5 Probabilistic Analysis and Randomized
Algorithms

This chapter introduces probabilistic analysis and randomized algorithms. If you
are unfamiliar with the basics of probability theory, you should read Appendix C,
which reviews this material. We shall revisit probabilistic analysis and randomized
algorithms several times throughout this book.

5.1 The hiring problem

Suppose that you need to hire a new office assistant. Your previous attempts at
hiring have been unsuccessful, and you decide to use an employment agency. The
employment agency sends you one candidate each day. You interview that person
and then decide either to hire that person or not. You must pay the employment
agency a small fee to interview an applicant. To actually hire an applicant is more
costly, however, since you must fire your current office assistant and pay a substan-
tial hiring fee to the employment agency. You are committed to having, at all times,
the best possible person for the job. Therefore, you decide that, after interviewing
each applicant, if that applicant is better qualified than the current office assistant,
you will fire the current office assistant and hire the new applicant. You are willing
to pay the resulting price of this strategy, but you wish to estimate what that price
will be.

The procedure HIRE-ASSISTANT, given below, expresses this strategy for hiring
in pseudocode. It assumes that the candidates for the office assistant job are num-
bered 1 through n. The procedure assumes that you are able to, after interviewing
candidate i, determine whether candidate 7 is the best candidate you have seen so
far. To initialize, the procedure creates a dummy candidate, numbered 0, who is
less qualified than each of the other candidates.

5.1 The hiring problem 115

HIRE-ASSISTANT (n)

1 best =0 // candidate O is a least-qualified dummy candidate
2 fori =1ton

3 interview candidate i

4 if candidate i is better than candidate best

5 best = i

6 hire candidate i

The cost model for this problem differs from the model described in Chapter 2.
We focus not on the running time of HIRE-ASSISTANT, but instead on the costs
incurred by interviewing and hiring. On the surface, analyzing the cost of this algo-
rithm may seem very different from analyzing the running time of, say, merge sort.
The analytical techniques used, however, are identical whether we are analyzing
cost or running time. In either case, we are counting the number of times certain
basic operations are executed.

Interviewing has a low cost, say ¢;, whereas hiring is expensive, costing cj,. Let-
ting m be the number of people hired, the total cost associated with this algorithm
is O(c;n + cpm). No matter how many people we hire, we always interview n
candidates and thus always incur the cost ¢;n associated with interviewing. We
therefore concentrate on analyzing c,m, the hiring cost. This quantity varies with
each run of the algorithm.

This scenario serves as a model for a common computational paradigm. We of-
ten need to find the maximum or minimum value in a sequence by examining each
element of the sequence and maintaining a current “winner.” The hiring problem
models how often we update our notion of which element is currently winning.

Worst-case analysis

In the worst case, we actually hire every candidate that we interview. This situation
occurs if the candidates come in strictly increasing order of quality, in which case
we hire n times, for a total hiring cost of O(cn).

Of course, the candidates do not always come in increasing order of quality. In
fact, we have no idea about the order in which they arrive, nor do we have any
control over this order. Therefore, it is natural to ask what we expect to happen in
a typical or average case.

Probabilistic analysis

Probabilistic analysis is the use of probability in the analysis of problems. Most
commonly, we use probabilistic analysis to analyze the running time of an algo-
rithm. Sometimes we use it to analyze other quantities, such as the hiring cost

116

Chapter 5 Probabilistic Analysis and Randomized Algorithms

in procedure HIRE-ASSISTANT. In order to perform a probabilistic analysis, we
must use knowledge of, or make assumptions about, the distribution of the inputs.
Then we analyze our algorithm, computing an average-case running time, where
we take the average over the distribution of the possible inputs. Thus we are, in
effect, averaging the running time over all possible inputs. When reporting such a
running time, we will refer to it as the average-case running time.

We must be very careful in deciding on the distribution of inputs. For some
problems, we may reasonably assume something about the set of all possible in-
puts, and then we can use probabilistic analysis as a technique for designing an
efficient algorithm and as a means for gaining insight into a problem. For other
problems, we cannot describe a reasonable input distribution, and in these cases
we cannot use probabilistic analysis.

For the hiring problem, we can assume that the applicants come in a random
order. What does that mean for this problem? We assume that we can compare
any two candidates and decide which one is better qualified; that is, there is a
total order on the candidates. (See Appendix B for the definition of a total or-
der.) Thus, we can rank each candidate with a unique number from 1 through 7,
using rank(i) to denote the rank of applicant i, and adopt the convention that a
higher rank corresponds to a better qualified applicant. The ordered list (rank(1),
rank(2), ...,rank(n)) is a permutation of the list (1, 2, ..., n). Saying that the
applicants come in a random order is equivalent to saying that this list of ranks is
equally likely to be any one of the n! permutations of the numbers 1 through 7.
Alternatively, we say that the ranks form a uniform random permutation; that is,
each of the possible n! permutations appears with equal probability.

Section 5.2 contains a probabilistic analysis of the hiring problem.

Randomized algorithms

In order to use probabilistic analysis, we need to know something about the distri-
bution of the inputs. In many cases, we know very little about the input distribution.
Even if we do know something about the distribution, we may not be able to model
this knowledge computationally. Yet we often can use probability and randomness
as a tool for algorithm design and analysis, by making the behavior of part of the
algorithm random.

In the hiring problem, it may seem as if the candidates are being presented to us
in a random order, but we have no way of knowing whether or not they really are.
Thus, in order to develop a randomized algorithm for the hiring problem, we must
have greater control over the order in which we interview the candidates. We will,
therefore, change the model slightly. We say that the employment agency has n
candidates, and they send us a list of the candidates in advance. On each day, we
choose, randomly, which candidate to interview. Although we know nothing about

5.1 The hiring problem 117

the candidates (besides their names), we have made a significant change. Instead
of relying on a guess that the candidates come to us in a random order, we have
instead gained control of the process and enforced a random order.

More generally, we call an algorithm randomized if its behavior is determined
not only by its input but also by values produced by a random-number gener-
ator. We shall assume that we have at our disposal a random-number generator
RANDOM. A call to RANDOM(a, b) returns an integer between a and b, inclu-
sive, with each such integer being equally likely. For example, RANDOM(O, 1)
produces 0 with probability 1/2, and it produces 1 with probability 1/2. A call to
RANDOM(3, 7) returns either 3, 4, 5, 6, or 7, each with probability 1/5. Each inte-
ger returned by RANDOM is independent of the integers returned on previous calls.
You may imagine RANDOM as rolling a (b — a + 1)-sided die to obtain its out-
put. (In practice, most programming environments offer a pseudorandom-number
generator: a deterministic algorithm returning numbers that “look™ statistically
random.)

When analyzing the running time of a randomized algorithm, we take the expec-
tation of the running time over the distribution of values returned by the random
number generator. We distinguish these algorithms from those in which the input
is random by referring to the running time of a randomized algorithm as an ex-
pected running time. In general, we discuss the average-case running time when
the probability distribution is over the inputs to the algorithm, and we discuss the
expected running time when the algorithm itself makes random choices.

Exercises

5.1-1

Show that the assumption that we are always able to determine which candidate is
best, in line 4 of procedure HIRE-ASSISTANT, implies that we know a total order
on the ranks of the candidates.

51-2 %

Describe an implementation of the procedure RANDOM(a, b) that only makes calls
to RANDOM(0, 1). What is the expected running time of your procedure, as a
function of @ and b?

5.1-3 x

Suppose that you want to output O with probability 1/2 and 1 with probability 1/2.
At your disposal is a procedure BIASED-RANDOM, that outputs either 0 or 1. It
outputs 1 with some probability p and O with probability 1 — p, where 0 < p < 1,
but you do not know what p is. Give an algorithm that uses BIASED-RANDOM
as a subroutine, and returns an unbiased answer, returning 0 with probability 1/2

118 Chapter 5 Probabilistic Analysis and Randomized Algorithms

and 1 with probability 1/2. What is the expected running time of your algorithm
as a function of p?

5.2 Indicator random variables

In order to analyze many algorithms, including the hiring problem, we use indicator
random variables. Indicator random variables provide a convenient method for
converting between probabilities and expectations. Suppose we are given a sample
space S and an event A. Then the indicator random variable 1 { A} associated with
event A is defined as

1 ifAd
1A} = 1 occurs , 5.0
0 if A does not occur .

As a simple example, let us determine the expected number of heads that we
obtain when flipping a fair coin. Our sample space is S = {H, T}, with Pr{H } =
Pr{T} = 1/2. We can then define an indicator random variable Xy, associated
with the coin coming up heads, which is the event H. This variable counts the
number of heads obtained in this flip, and it is 1 if the coin comes up heads and 0
otherwise. We write

Xy = I{H}

1 if H occurs ,
0 if T occurs .

The expected number of heads obtained in one flip of the coin is simply the ex-
pected value of our indicator variable X :

E[Xy] = E[{H]]
= 1-Pr{H}+0-Pr{T}
= 1-(1/2)+0-(1/2)
= 1/2.
Thus the expected number of heads obtained by one flip of a fair coin is 1/2. As

the following lemma shows, the expected value of an indicator random variable
associated with an event A is equal to the probability that A occurs.

Lemma 5.1
Given a sample space S and an event A in the sample space S, let X4 = I{A}.
Then E [X4] = Pr{A4}.

5.2 Indicator random variables 119

Proof By the definition of an indicator random variable from equation (5.1) and
the definition of expected value, we have

E[X4] = E[I{4]]
= 1-Pr{A4} +O-Pr{Z}
Pr{A} ,
where A denotes S — A, the complement of A.]

Although indicator random variables may seem cumbersome for an application
such as counting the expected number of heads on a flip of a single coin, they are
useful for analyzing situations in which we perform repeated random trials. For
example, indicator random variables give us a simple way to arrive at the result
of equation (C.37). In this equation, we compute the number of heads in n coin
flips by considering separately the probability of obtaining 0 heads, 1 head, 2 heads,
etc. The simpler method proposed in equation (C.38) instead uses indicator random
variables implicitly. Making this argument more explicit, we let X; be the indicator
random variable associated with the event in which the ith flip comes up heads:
X; = I'{the ith flip results in the event H }. Let X be the random variable denoting
the total number of heads in the n coin flips, so that

X = iX,-.
i=1

We wish to compute the expected number of heads, and so we take the expectation
of both sides of the above equation to obtain

The above equation gives the expectation of the sum of n indicator random vari-
ables. By Lemma 5.1, we can easily compute the expectation of each of the random
variables. By equation (C.21)—linearity of expectation—it is easy to compute the
expectation of the sum: it equals the sum of the expectations of the n random
variables. Linearity of expectation makes the use of indicator random variables a
powerful analytical technique; it applies even when there is dependence among the
random variables. We now can easily compute the expected number of heads:

120

Chapter 5 Probabilistic Analysis and Randomized Algorithms

E[X] = E|:iXij|
= ZE[Xi]

= anl/z

= n/2.

Thus, compared to the method used in equation (C.37), indicator random variables
greatly simplify the calculation. We shall use indicator random variables through-
out this book.

Analysis of the hiring problem using indicator random variables

Returning to the hiring problem, we now wish to compute the expected number of
times that we hire a new office assistant. In order to use a probabilistic analysis, we
assume that the candidates arrive in a random order, as discussed in the previous
section. (We shall see in Section 5.3 how to remove this assumption.) Let X be the
random variable whose value equals the number of times we hire a new office as-
sistant. We could then apply the definition of expected value from equation (C.20)
to obtain

E[X] = Xn:x Pr{X = x} ,

but this calculation would be cumbersome. We shall instead use indicator random
variables to greatly simplify the calculation.

To use indicator random variables, instead of computing E [X] by defining one
variable associated with the number of times we hire a new office assistant, we
define n variables related to whether or not each particular candidate is hired. In
particular, we let X; be the indicator random variable associated with the event in
which the ith candidate is hired. Thus,

X; = TI{candidate i is hired}

1 if candidate i is hired ,
0 if candidate i is not hired ,

and

X=X+ Xs+-+X,. (5.2)

5.2 Indicator random variables 121

By Lemma 5.1, we have that
E [X;] = Pr{candidate i is hired} ,

and we must therefore compute the probability that lines 5-6 of HIRE-ASSISTANT
are executed.

Candidate i is hired, in line 6, exactly when candidate i is better than each of
candidates 1 through i — 1. Because we have assumed that the candidates arrive in
arandom order, the first i candidates have appeared in a random order. Any one of
these first i candidates is equally likely to be the best-qualified so far. Candidate i
has a probability of 1/i of being better qualified than candidates 1 through i — 1
and thus a probability of 1/i of being hired. By Lemma 5.1, we conclude that

E[X]]=1/i. (5.3)

Now we can compute E [X]:
E[X] = E |:Z X,-j| (by equation (5.2)) (5.4)
i=1

n
= Z E [X;] (by linearity of expectation)
i=1

= > /i (by equation (5.3))
i=1
= Inn + O(1) (by equation (A.7)) . (5.5)

Even though we interview n people, we actually hire only approximately Inn of
them, on average. We summarize this result in the following lemma.

Lemma 5.2
Assuming that the candidates are presented in a random order, algorithm HIRE-
ASSISTANT has an average-case total hiring cost of O(cy, Inn).

Proof The bound follows immediately from our definition of the hiring cost
and equation (5.5), which shows that the expected number of hires is approxi-
mately Inn.]

The average-case hiring cost is a significant improvement over the worst-case
hiring cost of O(cyn).

122 Chapter 5 Probabilistic Analysis and Randomized Algorithms

Exercises

5.2-1

In HIRE-ASSISTANT, assuming that the candidates are presented in a random or-
der, what is the probability that you hire exactly one time? What is the probability
that you hire exactly n times?

522
In HIRE-ASSISTANT, assuming that the candidates are presented in a random or-
der, what is the probability that you hire exactly twice?

5.2-3
Use indicator random variables to compute the expected value of the sum of n dice.

5.2-4

Use indicator random variables to solve the following problem, which is known as
the hat-check problem. Each of n customers gives a hat to a hat-check person at a
restaurant. The hat-check person gives the hats back to the customers in a random
order. What is the expected number of customers who get back their own hat?

5.2-5

Let A[1..n] be an array of n distinct numbers. If i < j and A[i] > A[j], then
the pair (i, j) is called an inversion of A. (See Problem 2-4 for more on inver-
sions.) Suppose that the elements of A form a uniform random permutation of
(1,2,...,n). Use indicator random variables to compute the expected number of
inversions.

5.3 Randomized algorithms

In the previous section, we showed how knowing a distribution on the inputs can
help us to analyze the average-case behavior of an algorithm. Many times, we do
not have such knowledge, thus precluding an average-case analysis. As mentioned
in Section 5.1, we may be able to use a randomized algorithm.

For a problem such as the hiring problem, in which it is helpful to assume that
all permutations of the input are equally likely, a probabilistic analysis can guide
the development of a randomized algorithm. Instead of assuming a distribution
of inputs, we impose a distribution. In particular, before running the algorithm,
we randomly permute the candidates in order to enforce the property that every
permutation is equally likely. Although we have modified the algorithm, we still
expect to hire a new office assistant approximately Inn times. But now we expect

5.3 Randomized algorithms 123

this to be the case for any input, rather than for inputs drawn from a particular
distribution.

Let us further explore the distinction between probabilistic analysis and random-
ized algorithms. In Section 5.2, we claimed that, assuming that the candidates ar-
rive in a random order, the expected number of times we hire a new office assistant
is about In n. Note that the algorithm here is deterministic; for any particular input,
the number of times a new office assistant is hired is always the same. Furthermore,
the number of times we hire a new office assistant differs for different inputs, and it
depends on the ranks of the various candidates. Since this number depends only on
the ranks of the candidates, we can represent a particular input by listing, in order,
the ranks of the candidates, i.e., (rank(1), rank(2), ..., rank(n)). Given the rank
list A, =(1,2,3,4,5,6,7,8,9,10), a new office assistant is always hired 10 times,
since each successive candidate is better than the previous one, and lines 5—6 are
executed in each iteration. Given the list of ranks 4, = (10,9,8,7,6,5,4,3,2, 1),
a new office assistant is hired only once, in the first iteration. Given a list of ranks
Az = (5,2,1,8,4,7, 10,9, 3, 6), a new office assistant is hired three times,
upon interviewing the candidates with ranks 5, 8, and 10. Recalling that the cost
of our algorithm depends on how many times we hire a new office assistant, we
see that there are expensive inputs such as A, inexpensive inputs such as A,, and
moderately expensive inputs such as As.

Consider, on the other hand, the randomized algorithm that first permutes the
candidates and then determines the best candidate. In this case, we randomize in
the algorithm, not in the input distribution. Given a particular input, say A3 above,
we cannot say how many times the maximum is updated, because this quantity
differs with each run of the algorithm. The first time we run the algorithm on A3,
it may produce the permutation A; and perform 10 updates; but the second time
we run the algorithm, we may produce the permutation A, and perform only one
update. The third time we run it, we may perform some other number of updates.
Each time we run the algorithm, the execution depends on the random choices
made and is likely to differ from the previous execution of the algorithm. For this
algorithm and many other randomized algorithms, no particular input elicits its
worst-case behavior. Even your worst enemy cannot produce a bad input array,
since the random permutation makes the input order irrelevant. The randomized
algorithm performs badly only if the random-number generator produces an “un-
lucky” permutation.

For the hiring problem, the only change needed in the code is to randomly per-
mute the array.

124

Chapter 5 Probabilistic Analysis and Randomized Algorithms

RANDOMIZED-HIRE-ASSISTANT (71)

1 randomly permute the list of candidates
2 best =0 // candidate O is a least-qualified dummy candidate
3 fori =1ton
interview candidate i
if candidate i is better than candidate best
best = i
hire candidate i

~N O B

With this simple change, we have created a randomized algorithm whose perfor-
mance matches that obtained by assuming that the candidates were presented in a
random order.

Lemma 5.3
The expected hiring cost of the procedure RANDOMIZED-HIRE-ASSISTANT is
O(cpInn).

Proof After permuting the input array, we have achieved a situation identical to
that of the probabilistic analysis of HIRE- ASSISTANT.]

Comparing Lemmas 5.2 and 5.3 highlights the difference between probabilistic
analysis and randomized algorithms. In Lemma 5.2, we make an assumption about
the input. In Lemma 5.3, we make no such assumption, although randomizing the
input takes some additional time. To remain consistent with our terminology, we
couched Lemma 5.2 in terms of the average-case hiring cost and Lemma 5.3 in
terms of the expected hiring cost. In the remainder of this section, we discuss some
issues involved in randomly permuting inputs.

Randomly permuting arrays

Many randomized algorithms randomize the input by permuting the given input
array. (There are other ways to use randomization.) Here, we shall discuss two
methods for doing so. We assume that we are given an array A which, without loss
of generality, contains the elements 1 through n. Our goal is to produce a random
permutation of the array.

One common method is to assign each element A[i] of the array a random pri-
ority P[i], and then sort the elements of A according to these priorities. For ex-
ample, if our initial array is A = (1, 2, 3, 4) and we choose random priorities
P = (36,3,62,19), we would produce an array B = (2,4, 1, 3), since the second
priority is the smallest, followed by the fourth, then the first, and finally the third.
We call this procedure PERMUTE-BY-SORTING:

5.3 Randomized algorithms 125

PERMUTE-BY-SORTING (A)

n = A.length
let P[1..n] be a new array
fori = 1ton

P[i] = RaANDOM(1,n?)
sort A, using P as sort keys

(O I S

Line 4 chooses a random number between 1 and n3. We use a range of 1 to n3
to make it likely that all the priorities in P are unique. (Exercise 5.3-5 asks you
to prove that the probability that all entries are unique is at least 1 — 1/n, and
Exercise 5.3-6 asks how to implement the algorithm even if two or more priorities
are identical.) Let us assume that all the priorities are unique.

The time-consuming step in this procedure is the sorting in line 5. As we shall
see in Chapter 8, if we use a comparison sort, sorting takes 2(nlgn) time. We
can achieve this lower bound, since we have seen that merge sort takes ®(n lgn)
time. (We shall see other comparison sorts that take ®(nlgn) time in Part II.
Exercise 8.3-4 asks you to solve the very similar problem of sorting numbers in the
range 0 to n° — 1 in O(n) time.) After sorting, if P[i] is the jth smallest priority,
then A[i] lies in position j of the output. In this manner we obtain a permutation. It
remains to prove that the procedure produces a uniform random permutation, that
is, that the procedure is equally likely to produce every permutation of the numbers
1 through n.

Lemma 5.4
Procedure PERMUTE-BY-SORTING produces a uniform random permutation of the
input, assuming that all priorities are distinct.

Proof We start by considering the particular permutation in which each ele-
ment A[i] receives the ith smallest priority. We shall show that this permutation
occurs with probability exactly 1/n!. Fori = 1,2,...,n, let E; be the event
that element A[i] receives the ith smallest priority. Then we wish to compute the
probability that for all i, event E; occurs, which is

Pr{E1 N E2 N E3 N---N En—l N En} .
Using Exercise C.2-5, this probability is equal to

PI‘{El} 'PI‘{EZ | El}'Pr{E3 | E2 N E1}~Pr{E4 | E3 N E2 N El}
PI'{El | Ei—l ﬂE,_zﬂﬂEl}Pr{En | En—l ﬂﬂEl} .

We have that Pr{E;} = 1/n because it is the probability that one priority
chosen randomly out of a set of n is the smallest priority. Next, we observe

126

Chapter 5 Probabilistic Analysis and Randomized Algorithms

that Pr{E, | E1} = 1/(n — 1) because given that element A[1] has the small-
est priority, each of the remaining » — 1 elements has an equal chance of hav-
ing the second smallest priority. In general, for i = 2,3,...,n, we have that
Pr{E; | E._1NE,>,N---NE{} =1/(n—1i+1),since, given that elements A[l]
through A[i — 1] have the i — 1 smallest priorities (in order), each of the remaining
n — (i — 1) elements has an equal chance of having the i th smallest priority. Thus,
we have

1 1 1 1
Pr{EiNE;NEsN-NE 1 NE,} = (;) (n_1)"'(5) (T)

1
a b

and we have shown that the probability of obtaining the identity permutation
is1/n!.

We can extend this proof to work for any permutation of priorities. Consider
any fixed permutation 0 = (0(1),0(2),...,0(n)) of the set {1,2,...,n}. Let us
denote by r; the rank of the priority assigned to element A[i], where the element
with the jth smallest priority has rank j. If we define E; as the event in which
element A[i] receives the o (i)th smallest priority, or r; = o(i), the same proof
still applies. Therefore, if we calculate the probability of obtaining any particular
permutation, the calculation is identical to the one above, so that the probability of
obtaining this permutation is also 1/n!.]

You might think that to prove that a permutation is a uniform random permuta-
tion, it suffices to show that, for each element A[i], the probability that the element
winds up in position j is 1/n. Exercise 5.3-4 shows that this weaker condition is,
in fact, insufficient.

A better method for generating a random permutation is to permute the given
array in place. The procedure RANDOMIZE-IN-PLACE does so in O(n) time. In
its ith iteration, it chooses the element A[i] randomly from among elements A[i]
through A[n]. Subsequent to the ith iteration, A[i] is never altered.

RANDOMIZE-IN-PLACE(A)

1 n = A.length
2 fori =1ton
3 swap A[i] with A[RANDOM(i, n)]

We shall use a loop invariant to show that procedure RANDOMIZE-IN-PLACE
produces a uniform random permutation. A k-permutation on a set of n ele-
ments is a sequence containing k of the n elements, with no repetitions. (See
Appendix C.) There are n!/(n — k)! such possible k-permutations.

5.3 Randomized algorithms 127

Lemma 5.5
Procedure RANDOMIZE-IN-PLACE computes a uniform random permutation.

Proof We use the following loop invariant:

Just prior to the ith iteration of the for loop of lines 2—3, for each possible
(i — 1)-permutation of the n elements, the subarray A[l..i — 1] contains
this (i — 1)-permutation with probability (n —i + 1)!/n!.

We need to show that this invariant is true prior to the first loop iteration, that each
iteration of the loop maintains the invariant, and that the invariant provides a useful
property to show correctness when the loop terminates.

Initialization: Consider the situation just before the first loop iteration, so that
i = 1. The loop invariant says that for each possible 0-permutation, the sub-
array A[1l..0] contains this O-permutation with probability (n —i 4+ 1)!/n! =
n!/n! = 1. The subarray A[l..0] is an empty subarray, and a O-permutation
has no elements. Thus, A[l .. 0] contains any O0-permutation with probability 1,
and the loop invariant holds prior to the first iteration.

Maintenance: We assume that just before the ith iteration, each possible
(i — 1)-permutation appears in the subarray A[l..i — 1] with probability
(n —i + 1)!/n!, and we shall show that after the ith iteration, each possible
i-permutation appears in the subarray A[l..7] with probability (n — i)!/n!.
Incrementing i for the next iteration then maintains the loop invariant.

Let us examine the ith iteration. Consider a particular i -permutation, and de-
note the elements in it by (x;, x5, ..., x;). This permutation consists of an
(i — 1)-permutation (xy, ..., x;_;) followed by the value x; that the algorithm
places in A[i]. Let E; denote the event in which the first i — 1 iterations have
created the particular (i — 1)-permutation (xy,...,x;_;) in A[1..i —1]. By the
loop invariant, Pr{E;} = (n —i + 1)!/n!. Let E, be the event that i th iteration
puts x; in position A[i]. The i-permutation (x,,...,x;) appears in A[1..i] pre-
cisely when both E; and E, occur, and so we wish to compute Pr{E, N E;}.
Using equation (C.14), we have

PI'{EZ N El} = PI'{EZ | El}Pr{El} .

The probability Pr{E, | E;} equals 1/(n—i + 1) because in line 3 the algorithm
chooses x; randomly from the n — i + 1 values in positions A[i ..n]. Thus, we
have

128

Chapter 5 Probabilistic Analysis and Randomized Algorithms

Pr{E,;NE;} = Pr{E,| E}Pr{E}

1 (n—i—+1)!
n—i—i—l. n!
(n—1i)!

n!

Termination: At termination, i = n + 1, and we have that the subarray A[l ..n]
is a given n-permutation with probability (n —(n+1)+1)/n! = 0!/n! = 1/n!.

Thus, RANDOMIZE-IN-PLACE produces a uniform random permutation. |

A randomized algorithm is often the simplest and most efficient way to solve a
problem. We shall use randomized algorithms occasionally throughout this book.

Exercises

5.3-1

Professor Marceau objects to the loop invariant used in the proof of Lemma 5.5. He
questions whether it is true prior to the first iteration. He reasons that we could just
as easily declare that an empty subarray contains no O-permutations. Therefore,
the probability that an empty subarray contains a O-permutation should be 0, thus
invalidating the loop invariant prior to the first iteration. Rewrite the procedure
RANDOMIZE-IN-PLACE so that its associated loop invariant applies to a nonempty
subarray prior to the first iteration, and modify the proof of Lemma 5.5 for your
procedure.

5.3-2
Professor Kelp decides to write a procedure that produces at random any permuta-
tion besides the identity permutation. He proposes the following procedure:

PERMUTE-WITHOUT-IDENTITY (A)
1 n = A.length

2 fori =1ton—1
3 swap A[i] with A[RANDOM(i + 1,n)]

Does this code do what Professor Kelp intends?

5.3-3
Suppose that instead of swapping element A[i] with a random element from the
subarray A[i ..n], we swapped it with a random element from anywhere in the
array:

5.3 Randomized algorithms 129

PERMUTE-WITH-ALL(A)

1 n = A.length
2 fori =1ton
3 swap A[i] with A[RANDOM(1, n)]

Does this code produce a uniform random permutation? Why or why not?

534
Professor Armstrong suggests the following procedure for generating a uniform
random permutation:

PERMUTE-BY-CYCLIC(A)

1 n = A.length

2 let B[l..n] be a new array
3 offset = RANDOM(1,n)
4 fori = 1ton

5 dest =i + offset

6 if dest > n

7 dest = dest —n
8 Bldest] = Ali]

9 return B

Show that each element A[i] has a 1/n probability of winding up in any particular
position in B. Then show that Professor Armstrong is mistaken by showing that
the resulting permutation is not uniformly random.

535 %
Prove that in the array P in procedure PERMUTE-BY-SORTING, the probability
that all elements are unique is at least 1 — 1/n.

5.3-6

Explain how to implement the algorithm PERMUTE-BY-SORTING to handle the
case in which two or more priorities are identical. That is, your algorithm should
produce a uniform random permutation, even if two or more priorities are identical.

5.3-7

Suppose we want to create a random sample of the set {1,2,3,...,n}, that is,
an m-element subset S, where 0 < m < n, such that each m-subset is equally
likely to be created. One way would be to set A[i] = i fori = 1,2,3,...,n,

call RANDOMIZE-IN-PLACE(A), and then take just the first m array elements.
This method would make 7 calls to the RANDOM procedure. If n is much larger
than m, we can create a random sample with fewer calls to RANDOM. Show that

130

Chapter 5 Probabilistic Analysis and Randomized Algorithms

the following recursive procedure returns a random m-subset S of {1,2,3,...,n},
in which each m-subset is equally likely, while making only m calls to RANDOM:

RANDOM-SAMPLE(m, n)

1 ifm==

2 return ¢

3 else S = RANDOM-SAMPLE(m — 1,n — 1)
4 i = RANDOM(1,n)

5 ifi e S

6 S =SU{n}

7 else S = SU{i}

8 return S

* 5.4 Probabilistic analysis and further uses of indicator random variables

This advanced section further illustrates probabilistic analysis by way of four ex-
amples. The first determines the probability that in a room of k people, two of
them share the same birthday. The second example examines what happens when
we randomly toss balls into bins. The third investigates “streaks” of consecutive
heads when we flip coins. The final example analyzes a variant of the hiring prob-
lem in which you have to make decisions without actually interviewing all the
candidates.

5.4.1 The birthday paradox

Our first example is the birthday paradox. How many people must there be in a
room before there is a 50% chance that two of them were born on the same day of
the year? The answer is surprisingly few. The paradox is that it is in fact far fewer
than the number of days in a year, or even half the number of days in a year, as we
shall see.

To answer this question, we index the people in the room with the integers
1,2,...,k, where k is the number of people in the room. We ignore the issue
of leap years and assume that all years have n = 365 days. Fori = 1,2,...,k,
let b; be the day of the year on which person i’s birthday falls, where 1 < b; < n.
We also assume that birthdays are uniformly distributed across the n days of the
year, so that Pr{h;, = r} = 1/nfori =1,2,...,kandr =1,2,...,n.

The probability that two given people, say i and j, have matching birthdays
depends on whether the random selection of birthdays is independent. We assume
from now on that birthdays are independent, so that the probability that i ’s birthday

5.4 Probabilistic analysis and further uses of indicator random variables 131

and j’s birthday both fall on day r is

Prib;=randb; =r} = Pr{b; =r}Prib; =r}
1/n*.

Thus, the probability that they both fall on the same day is

Pri{b; =b;} = ZPr{bi =randb; =r}
r=1

= > (1/n?

r=1

= 1/n. (5.6)

More intuitively, once b; is chosen, the probability that b; is chosen to be the same
day is 1/n. Thus, the probability that i and j have the same birthday is the same
as the probability that the birthday of one of them falls on a given day. Notice,
however, that this coincidence depends on the assumption that the birthdays are
independent.

We can analyze the probability of at least 2 out of k people having matching
birthdays by looking at the complementary event. The probability that at least two
of the birthdays match is 1 minus the probability that all the birthdays are different.
The event that k people have distinct birthdays is

k

B =4

i=1

where A; is the event that person i’s birthday is different from person j’s for
all j < i. Since we can write By = Ay N By_;, we obtain from equation (C.16)
the recurrence

Pr{Bi} = Pr{By—1} Pr{dx | Bk-1} , (5.7)

where we take Pr{B;} = Pr{A;} = 1 as an initial condition. In other words,
the probability that by, b,,...,b; are distinct birthdays is the probability that
byi,b,, ..., bx—y are distinct birthdays times the probability that by # b; for
i=1,2,...,k—1,giventhat by, b,, ..., by are distinct.

If by, b,,...,br_y are distinct, the conditional probability that b, # b; for
i=1,2,....,k —1is Pr{A; | Bk—1} = (n — k + 1)/n, since out of the n days,
n — (k — 1) days are not taken. We iteratively apply the recurrence (5.7) to obtain

132

Chapter 5 Probabilistic Analysis and Randomized Algorithms

Pr{Bir} = Pr{Bi_1}Pr{Ax | Bi—1}
= Pr{Bio} Pr{Ai_1 | Bx_o} Pr{Ay | Br_1}

; Pr{Bi} Pr{d, | Bi}Pr{As | Bo}---Pr{Ax | Bx—1}
n—1\ (n-2 n—k+1
) ()
(-3) (=2 (-5)
I-{1—— (1 —=)-(1— .
n n n

Inequality (3.12), 1 + x < e*, gives us

Pr {Bk} < e—l/ne—Z/n . e—(k—l)/n

o~ XiZiiln
— o kk=1)/2n
< 1/2

when —k(k — 1)/2n < In(1/2). The probability that all k£ birthdays are distinct
is at most 1/2 when k(k — 1) > 2n1In2 or, solving the quadratic equation, when
k> (14 /14 (8In2)n)/2. For n = 365, we must have k > 23. Thus, if at
least 23 people are in a room, the probability is at least 1/2 that at least two people
have the same birthday. On Mars, a year is 669 Martian days long; it therefore
takes 31 Martians to get the same effect.

An analysis using indicator random variables

We can use indicator random variables to provide a simpler but approximate anal-
ysis of the birthday paradox. For each pair (i, j) of the k people in the room, we
define the indicator random variable X;;, for 1 <i < j < k, by

X;j = I{personi and person j have the same birthday}

1 if person i and person j have the same birthday ,
0 otherwise .

By equation (5.6), the probability that two people have matching birthdays is 1/n,
and thus by Lemma 5.1, we have

E[X;;] = Pr{personi and person j have the same birthday}
= 1/n.

Letting X be the random variable that counts the number of pairs of individuals
having the same birthday, we have

5.4 Probabilistic analysis and further uses of indicator random variables 133

- 5[5 5 1]

When k(k — 1) > 2n, therefore, the expected number of pairs of people with the
same birthday is at least 1. Thus, if we have at least /21 + 1 individuals in a room,
we can expect at least two to have the same birthday. For n = 365, if k = 28, the
expected number of pairs with the same birthday is (28 - 27)/(2 - 365) ~ 1.0356.
Thus, with at least 28 people, we expect to find at least one matching pair of birth-
days. On Mars, where a year is 669 Martian days long, we need at least 38 Mar-
tians.

The first analysis, which used only probabilities, determined the number of peo-
ple required for the probability to exceed 1/2 that a matching pair of birthdays
exists, and the second analysis, which used indicator random variables, determined
the number such that the expected number of matching birthdays is 1. Although
the exact numbers of people differ for the two situations, they are the same asymp-

totically: ®(/n).

5.4.2 Balls and bins

Consider a process in which we randomly toss identical balls into » bins, numbered
1,2,...,b. The tosses are independent, and on each toss the ball is equally likely
to end up in any bin. The probability that a tossed ball lands in any given bin is 1/b.
Thus, the ball-tossing process is a sequence of Bernoulli trials (see Appendix C.4)
with a probability 1/b of success, where success means that the ball falls in the
given bin. This model is particularly useful for analyzing hashing (see Chapter 11),
and we can answer a variety of interesting questions about the ball-tossing process.
(Problem C-1 asks additional questions about balls and bins.)

