)
g

32c (* 30a)+= <a32b

void main()

{
class ext_stack<float> st{Andreas");
for(int 1=0;i<1290000;i++) st.push(i);
int help = st.size();
for(int j=0;j<help;j++)
{
if(st.pop() '= help-j-1)
{
cout << ERROR pop\n";
exit(1);
}
}
cout << SSize of Stack : " << st.size();
}

Uses ext_stack 31, pop 32, and push 32.

3 The paging problem (by Dr. Susanne Albers)

In this section we study an important problem operating systems are faced with when managing
main memory: At any time, an operating system has to decide which data to store in main
memory. More precisely, whenever a program has to access a data block that is not in main
memory, the operating system must remove a data block (from main memory) in order to make
room for the requested block. The problem which block to evict is known as the paging problem.

In the standard paging terminology, a data block is called a page. We begin with a formal
definition of the paging problem.

The paging problem: Consider a two-level memory system that consists of a small main
memory and a large secondary memory. A sequence of requests to pages in the memory system
must be served by a paging algorithm. A request is served if the corresponding page is in main
memory. If a requested page is not in main memory, a page fault occurs. Then a page must be
moved from main memory to secondary memory so that the requested page can be loaded into
the vacated location. A paging algorithm specifies which page to evict on a fault. The goal is
to minimize the total number of page faults incurred on the entire request sequence.

Paging is an online problem, i.e., the decision which page to evict on a fault must be made
without knowledge of any future requests.

We list a number of well-known paging algorithms.

e LRU (Least Recently Used): On a fault, evict the page in main memory that
was requested least recently.

o FIFO (First-In First-Out): Evict the page that has been in main memory
longest.

e RANDOM: Evict a page that is chosen uniformly at random from among
the pages in main memory

e LFU (Least Frequently Used): Evict the page that has been requested least
frequently.

All of these algorithms are demand paging algorithms, i.e., they only evict a page if there is
a page fault.

33

B

There are two important methods for analyzing the performance of a paging algorithm.

Worst Case Analysis: A paging algorithm is analyzed on an arbitrary request
sequence that may be generated by an adversary. This type of analysis is also
known as competitive analysis.

Average Case Analysis: A paging algorithm is analyzed on request sequences
that are generated by probability distributions.

In the following we first concentrate on competitive analysis.

3.1 Competitive analysis
3.1.1 Deterministic paging

Let ¢ = 0(1),0(2),...,0(m) be a request sequence. Each request o(t), 1 <t < m, specifies one
page in the memory system. Given a request sequence ¢ and an online paging algorithm A. let

F4(0)
be the number of page fault incurred by A on ¢. Furthermore, let

Fopr(o)

be the number of page faults incurred by an optimal offtine algorithm. An optimal offline
algorithm knows the entire request sequence ¢ in advance and can serve it with the minimum
number of page faults.

1. Definition
An online paging algorithm A is called c-competitive if there exists a constant a such that

Falo) <e- Fopr(o)+a

for all request sequences 0. Note that competitive analysis is a very strong performance
measure. An online algorithm is compared to an “all-knowing” offline algorithm. A competitive
algorithm has to perform well on all possible request sequences.

In the case of the paging problem, an optimal offline algorithms can be described explicitly.
The algorithm is called the MIN algorithm and was discovered by Belady [12].

MIN: On a fault, evict the page whose next request occurs farthest in the
future.

We will prove later that on any sequence of requests, MIN achieves the minimum number o
page faults.

Throughout this section, let k denote the number of pages that can simultaneously reside ir
main memory. The following two theorems are due to Sleator and Tarjan [51].

Theorem 1 The algorithm LRU is k-competitive.

Proof: Consider an arbitrary request sequence ¢ = o(1),0(2),...,0(m). We will prove tha
Frru(o) < k-Fopr(a). Without loss of generality we assume that LRU and OPT initially start
with the same main memory.

We partition ¢ into phases P(0), P(1), P(2),...such that LRU has at most k fault on P(0
and exactly k faults on P(7), for every ¢ > 1. Such a partitioning can be obtained easily. Ve
start at the end of o and scan the request sequence. Whenever we have seen k faults made by
LRU, we cut off a new phase. In the remainder of this proof we will show that OPT has at least
one page fault during each phase. This establishes the desired bound.

34

ne
m

nce

1ive |

For phase P(0) there is nothing to show. Since LRU and OPT start with the same main
memory, OPT has a page fault on thé first request on which LRU has a fault.
Consider an arbitrary phase P(i), i > 1. Let o(t;) be the first request in P(i) and let

o(tiy1 — 1) be the last request in P(i). Furthermore, let 2 be the page that is requested last in
P(i—1).

Lemma 1 P(i) contains requests to k distinct pages that are different from z.

If the lemma holds, then OPT must have a page fault in P(i). OPT has page 2 in its main
memory at the end of P(i— 1) and thus cannot have all the other k pages request in P(7) in its
main memory.

It remains to prove the lemma. The lemma clearly holds if the & requests on which LRU has
a fault are to k distinct pages and if these pages are also different from z. So suppose that LRU
faults twice on a page y in P(i). Assume that LRU has a fault on o(s1) = y and o(s3) = y, with
t; <81 <8y <tipg— 1. Page yis in LRU’s main memory immediately after o(s;) is served and
is evicted at some time ¢ with s; < ¢t < s5. When y is evicted, it is the least recently requested
page in main memory. Thus the subsequence o(s1),...,0(t) contains requests to k + 1 distinct
pages, at least & of which must be different from z.

Finally suppose that within P(¢), LRU does not fault twice on page but on one of the faults,
page « is request. Let t > ¢; be the first time when z is evicted. Using the same arguments
as above, we obtain that the subsequence o(t; — 1),0(t:),...,o(t) must contain k + 1 distinct

PAgEE L SR

The next theorem implies that LRU achieves the best possible competitive ratio.
Theorem 2 Let A be a deterministic online paging algorithm. If A is c-competitive, then ¢ > k.

Proof: Let S = {z1,22,...,7441} be aset of k + 1 arbitrary pages. We assume without loss of
generality that A and OPT initially have z;, ...,z in their main memories.

Consider the following request sequence. Each request is made to the page that is not in A’s
fast memory.

Online algorithm A has a page fault on every request. Suppose that OPT has a fault on
some request o(¢). When serving o(t), OPT can evict a page is not requested during the next

k —1requests o(t+1),...,0(t+k—1). Thus, on any k consecutive requests, OPT has at most
one fault,

R

Theorem 3 On every répuest sequence o, MIN incurs the minimum number of page faults.

2roof: Consider an arbitrary Pequest sequence o = o(1),0(2),.. 40(m) and let A be an other
alzorithm for serving 0. Suppose that 4 and MIN start in the Ame initial state and serve the
it f requests o(1), .. ., o(t) identicallyNWe show that A caff be modified so that A4 and MIN
“7ve the first £+ 1 requests identically and_the number/4f page faults made by A does not
terrase. Repeated execution of this step showdthat 47can be transformed so that it behaves
it oexactly the same way as MIN, and the number page faults does not increase during the
tran-formation,

Lt - be the page requested by o(t +1). Slippose that MIN serves o(t + 1) by evicting u

N - main memory and that A serves ot 1) by evicting™ v # u.

@emalgorithm A" as follows. A’ sepfes o(t + 1) by evicting wand then works in the same
b P until one of the following ey€nts occurs.

35

D

Case 1: There is a page fault at a request to page y, y # v, and A evicts page u. In this
case, A’ evicts page v. At this point, A and A’ are again in the same state and incurred the
same number of page faults.

Case 2: There is a page fault at a request to page v, and A evicts a page 2. In this case, A’
evicts page z and loads u: Again, after this operation, A and A’ are in the same state and had
the same number of page faults.

Note that, by the definition of MIN, a request to u cannot occur earlier than a request to v.
|

3.1.2 Randomized paging

A natural question is: Can we improve the competitive ratio of k using randomization? We first
have to define the competitive ratio of a randomized paging algorithm.
1. Definition
A randomized online paging algorithm is called c-competitive if there is a constant a such
that
E[Fa(0)} £ ¢ Fopr(o) +a

for all request sequences o. Here, E[F4(0)] is the expected number of pages faults incurred by
A, where the expectation is taken of the random choices made by A.

Let us consider the RANDOM algorithms introduced in the beginning of this section. Ragha-
van and Snir [48] proved the following theorem.

Theorem 4 The RANDOM algorithm is not better than k-competitive.

Proof: We consider the request sequence

0= 212223..-Tk(Y1Z2T3 - - -, :ck)l(yga:2z3 .. .,l'k)l(y32721'3 .. .,;L'k)l ..
The pages z1,..., Tk, Y1, Y2, - - - aL€ pairwise distinct. Here (p)I denotes the [-fold repetition of
the subsequence p, where [is a positive integer to be specified later.
Clearly, OPT has exactly one page fault in each subsequence (y;z223. .., zi)'

At the beginning of each subsequence p; = (yiz2z3. - .,mk)’, RANDOM has at most k£ — 1
of the pages requested in p; in its main memory. We say that RANDOM has a near page fault
on p; if it has exactly k — 1 of the k pages requested in p; in its main memory and a page fault
occurs. We say that RANDOM has success on an near fault if it evicts the page not requested
in Pi

On each repetition of the sequence y;z2%3 ..., Tk, RANDOM has at least one page fault until
it has success on a near fault. The probability that RANDOM has success on z}‘~,11n"“,fault is 1,
i.e, the expected number of near faults until there is success on a near fault & x. Choosing !
large enough we can make the rat;i;?RANDOM(U)‘/FOPT(U)jarbitrarily close to k. }/B
n .

The above theorem implies that in order to beat the competitive ratio of k, randomization
has to be used in a more sophisticated way. The following algorithms was analyzed by Fiat et
al. [28].

Algorithm MARKING: The algorithm processes a request sequence in phases. At the
beginning of each phase, all pages in the memory system are unmarked. w
W' On a fault, a page is chosen uniformly at random from among the
unmarked pages in main memory, and this pages is evicted. A phase ends when all pages in
fast memory are marked and a page fault occurs. Then, all marks are erased and a new phase
is started. :

36

e T IO

Theorem 5 The MARKING algorithm ‘is 2Hy-competitive, where Hy = S5, 1/i is the k-th
Harmonic number.

Note that Hy is roughly In k. Later we will see that no randomized online paging algorithm can
Qw. Thus the MARKING algorithm is optimal, up to a constant
factor. More complicated paging algorithms achieving an optimal competitive ratio of Hy were
given in {39, 1].)
Proof: Given a request sequence ¢ = o(1),...,0(m), we assume without of generality that
MARKING already has a fault on the first request o(1).

MARKING divides the request sequence into phases. A phase starting with o () ends with
o(J), where 7, 7 > 1, is the smallest integer such that the set

‘ {o(i),0(i+1),...,0(j + 1)}
i ahe s
contains k + f distinct pages. Note that at the end of a phase all pages in main memory are
marked. —
Consider an arbitrary phase. Call a page stale if it is unmarked but was marked in the
previous phase. Call a page clean if it is neither stale nor marked.
Let ¢ be the number of clean pages requested in the phase. We will show that

1. the amortized number of faults made by OPT during the phase it at least .
2. the expected number of faults made by MARKING is at most cHy.

"z

These two statements imply the theorem.

We first analyze OPT’s page faults. Let Sopr be the set of pages contained in OPT’s main
memory, and let Sy be the set of pages stored in MARKING’s main memory. Furthermore,
let d; be the value of |Sopr \ Sam| at the beginning of the phase and let dr be the value of
'Sopr \ Sar| at the end of the phase. OPT has at Zﬂnoff‘c — dj faults during the phase because
at least ¢ — d; of the ¢ clean pages are not in OPT’s main memory. Also, OPT has at least dp
faults during the phase because dr pages requested during the phase are not in OPT’s main
memory at the end of the phase. We conclude that OPT incurs at least

d; dp
5T

max{c — dj,dr} > %(c —dr+dp) = %
faults during the phase. Summing over all phases, the terms ‘—éi and %ﬁ telescope, except for the
#r=1t and last terms. Thus the amortized number of page faults made by OPT during BZJZ;p[m;EL ’
= at least 5.

Next we analyze MARKING’s expected number of page faults. Serving c requests to clean
pages cost c. There are s = k — ¢ < k — 1 requests to stale pages. For i = 1,...,s, we compute
the expected cost of the i-th request to a stale page. Let ¢(i) be the number of clean pages
that were requested in the phase immediately before the i-th request to a stale page and let s(i)
“etote the number of stale pages that remain before the i-th request to a stale page.

Wihen MARKING serves the i-th request to a stale page, exactly s(¢) — ¢(7) of the s(7) stale
$age~ are in main memory, each of them with equal probability. Thus the expected cost of the

et .

s(i)—c(i).0+c(i).1<iz c
s(i) s(iy " T os(i) k—-i+1
'mM”mminn follows because s(7) = k — (1 — 1). The total expected cost for serving requests

to %Mpaaq in o

i=1 1=

o — 2 .
M el HMarp Ko G <)ijc,aute,d e ,LQV%LL-F&)/A{ A L.oww\z,&,

"3~
bx} C’Hk‘ !

3.3 Paging with locality of reference

We re-consider the question why our previous analyses do not give performance bounds that are
meaningful in practice.

Clearly, request sequences generated by real programs/processes are not arbitrary. They
exhibit locality of reference: A currently requested page is likely to be referenced again in the
near future. This is, for instance, due to looping, subroutines, stacks and variables used for
counting. The phenomenon was already observed by Denning [24] in 1968. He also noticed
that at any given time, a program always works with a relatively small set of pages that are
referenced actively. This working set may change over time.

How can locality of reference be incorporated into our analyses? In [14, 33], the notion of
access graphs was introduced. An access graph is a directed or undirected graph in which the
nodes represent the pages in the memory system. Using access graphs we can model requested
sequences generated by real programs. If a page z is requested by the current request, then the
next request must be made to a page that is adjacent to z in the access graph. Note that in the
analyses in Section 3.1 the underlying access graph was always the complete graph.

Given a graph G, an online paging algorithm is called c-competitive if there exists a constant
a such that .

FA(U)SC@PT(U)-{—(I . s

for all o that “obey” . That is, ¢ must be a ;;aﬂh in G. L
We summarize the main results of the study of paging with access graphs (14, 33].

1. A detailed analysis of the best competitive ratio that can be achieved on an
arbitrary but fixed graph G.

2. An analysis of the competitive ratio achieved by LRU on access graphs.

3. A new online paging algorithm called FAR. On a fault, FAR evicts the page
from main memory, whose distance from the currently requested page is far-
thest in the access graph. It was shown that for every access graph, FAR
achieves the best possible competitive ratio, up to a constant factor.

The main drawback in item 3 is that the access graph must be known by the algorithm, which
i~ not realistic in practice.

We now turn to a recent work [29] on paging with access graphs, where the paging algorithm
maintains a dynamic access graph over time. The graph is built up by the algorithm itself.

Algorithm DG (Dynamic Access Graph)
V71 Vertex set of the dynamic access graph.
E : Edge set of the dynamic access graph.
wie): Weight of edge e € E.
k: Number of pages that can reside in main memory.
c: Global counter.
P: Pointer to the current page.
a.3.7: Parameters (in the actual implementation & = 0.8, B = 1.5, v = 10).
Initialization
Let = be the pages that is requested first;
Set V:{.’L‘},E:@,P:v;
Main algorithm
et = be the page pointed to by P;
Let y.y +# z, be the page requested next;
if yZ1V then add ytoV;
Let e = (2, y);

41

S T T B S B CF T Tt T wdurs e oy Feizse gl

if e ¢ E then add e to F; set w(e) = 1;
else w(e) = aw(e);
if w(e) > 1 then w(e) = 1;
c=c+1;
if ¢ = 0(modyk) then for all e € E set w(e) = Bw(e);
if y is not in main memory then il
if main memory has no free position then
Evict page in main memory that has the largest distance from gin (V, E,w);
Load y; ¢
Set P=y;
Obsergaﬂ'.oan?é L . ‘ .
‘Tequest to page z is immediately followed by a request to y, then the edge
(z,y) has weight at most 1. The weight is smaller if successive requests to
and y already occurred very often.

e If pages z and y are not requested successively for a very long time, then the
weight of (2, y) increases.

o The edge weights are crucial for deciding, which page to evict on a page fault.

Ezperimental tests: Fiat and Rosen tested the new algorithm DG on long request sequences
consisting of 200000 to 3000000 individual requests. In particular, they compared the performace
of DG to that of LRU. On average, the num number of pages faults made by DG was 7 to 9 percent less
than"t‘hat made by LRU.Tf some cases, 1mprovements of even 10 to 20 percent were observed.
“"We analyze a variant of the algouthm where the weight of an edge is never decreased below
That is, if an edge has weight 1 I, it is not decreased any further. In experimental tests, this

algorithm has the same behavior as the original algorithm.

1
k-

Theorem 8 The modified algorithm DG is O(klog k)-competitive.

Proof: Given a request sequence o, we partition ¢ into phases such that each phase (except for
possibly the last phase) contains exactly

2k~ (logs k +’i)

page faults made by DG.

Consider an arbitrary phase. If this phase contains requests to at least k + 1 distinct pages,
then OPT must have at least one page fault in the phase, ayld we are ¢ done. In the followmg we
assume that the phase contains only 7, ¢ <k,: paye £ (abae%qa (O v

First, we concentrate on the last 2kvy page faults made by DG in the phase. There must be
one page & on which DG faults twice because only i < k pages are requested in the phase. Let {3
and t9, t; < tg, be the last two times in the phase when DG has a fault on «. Let 5, ¢ < 8 < ty,
be the times when z is evicted and suppose that the time interval [t;, s] contains [ky requests,
for some integer I. At time s. the distance between z at the current pointer is at most

k5.

This is because there are at most k edges between z and the current pointer and the edge weights
were set to 1 at the last traversal.

Let y be a page that is not requested in the phase. At time s, let P be the shortest path
between y and the current pointer and let e be the edge on P leading into y. Let w be the
weight of e at the beginning of the phase. We know w > % At time s, the weight of e is at least
wpP?logkti+l 5 k5l We have a contradiction to the fact that z is evicted at time s. | |

