, µG) discovers all MFVSs of G. Thus, using
the notion of a µG-successor for undirected graphs, algorithm Generate-
MFVS(G, µG) indeed generates all MFVSs of G.

Computational complexity. Minimizing a FVS of an undirected graph
can be accomplished by iteratively removing redundant vertices. The proce-

8

dure is analogous to section 2, taking time O
(
|V | (|V | + |E|)

)
. Further, for

a MFVS F of an undirected graph there are at most 2 |E| µG-successors to
consider in the for loop in lines 6–10 of Generate-MFVS. This is because
for each arc {v, w} ∈ E there can be at most two µG-successors F

′ of F ,
namely µG(F, v, w) and µG(F, w, v). Thus the delay between the output of
successive MFVSs is O

(
|V | |E| (|V | + |E|)

)
. This establishes the following

theorem.

Theorem 2. Given any undirected graph G, Algorithm Generate-MFVS
can be used to compute all minimal feedback vertex sets of G with a polyno-
mial delay of O

(
|V | |E| (|V |+ |E|)

)
.

4 Feedback arc sets of directed graphs

We can use the algorithm for feedback vertex sets from section 2 to calculate
feedback arc sets. This is based upon the close relationship between the
feedback arc sets of a graph and the feedback vertex sets of its line graph.
The line graph G′ of a directed graph G = (V, E) is a directed graph G′

that has a vertex v′(e) for each arc e ∈ E and an arc e′ = (v′(e1), v
′(e2))

for any two arcs e1 = (x, y) ∈ E and e2 = (y, z) ∈ E. Notice that each
cycle in G corresponds to a cycle in G′ and vice-versa. Hence the feedback
arc sets of G correspond to the feedback vertex sets of G′. Since G′ has
O
(
|E|
)
vertices and O

(
|E|2
)
arcs, it follows from Theorem 1 that we can

calculate the feedback arc sets G with a time complexity of O
(
|E|4
)
per

minimal feedback arc set.
We present a variation that only uses time O

(
|V | |E| (|V | + |E|)

)
per

minimal solution. Still, the procedure will be quite similar to the method
outlined in section 2. Basically vertices and arcs swap their roles.

Definitions. Let G = (V, E) be a directed graph, F ⊆ E be a minimal
feedback arc set (MFAS), i.e. G−F = (V, E\F) is acyclic and F is minimal
with this property.

For e = (v, w) ∈ E, we set S(e) := w, for X ⊆ E we define S(X) :=
∪e∈XS(e). We set A−(w) := {(x, w) ∈ E}, and A+(w) := {(w, x) ∈ E}.

Notice that, for any w ∈ V , each cycle containing an arc in A−(w) must
also contain an arc in A+(w). Thus, F ′ = F − A−(w) ∪ A+(w) is a FAS
of G for any w ∈ V . We call each MFAS F ′′ ⊆ F − A−(w) ∪ A+(w) a
(w-)successor of F .

We assume that an arbitrary w-successor F ′′ = µG(F, w), of F is fixed
for every MFAS F and w ∈ S(F). We call µG a successor function and F ′′

a µG-successor of F . The following algorithm transforms a MFAS F into a
MFAS F ∗ by generating µG-successors.

Algorithm Transform-Directed-MFAS (G = (V, E), F, F ∗, µG)

9

1 compute a topological order T of G− F ∗;
2 F0 := F , k := 0;
3 while Fk �= F ∗ do
4 let vk be the minimal vertex of S(Fk ∩ (E − F ∗)) with respect to T ;
5 Fk+1 := µG(Fk, vk);
6 k := k + 1;
7 od
8 output (F0, . . . , Fk);

Figure 3 illustrates the situation in line 4 of the algorithm. The dashed
arcs are the members of the current solution Fk. By moving from Fk to
a vk-successor Fk+1, the algorithm iteratively clears the shaded region of
dashed arcs, from left to right.

1 2 3 n

E–F*

F*
Fk

FkE–

Figure 3: Situation during the execution of line 4 in Transform-
Directed-MFAS. vk is the leftmost target of a dashed arc in the shaded
region; in this case, vk=3

Lemma 3. For any directed graph G = (V, E), minimal feedback arc sets
F and F ∗, and any successor function µG of G, Transform-Directed-
MFAS (G, F, F ∗, µG) computes a sequence F = F0, · · · , Fs = F ∗ where
s ≤ |V | − 1, and Fi+1 is a µG-successor of Fi for i = 0, . . . , s− 1.

Proof. Notice that, in line 1, a topological order T of G−F ∗ always exists,
since F ∗ is a feedback arc set, and thus G − F ∗ is acyclic. W.l.o.g. we can
assume that |V | = {1, . . . , n} and T = (1, . . . , n).

Because of line 3, the algorithm terminates only if Fk = F ∗. Thus it
remains to show that Transform-Directed-MFAS terminates after at
most |V | − 1 iterations of the while loop.

Let k be a non-negative integer. Then

(Fk ∩ (E − F ∗) = ∅) ⇐⇒ (Fk ⊆ F ∗) ⇐⇒ (Fk = F ∗),

due to the minimality of Fk and F
∗. Thus, if the condition in line 3 holds,

the statement in line 4 is well-defined.
Further note that v′ > vk holds for all v

′ ∈ S((Fk−A−(vk))∩ (E−F ∗)),
because of the minimality of vk w.r.t. T . Moreover, v′ > vk also holds for
all v′ ∈ S(A+(vk) ∩ (E − F ∗)), according to the fact that (1, . . . , n) is a
topological order of G− F ∗.

10

Hence we have v′ > vk for all v
′ ∈ S((Fk−A−(vk)∪A+(vk))∩ (E−F ∗)),

and thus, all v′ ∈ S(Fk+1 ∩ (E −F
∗)), because Fk+1 = µG(Fk, vk) ⊆ S(Fk−

A−(vk)∪A
+(vk)). Particularly, v

′ > vk holds for v
′ = vk+1 ∈ Fk+1 in line 4,

hence

vk+1 > vk.

Consequently, v0 < v1 < v2 < . . . Further observe that 1 is the first
vertex of the topological order T of G − F ∗, thus 1 cannot be contained
in S(E − F ∗). But v0 ∈ S(E − F

∗) due to line 4 of the algorithm. Hence
vk ∈ {2, . . . , |V |} for all non-negative k, thus the algorithm can perform at
most |V |−1 while loops and outputs F = F0, · · · , Fs = F ∗ with s ≤ |V |−1,
which proves the claim.

Algorithm. Again the above lemma asserts that the superstructure graph
Φ(G, µG) is strongly connected. Thus, when applied to the feedback arc
set problem, Algorithm Generate-MFVS indeed computes all minimal
feedback arc sets of G for any successor function µG.

Computational complexity. We examine the computational complexity
of one while loop in Algorithm Generate-MFVS. Minimizing a feedback
arc set is accomplished by removing redundant arcs, in analogy to the min-
imization procedure of section 2. Since O

(
|E|
)
arcs have to be checked, the

complexity for this operation is in O
(
|E| (|V |+ |E|)

)
. Since there can be at

most |V | µG-successors µG(F, w) for any MFAS F , the while loop takes at
most time O

(
|V | |E| (|V |+ |E|)

)
.

Theorem 3. Given any directed graph G, Algorithm Generate-MFVS
can be used to compute all minimal feedback arc sets of G with a polynomial
delay of O

(
|V | |E| (|V |+ |E|)

)
.

5 Feedback Arc Sets and Acyclic Orientations

In this section we show that the acyclic orientations of an (undirected) graph
G correspond to the minimal feedback arc sets of a closely related directed
graph Ḡ.

Definition. An orientation of an undirected graph G = (V, E) is a function
α : E → V ×V that maps each arc {v, w} ∈ E to either (v, w) or (w, v). We
denote by Gα the directed graph that arises from replacing each undirected
arc e of G by α(e). α is called acyclic if Gα is acyclic.
By Ḡ = (V, Ē) we denote the directed graph that arises from G by re-

placing each arc {v, w} ∈ E with the two directed arcs (v, w) and (w, v).

The correspondence between acyclic orientations and minimal feedback
arc sets can be stated as follows.

11

Lemma 4. For any undirected graph G = (V, E), !G = (V, !E) is an acyclic
orientation of G if and only if F = Ē − !E is a minimal feedback arc set of
Ḡ = (V, Ē).

Proof. On the one hand, assume that an acyclic orientation !G = (V, !E) of
G is given. Since !E does not induce a cycle in !G, F = Ē − !E is a feedback
arc set of Ḡ. F is also minimal, since removing any arc (v, w) from F would
create a cycle of (v, w) and the arc (w, v) that is present in !E.

On the other hand, assume that F = Ē − !E is a minimal feedback arc
set of Ḡ. Since F is FAS, it must contain at least one arc from each pair
{(v, w), (w, v)} of arcs in Ḡ.

However, F also cannot contain both (v, w) and (w, v), for the following
reason. Observe that G0 = Ḡ−F can contain a path from v to w, or a path
from w to v, but not both, since otherwise F would not be a feedback arc
set. If no path from v to w exists in G0, adding (w, v) to G0 does not create
a cycle, and thus (w, v) cannot be member of F without contradicting its
minimality. The analog reasoning holds if no path from w to v exists in G0.
In that case, (v, w) cannot be present in F .

This shows that F contains exactly one arc from each pair {(v, w), (w, v)}
of arcs in Ḡ, and, consequently, exactly one arc of each pair is contained in
!E = Ē − F . Therefore, !G = (V, !E) is indeed an orientation of G, and it is
acyclic, since F is feedback arc set.

Linial [11] has shown that computing the number of acyclic orientations
of a graph is #P-hard. This immediately leads to our final observation.

Corollary 1. Computing the number of minimal feedback arc sets of a di-
rected graph is #P-hard.

6 Acknowledgment

We thank the anonymous referees for useful comments and suggestions.

References

[1] M. Bidjan-Irani, U. Glässer and F. Rammig, Knowledge based tools
for testability checking, in: Proc. 3rd Intern. Conf. on Fault-Tolerant
Computing Systems, (Sep. 1987).

[2] M. Diaz, J. P. Richard and M. Courvoisier, A note on minimal and
quasi-minimal essential sets in complex directed graphs., IEEE Trans.
Circ. Th. 19 (1972) 512–513.

[3] R. Floyd, Assigning meaning to programs, in: Proc. Sympos. Appl.
Math., Amer. Math. Soc., (1967), 19–32.

12

[4] E. Fredkin, Trie memory, Comm. ACM 3 (Sep. 1960) 490–499.

[5] D. Gusfield, A graph theoretic approach to statistical data security,
SIAM J. Comput. 17 (Jun. 1988) 552–571.

[6] D. S. Hochbaum, Various Notions of Approximations: Good, Bet-
ter, Best and More (PWS Publishing, Boston, Massachusetts, 1995),
chap. 9, page 350.

[7] D. S. Johnson, M. Yannakakis and C. H. Papadimitriou, On generating
all maximal independent sets, Inf. Proc. Lett. 27 (1988) 119–123.

[8] R. M. Karp, Reducibility among combinatorial problems, in: R. E.
Miller and J. W. Thatcher, eds., Complexity of Computer Computa-
tions (Plenum Press, New York, London, 1972), 85–103.

[9] E. L. Lawler, J. K. Lenstra and A. H. G. Rinnooy Kan, Generating
all maximal independent sets: NP-hardness and polynomial-time al-
gorithms, SIAM J. Comput. 9 (1980) 558–565.

[10] J. Y.-T. Leung and E. K. Lai, On minimum cost recovery from system
deadlock, IEEE Trans. Comp. 28 (Sep. 1979) 671–679.

[11] N. Linial, Hard enumeration problems in geometry and combinatorics,
SIAM J. Alg. Disc. Meth. 7 (Apr. 1986) 331–335.

[12] C. Lucchesi and D. Younger, A minmax relation for directed graphs,
J. London Math. Soc. 17 (1978) 369–374.

[13] P. M. Pardalos and J. Xue, The maximum clique problem, J. Glob.
Opt. (1994) 301–328.

[14] E. M. Reingold, J. Nievergelt and N. Deo, Combinatorial Algorithms:
Theory and Practice (Prentice-Hall, Englewood Cliffs, USA, 1977),
chap. 8.

[15] A. Shioura, A. Tamura and T. Uno, An optimal algorithm for scanning
all spanning trees of undirected graphs, SIAM J. Comput. 26 (1997)
678–692.

[16] G. Smith and R. Walford, The identification of a minimal feedback
vertex set of a directed graph, IEEE Trans. Circ. Syst. (1975) 9–15.

[17] E. Speckenmeyer, On feedback problems in digraphs, in: M. Nagl,
ed., Proc. 15th Intern. Workshop on Graph-Theoretic Concepts in
Computer Science (Castle Rolduc, The Netherlands) (Springer-Verlag,
1989), vol. 411 of LNCS, 218–231.

13

[18] M. B. Squire, Generating the acyclic orientations of a graph, J. Algor.
26 (Feb. 1998) 275–290.

[19] P. K. Srimani, Enumeration of all minimum feedback edge sets in a
directed graph, Int. J. Syst. Sci. 11 (1980) 239–246.

[20] S. Tsukiyama, M. Ide, H. Ariyoshi and I. Shirakawa, A new algorithm
for generating all the maximal independent sets, SIAM J. Comput. 6
(Sep. 1977) 505–517.

[21] C. Wang, E. Lloyd and M. Soffa, Feedback vertex sets and cyclically
reducible graphs, J. ACM 32 (1985) 296–313.

14

