THE CHURCH-TURING
THESIS

So far in our development of the theory of computation we have presented sev-
eral models of computing devices. Finite automata are good models for devices
that have a small amount of memory. Pushdown automata are good models for
devices that have an unlimited memory that is usable only in the last in, first out
manner of a stack. We have shown that some very simple tasks are beyond the
capabilities of these models. Hence they are too restricted to serve as models of
general purpose computers.

TURING MACHINES

We turn now to a much more powerful model, first proposed by Alan Turing
in 1936, called the Turing machine. Similar to a finite automaton but with an
unlimited and unrestricted memory, a Turing machine is a much more accurate
model of a general purpose computer. A Turing machine can do everything
that a real computer can do. Nonetheless, even a Turing machine cannot solve
certain problems. In a very real sense, these problems are beyond the theoretical
limits of computation.

"The Turing machine model uses an infinite tape as its unlimited memory. It
has a tape head that can read and write symbols and move around on the tape.

137



138 CHAPTER 3 / THE CHURCH—TURING THESIS

Initially the tape contains only the input string and is blank everywhere else. If
the machine needs to store information, it may write this information on the
tape. 'To read the information that it has written, the machine can move its
head back over it. The machine continues computing until it decides to produce
an output. The outputs accept and reject are obtained by entering designated
accepting and rejecting states. If it doesn’t enter an accepting or a rejecting state,
it will go on forever, never halting.

control

alelals]olo]a]t. ..

FIGURE 3.1
Schematic of a Turing machine

The following list summarizes the differences between finite automata and
Turing machines.

1. A Turing machine can both write on the tape and read from it.
2. The read-write head can move both to the left and to the right.
3. The tape is infinite.

4. The special states for rejecting and accepting take effect immediately.

Let’s introduce a Turing machine M; for testing membership in the language
B = {w#w| w € {0,1}*}. We want M to accept if its input is a member of B
and to reject otherwise. To understand M; better, put yourself in its place by
imagining that you are standing on a mile-long input consisting of millions of
characters. Your goal is to determine whether the input is a member of B—that
is, whether the input comprises two identical strings separated by a # symbol.
The input is too long for you to remember it all, but you are allowed to move
back and forth over the input and make marks on it. The obvious strategy is
to zig-zag to the corresponding places on the two sides of the # and determine
whether they match. Place marks on the tape to keep track of which places
correspond.

We design M; to work in that way. It makes multiple passes over the input
string with the read-write head. On each pass it matches one of the characters
on each side of the # symbol. To keep track of which symbols have been checked
already, M, crosses off each symbol as it is examined. If it crosses off all the
symbols, that means that everything matched successfully, and M goes into an
accept state. If it discovers a mismatch, it enters a reject state. In summary, M;’s
algorithm is as follows.



3.1 TURING MACHINES 139

M, = “On input string w:

1. Zig-zag across the tape to corresponding positions on either
side of the # symbol to check whether these positions contain
the same symbol. If they do not, or if no # is found, reject.
Cross off symbols as they are checked to keep track of which
symbols correspond.

2. When all symbols to the left of the # have been crossed off,
check for any remaining symbols to the right of the #. If any
symbols remain, reject; otherwise, accept.”

The following figure contains several snapshots of M’ tape while it is com-
puting in stages 2 and 3 when started on input 011000#011000.

x11000#x11000u .

xx1000#x11000u ...
v

X X X X Xxx#xxxxXxXxXxuUu...
accept

FIGURE 3.2
Snapshots of Turing machine M; computing on input 011000#011000

This description of Turing machine M; sketches the way it functions but does
not give all its details. We can describe Turing machines in complete detail by
giving formal descriptions analogous to those introduced for finite and push-
down automata. The formal descriptions specify each of the parts of the formal
definition of the Turing machine model to be presented shortly. In actuality we
almost never give formal descriptions of Turing machines because they tend to
be very big.

FORMAL DEFINITION OF A TURING MACHINE

The heart of the definition of a Turing machine is the transition function § be-
cause it tells us how the machine gets from one step to the next. For a Turing
machine, § takes the form: Q@ xI' — Q xT" x {L, R}. That is, when the machine



140 CHAPTER 3 / THE CHURCH—-TURING THESIS

is in a certain state ¢ and the head is over a tape square containing a symbol q,
and if 6(g,a) = (r,b,L), the machine writes the symbol b replacing the a, and
goes to state r. The third component is either L or R and indicates whether the

head moves to the left or right after writing. In this case the L indicates a move
to the left.

— DEFINITION 3.3

A Turing machine is a 7-tuple, (Q,%,T', 9, qo, Gaccept; Greject), Where
Q, X, I are all finite sets and
1. Q is the set of states,
¥ is the input alphabet not containing the blank symbol .,
I is the tape alphabet, whereu € 'and ¥ C T,
0: Q@ xI'—@Q x I' x {L,R} is the transition function,
go € Q is the start state,
Gaceept € @ is the accept state, and

NP e

Greject € @ is the reject state, where grejece # Gaccept-

A Turing machine M = (Q, 3,1, 6, qo, Gaccepts Greject) computes as follows. Ini-
tially M receives its input w = wiws ... w, € X* on the leftmost n squares of
the tape, and the rest of the tape is blank (i.e., filled with blank symbols). The
head starts on the leftmost square of the tape. Note that ¥ does not contain the
blank symbol, so the first blank appearing on the tape marks the end of the input.
Once M has started, the computation proceeds according to the rules described
by the transition function. If M ever tries to move its head to the left off the
left-hand end of the tape, the head stays in the same place for that move, even
though the transition function indicates L. The computation continues until it
enters either the accept or reject states at which point it halts. If neither occurs,
M goes on forever.

As a Turing machine computes, changes occur in the current state, the cur-
rent tape contents, and the current head location. A setting of these three items
is called a configuration of the Turing machine. Configurations often are rep-
resented in a special way. For a state ¢ and two strings u and v over the tape
alphabet I" we write u g v for the configuration where the current state is g, the
current tape contents is uv, and the current head location is the first symbol
of v. The tape contains only blanks following the last symbol of v. For example,
1011¢701111 represents the configuration when the tape is 101101111, the cur-
rent state is g, and the head is currently on the second 0. The following figure
depicts a Turing machine with that configuration.



3.1 TURING MACHINES 141

q7

[tlofeft]ofajefe]t]ufu]uf...

FIGURE 3.4
A 'Turing machine with configuration 1011¢701111

Here we formalize our intuitive understanding of the way that a Turing ma-
chine computes. Say that configuration C, yields configuration C; if the Turing
machine can legally go from C} to C; in a single step. We define this notion
formally as follows.

Suppose that we have a, b, and ¢ in T', as well as u and v in I'* and states ¢;
and ¢;. In that case ua ¢; bv and u g; acv are two configurations. Say that

uaq;bv yields wg;acv

if in the transition function §(g;, b) = (g;, ¢, L). That handles the case where the
Turing machine moves leftward. For a rightward move, say that

uagq;bv yields wuacg;v

if 6(qi, b) = (g5, ¢, R).

Special cases occur when the head is at one of the ends of the configuration.
For the left-hand end, the configuration ¢; bv yields g; cv if the transition is left-
moving (because we prevent the machine from going off the left-hand end of the
tape), and it yields c g;v for the right-moving transition. For the right-hand end,
the configuration ua g; is equivalent to ua ¢; u because we assume that blanks
follow the part of the tape represented in the configuration. Thus we can handle
this case as before, with the head no longer at the right-hand end.

The start configuration of M on input w is the configuration go w, which
indicates that the machine is in the start state gy with its head at the leftmost
position on the tape. In an accepting configuration the state of the configuration
1S Qaccept- 1N 2 7ejecting configuration the state of the configuration is greject-
Accepting and rejecting configurations are halting configurations and do not
yield further configurations. Because the machine is defined to halt when in the
States Gaceept AN Grejece, We equivalently could have defined the transition function
to have the more complicated form §: Q' x '—Q x T" x {L, R}, where Q" is Q
without Gaccepr and grejece- A Turing machine M accepts input w if a sequence of
configurations C, C, ... , C}, exists, where

1. Cy is the start configuration of M on input w,
2. each C; yields C;41, and
3. Cy is an accepting configuration.



142 CHAPTER 3 / THE CHURCH—TURING THESIS

The collection of strings that M accepts is the language of M, or the lan-
guage recognized by M, denoted L(M).

DEFINITION 3.5

Call a language Turing-recognizable if some Turing machine
recognizes it.

When we start a Turing machine on an input, three outcomes are possible.
The machine may accept, reject, or loop. By loop we mean that the machine simply
does not halt. Looping may entail any simple or complex behavior that never
leads to a halting state.

A Turing machine M can fail to accept an input by entering the grejece State
and rejecting, or by looping. Sometimes distinguishing a machine that is looping
from one that is merely taking a long time is difficult. For this reason we prefer
‘Turing machines that halt on all inputs; such machines never loop. These ma-
chines are called deciders because they always make a decision to accept or reject.
A decider that recognizes some language also is said to decide that language.

DEFINITION 3.6

Call a language Turing-decidable or simply decidable if some
Turing machine decides it.?

Next, we give examples of decidable languages. Every decidable language
is Turing-recognizable. We present examples of languages that are Turing-
recognizable but not decidable after we develop a technique for proving un-
decidability in Chapter 4.

EXAMPLES OF TURING MACHINES

As we did for finite and pushdown automata, we can formally describe a partic-
ular Turing machine by specifying each of its seven parts. However, going to
that level of detail can be cumbersome for all but the tiniest Turing machines.
Accordingly, we won’t spend much time giving such descriptions. Mostly we

1Tt is called a recursively enumerable language in some other textbooks.
2Tt is called a recursive language in some other textbooks.



