6. REMARKS

We have described a simple data compression
scheme and analyzed its performance both theoreti-
cally and experimentally. Both analyses suggest that
the method may be useful in practice. An intriguing
area for future research is to devise other locally
adaptive data compression schemes and compare
them with the move-to-front scheme. Dynamic Huff-
man coding can be made locally adaptive by keeping
a “window” as suggested by Knuth [16], maintaining
a Huffman tree for word frequencies within the win-
dow. Another possibility is to maintain a dynamic
Huffman tree based on a weight for each word that
is incremented by one each time the word is com-
pressed; periodically all word weights are multiplied
by a constant factor less than one. Recently Elias [8]
independently discovered the move-to-front scheme
and derived inequalities (1) and (2). He also proposed
a related scheme called interval coding, in which a
word is encoded as a prefix code of the number of
words occuring since its last appearance. Elias
showed that inequalities (1) and (2) hold for interval
coding (which also follows from our analysis). Inter-
val coding always needs at least as many bits as the
move-to-front scheme but is easier to implement. It
would be useful to derive further results comparing
these locally adaptive schemes.

It is important to note that with our scheme loss of
synchronization between sender and receiver can be
catastrophic, whereas this is not true with static
Huffman coding. This suggests the study of adaptive
schemes that might overcome this problem.

APPENDIX: ANALYSIS

To analyze our scheme we need to have specific
prefix codes for the integers. Elias [7] and Bentley
and Yao [3] describe a series of encoding schemes in
which the integer i is encoded with roughly log i
bits. The various schemes differ in their choice of
trade-off between performance on small numbers
and performance on large numbers.

The simplest of the schemes encodes the integer
i =1 with 1 + 2 Llog il bits. The encoding of i
consists of Llog i1 0’s followed by the binary repre-
sentation of i (which takes 1 + Llog il bits, the first of
which is a 1). This results in a prefix code since the
total length of a codeword is exactly one plus twice
the number of 0’s in the prefix. Once the length is
known the boundary between codewords can be
found.

Another scheme results if we replace the Llog iJ
0’s followed by a 1, by a two part prefix (an encoding
of 1 + Llog il by the above scheme) which takes 1 +
2 llog(1 + llog iJ)] bits. Thus we have a scheme that

April 1986 Volume 29 Number 4

Research Contributions

encodes i with 1 + Llog iJ + 2Llog(1 + log)] bits.
(Note that Llog(1 + Llog iJ)] = Llog(1 + log 1)J.)

These ideas can be applied again to give an en-
coding for { with 1 + Liog iJ + Llog(1 + log)] +
2llog(1 + log(1 + log)l bits. This process can be
continued; however, the codes that result are better
only for astronomically large numbers.

Knowing the range of numbers to be encoded in
advance can be used to advantage. For example, if
the numbers are bounded above by n, then in the
first scheme the Llog i) 0’s followed by a 1 can be
replaced by Llog(1 + log n)l bits, giving an encoding
for i with Llog il + Llog(1 + log n)l bits. The same
idea applied to the second scheme gives an encoding
of i in Llog il + Llog(1 + log #)J + Llog(1 + log(1 +
log n)))! bits.

For the following discussion we assume that an
encoding of the integers has been chosen, and that
the number of bits needed to encode the integer i is
at most f (i), where f(i) is a concave monotonically
increasing function defined on real values of i = 1.
For example, if we choose the second scheme then
we can let f(i) =1 + log i + 2 log(1 + log i). We
assume that the input stream has been partitioned
into a sequence of dictionary words, which we
shall call symbols. Let the sequence of symbols be
X =1x,%;, ..., xy. The symbols are taken from a
dictionary S of size n. Let pmr(X, f) be the average
number of bits per symbol needed to transmit X by
the move-to-front scheme using a code with code-
word length function f. That is, pmr(X) is the total
number of bits needed to transmit the sequence X
divided by N. (From now on we omit the reference
to f.) Let N, be the number of occurrences of a sym-
bol 4 in X. Then we have

THEOREM 1.
N, [N
X —_— —_—
amr(X) = 7y () (6)
ProoF.
Let t1, t2, . .., ty, be the times when the N, occur-

rences of the symbol 4 are sent. That is, x,, = a and

t; < tis1. When 4 occurs at time ¢ its position in the
list is at most ¢,. Furthermore, when a occurs at time
t; for i > 1 its position is at most t; — #;,_;. Therefore
the cost of transmitting the first 2 is at most f(t,), and
the cost of transmitting the ith a is at most f(#; — #i-1).
If we let R,(X) be the total number of bits used to
transmit the N, occurrences of symbol a then

N,
R.(X) = f(t) + Ez flti — tiza). (7)

Noting the concavity of f and applying Jensen’s

Communications of the ACM 327

Research Contributions

inequality? we get

1 Ne
Ri(X) = an(ﬁ: (f1 + 2:2 t: — ti—l)))

=)

The equality follows from the fact that the terms

t; — t;—1 telescope, and the second inequality follows
from the fact that f is monotonically increasing.
Summing over all a ¢ § and dividing by N gives
Theorem 1. o

)

By combining Theorem 1 with a particular encod-
ing scheme we can relate the efficiency of the move-
to-front compression scheme on a particular se-
quence to the value of the “empirical entropy” of the
sequence. This entropy, H*, is defined as follows.

Nq

H) = 3 - N log 3 G

COROLLARY 1.
avr(X) <1+ H*X) + 2 log(t + H*X)). (10)

Proor.
We use the function f appropriate for the second
scheme: f(i) = 1 + log i + 2 log(1 + log i).

Substituting this into Theorem 1 we get:

N
LNt Iney,

N, N
+ Es N 2 log(l + log N.)

The value of the first sum is 1. The second sum is
just H*(X).

Because log is a concave function and Z (N,/N) =1
we can apply Jensen's inequality to the third sum-
mation to bound it by

2 log[‘leS N (1 + log AI}]‘)] (12)

The summation in (12) is just 1 + H*(X). Combining
these results yields the corollary. o

omi(X) =
(11)

We may now compare the performance of the
move-to-front scheme with that of an optimum static
prefix code for any particular sequence. One way of
getting an optimum code for a particular sequence is
to generate an optimum code for a source in which
the probability of a symbol a occurring is N, /N,
which is just a Huffman code for this probability
distribution. Let py(X) be the average number of bits
2 Jensen’s inequality states that if fis a concave function, fw} is a set of

positive real weights whose sum is 1, and {p;} is a set of points in the domain
of f, then ¥; wif (p) = f(Ts wipy) [11].

Communications of the ACM

per symbol used by this code on the sequence X. A
well known fact about an optimum static code is

H*X) < pu(X) = H*X) + 1. (13)

{See Gallager [9, ch. 3].)
Substituting the left hand inequality into Corol-
lary 1 gives us inequality (2) in Section 3, namely

pvr(X) = 1 + pu(X) + 2 log(1 + pu(X)).

This means that the move-to-front scheme at its
worst performs almost as well as a static optimum
code, even though it has no advance knowledge of
the sequence. Moreover, the move-to-front scheme
will do much better than the static optimum on cer-
tain types of sequences.

We can also evaluate the average performance of
our scheme when compressing a sequence of sym-
bols generated independently according to a fixed
distribution. (This is called a discrete memoryless
source.)

THEOREM 2.
If the symbols are generated by a discrete memoryless
source in which Prob{x, = a} = P,, then we have

(omr(X)) = Es P.f (Pl‘) (14)

where (-) denotes expected value over all sequences of
length N.

ProoF.
Taking expected values on both sides of Theorem 1,

we have
(pmr(X))
=3 & (H)
-3 & (proomv. = (%)
- ()

-5 (()
=3n3 ((N) (1 — PN ,%,f(?))

The next step is to pull f out of the inner summation
using Jensen’s inequality. To do this we must verify
that

(15)

N .
NY i1y _pw-1 1 _
z(i)Pa (1-P) N-L

im1

This follows immediately from the observation that

(3)5-(22)

and the binomial theorem.

April 1986 Volume 29 Number 4

