And lys of the insertion time in Cuckoo Hashing Based on the notes for undergraduates by

 (123) of ADVANCET ALGORITHMS UNIVERSITY OF PISA - Roberto Grossi Academic Year 2016-2017

Preliminaries

We choose $h_1(x), h_2(x)$ independently and uniformly at random from the universal family $\{(\text{ax+b}) \mod p\}$ mod m : p7m, ac \mathbb{Z}_p be $\mathbb{Z}_p\}$ In particular, given $x \in U$ and $i,j \in \lfloor m \rfloor$, we have

$$
Pr(h_{1}(x)=i\land h_{2}(x)=j) \leq \frac{[P_{m}]^{2}}{\triangle(P^{-1})P} \sim \frac{1}{m^{2}}
$$
\n(1)

\n(Hint: *has a similar proof to that see: for 2-wise independence*

\n*lysis*

Analysis

Consider the set S of keys and the hash functions h, h_2

Conceptually build aw undirected praph G =(V,E) where $|V|$ =m and $|E|$ =n, and

 \cdot vertices are in V = {0,1,..., m -1} and represent the table positions

• edges are random : ^E ⁼ ${\left\{\begin{array}{l} h(x),h_2(x) \end{array}\right\}}: x\in {\left\{\begin{array}{l} s\leq 0 \end{array} \right\}}$ as two vertices caw be Connected by multiple edfes

consider the insertion of a new key \times , which corresponds to a new edper $e=\{h_1(x), h_2(x)\}\$ in G

One of Three situations may happen:
(i) one of the table positions $h_1(x)$ or $h_2(x)$ is free an
(p cost is $O(1)$ time ine of the table positions $h_1(x)$ or $h_2(x)$ is free and x is accomodated there

Le positions are taken, so the insertion follows a path in G

throwing out keys till a free position is found: let ℓ be the starting
 G_{P} is $O(1)$ time
the positions are taken, so the insertion follows a path in G_{P}
throwing out keys till a free position is found: let i be the
position and 3 be the ending position in the path [nde: i is either
an 60 cost is $O(1)$ time (ii) the positions are taken, so the insertion follows a path in G

throwing out Keys till ^a free position is found : let ⁱ be the starting

position and j be the ending position in the path [note: i is either $h_i(x)$ or $h_j(x)$]

 (iii) in (i) but a cycle is traversed in $G \Rightarrow$ REHASHING

We need to analyze (i) and (iii) \rightarrow $O(1)$ expected time

we assume that $m > 2$ cn for a constant c > 2 (2)

 \mathcal{C} ase $(i\mathcal{L})$:

Consider the length of the path from i to 1 in G

By induction ow $\ell \ge 1$, the probability that the path length is ℓ is $\le \frac{1}{2\ell}$ (3) t iow ow $\ell \ge 1$, the probability the
the insertion cost is $O(1+\ell)$

out is $O(1+e)$, we obtain an expected cost of

 $O(1+\sum C \cdot \frac{1}{C\epsilon_m}) = O(1+\frac{1}{m}) = O(1)$ time

- ζ we use Knuth, Concrete Math, p.33 $\sum_{n=0}^{\infty} \frac{\rho(1-\epsilon)}{\epsilon} = \frac{1}{\epsilon} - \frac{n+1}{\epsilon^{n+1}} + \frac{N}{\epsilon^{n+1}}$ $\frac{1}{(1-\frac{1}{c})^2} < \frac{1}{c} / (1-\frac{1}{c})^2 = \frac{C}{(c-1)^2}$

We now prove $(3) \rightarrow$

BASE CASE: C=1

Here {i, 3} is an edge, thus $P_r(3eq_1e_2i,3)=\sum_{x\in S} [P_r((h_1(x)=i,h_2(x)=3)v(h_1(x)=3\wedge h_2(x)=1))]$

INDUCTIVE CASE $(2z1)$:

Here we have a path that poes through a vertex $k \neq i,j$, such that the successor

of k in the path is j , i.e. $\{k, j\}$ is an edge:

innument-1

Path of length R-1

ON which we apply the inductive h .
Pr(3 poth inductive h Pr (3 poth integral \wedge 3 edge {k, 3}) $\frac{1}{2}$ Pr(A(B) R(B)
KeV-j.j) $KeV-\{i,3\}$

> $= \sum R_{r}(\frac{1}{3}p_{s}+\sqrt{p_{s}^{2}+p_{s}^{2}}) \cdot R_{r}(\frac{1}{3}p_{s}+\sqrt{p_{s}^{2}+p_{s}^{2}})$
 $K=V-\frac{1}{3}$ $\neg b \leq \frac{1}{C}m$ C^{Q-1} m
by inductive hp. As in the base case $\ell = 1$, replacing $<$ m $\frac{1}{C_{m}^{2}}$ $\frac{1}{C_{m}^{2}}$ XES With $\sum_{X \in S}$ -{Keysin path inst \Box

CASE (iii)

A cycle appears and thus a REHASHING is parformed in O(n) time

 $Pr(GcycleinG) = \sum_{i=0}^{m-1} Pr(Gpath from i to j=i)$

Q.: How many REHASHINGs can occur?

0} binomial i " " p distribution

Expected number of REHASHINGS is $\frac{1}{2} i p' = O(i)$ as $p < 1$ $\frac{1}{1-\frac{1$ Turning back to the insertion : if there is ^a cycle starting at position ⁱ , O (1) REHASHINGs ere performed on averge

 $=\sum_{\ell=1}^{\infty}\frac{1}{\ell^{e}m} < \frac{p}{m}$

o

 $Pr(a \text{ cycle}$ starting from position i) $\leq Pr(d$ path from i to $j = i$)

Thus we pay $O(w)$ with probability $<\frac{1}{m}$, pining $O(\frac{np}{m})$ = $O(1)$ expected cost

Note the above analysis is ^a bit sloppy for educational purposes. Also the time is amortized $expected$ $O(1)$.