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Example of K-means Clustering
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K-means Clustering

Partitional clustering approach
Number of clusters, K, must be specified
Each cluster is associated with a centroid (center point)

Each point is assigned to the cluster with the closest
centroid

The basic algorithm is very simple

: Select K points as the initial centroids.

: repeat

1
2
3:  Form K clusters by assigning all points to the closest centroid.
4:  Recompute the centroid of each cluster.

5

: until The centroids don’t change
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Example of K-means Clustering
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K-means Clustering — Details

® Initial centroids are often chosen randomly.
—  Clusters produced vary from one run to another.

® The centroid is (typically) the mean of the points in the
cluster.

® ‘Closeness’ is measured by Euclidean distance, cosine
similarity, correlation, etc.

® K-means will converge for common similarity measures
mentioned above.

® Most of the convergence happens in the first few
iterations.

—  Often the stopping condition is changed to ‘Until relatively few
points change clusters’

® ComplexityisO(n*K*1*d)

— n = number of points, K = number of clusters,
| = number of iterations, d = number of attributes
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Evaluating K-means Clusters

® Most common measure is Sum of Squared Error (SSE)

— For each point, the error is the distance to the nearest cluster
— To get SSE, we square these errors and sum them.

SSE = i Z:a’ist2 (m,,x)
i=1 xeC; T

e xis a data point in cluster G, and m, is the representative A\

point for cluster Ci 2 -
can show that mi corresponds to the center (mean) of

the cluster S T S

® Given two sets of clusters, we prefer the one with the o
smallest error

® One easy way to reduce SSE is to increase K, the number of
clusters

® A good clustering with smaller K can have a lower SSE than
a poor clustering with higher K
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Two different K-means Clusterings
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Limitations of K-means

® K-means has problems when clusters are of
differing
— Sizes
— Densities
— Non-globular shapes

® K-means has problems when the data contains
outliers.
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Limitations of K-means: Differing Sizes
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Overcoming K-means Limitations
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One solution is to use many clusters.
Find parts of clusters, but need to put together.
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Limitations of K-means: Differing Density
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Overcoming K-means Limitations
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Limitations of K-means: Non-globular Shapes

Original Points K-means (2 Clusters)
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Overcoming K-means Limitations

Original Points K-means Clusters
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Empty Clusters

@ K-means can yield empty clusters
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Handling Empty Clusters

@ Basic K-means algorithm can yield empty
clusters

® Several strategies

= Choose a point and assign it to the cluster
+Choose the point that contributes most to SSE
+Choose a point from the cluster with the highest SSE

e If there are several empty clusters, the above can
be repeated several times.
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Pre-processing and Post-processing

® Pre-processing
— Normalize the data
— Eliminate outliers

® Post-processing
— Eliminate small clusters that may represent outliers

— Split ‘loose’ clusters, i.e., clusters with relatively high
SSE

— Merge clusters that are ‘close’ and that have relatively
low SSE

— Can use these steps during the clustering process
¢ ISODATA
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Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids ...
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Importance of Choosing Initial Centroids ...
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Problems with Selecting Initial Points

e |Ifthere are K ‘real’ clusters then the chance of selecting
one centroid from each cluster is small.

—  Chance is relatively small when K is large
— If clusters are the same size, n, then

p_ number of ways to select one centroid from each cluster K Ink K
B number of ways to select K centroids - (Kn)K KK

—  For example, if K = 10, then probability = 10!/101° = 0.00036

—  Sometimes the initial centroids will readjust themselves in
‘right’ way, and sometimes they don't

—  Consider an example of five pairs of clusters
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10 Clusters Example

Starting with two initial centroids in one cluster of each pair of clusters
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10 Clusters Example
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Starting with two initial centroids in one cluster of each pair of clusters
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10 Clusters Example

Starting with some pairs of clusters having three initial centroids, while other
have only one.
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10 Clusters Example
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Starting with some pairs of clusters having three initial centroids, while other have only one.
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Solutions to Initial Centroids Problem

@ Multiple runs
— Helps, but probability is not on your side

@ Sample and use hierarchical clustering to determine
initial centroids

® Select more than Kk initial centroids and then select among
these initial centroids

— Select most widely separated
® Postprocessing

@ Generate a larger number of clusters and then perform a
hierarchical clustering

® Bisecting K-means
— Not as susceptible to initialization issues
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Updating Centers Incrementally

@ In the basic K-means algorithm, centroids are
updated after all points are assigned to a centroid

® An alternative is to update the centroids after
each assignment (incremental approach)

— Each assignment updates zero or two centroids
— More expensive

— Introduces an order dependency

— Never get an empty cluster

— Can use “weights” to change the impact
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Finding the best number of clusters

® In k-means the number of clusters K'is given

— Partition n objects into predetermined number of
clusters

— Finding the “right” number of clusters is part of

the problem "
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Convergence of K-Means

® Define goodness measure of cluster ¢ as sum of squared
distances from cluster centroid:

— SSE(c,s)=2%, (d. —s.)? (sum over all d, in cluster c)
— G(C,s) =2, SSE(c,s)

® Re-assignment monotonically decreases G
— It is a coordinate descent algorithm (opt one component at a time)

® At any step we have some value for G(C,s)
1) Fix s, optimize C = assign d to the closest centroid = G(C,s) <= G(C,s)
2) Fix C’, optimize s = take the new centroids = G(C',s’ ) <= G(C,s) <= G(C,s)

The new cost is smaller than the original one - local minimum
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Bisecting K-means

Variant of K-means that can produce
a hierarchical clustering

Algorithm 8.2 Bisecting K-means algorithm.

1: Initialize the list of clusters to contain the cluster consisting of all points.
2: repeat
3:  Remove a cluster from the list of clusters.
{Perform several “trial” bisections of the chosen cluster.}
for i = 1 to number of trials do
Bisect the selected cluster using basic K-means.
end for
Select the two clusters from the bisection with the lowest total SSE.
9:  Add these two clusters to the list of clusters.
10: until Until the list of clusters contains K clusters.
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Bisecting K-Means

@ The algorithm is exhaustive terminating at singleton
clusters (unless K is known)

® Terminating at singleton clusters
—Is time consuming
—Singleton clusters are meaningless

—Intermediate clusters are more likely to correspond to
real classes

® No criterion for stopping bisections before singleton
clusters are reached.
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Combining Bisecting K-means and K-means

® The resulting clusters can be refined by using their
centroids as the initial centroids for the basic K-
means.

® Why is this necessary?

— K-means algorithm is guaranteed to find a clustering
that represents a local minimum wrt the SSE

— Bisecting K-means uses the K- means algorithm
locally to bisect individual clusters.

— The final set of clusters does not represent a
clustering that is a local minimum wrt the total
SSE
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X-Means

® X-Means clustering algorithm is an extended K-Means
which tries to automatically determine the number of
clusters based on BIC scores.

@ As Bisecting K-means starts with only one cluster

® The X-Means goes into action after each run of K-Means,
making local decisions about which subset of the
current centroids should split in order to better fit the data.

® The splitting decision is done by computing the Bayesian
Information Criterion (BIC).
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Bayesian Information Criterion (BIC)

® A strategy to stop the Bisecting algorithm when meaningful
clusters are reached to avoid over-splitting

® Using BIC as splitting criterion of a cluster in order to decide
whether a cluster should split or no

@ BIC measures the improvement of the cluster structure
between a cluster and its two children clusters.

® Compute the BIC score of:
— A cluster
— Two children clusters

e BIC approximates the probability that the M; is describing the
real clusters in the data
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BIC based split

——— Parent cluster:

BIC(K=1)=198
\ 0
\
__, Two resulting
clusters:
BIC(K=2)=22

45

The BIC score of the parent cluster is less than BIC score
of the generated cluster structure => we accept the
bisection.
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X-Means

e® Forward search for the appropriate value of k in a given
range [y, g,
— Recursively split each cluster and use BIC score to
decide if we should keep each split

1. Run K-means with k=r,

2. Improve structure
3. Ifk>r,,, Stop and return the best-scoring model

® Use local BIC score to decide on keeping a split

® Use global BIC score to decide which K to output at the
end
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X-Means

1. K-means with k=3

3. Run 2-means in
each region locally

2. Split each centroid in 2
children moving a distance
propotional to the region size
in opposite direction (random)

ntroductionto C

4. Compare BIC of
parent and children

4. Only centroids with
higher BIC survives
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BIC Formula

® The BIC score of a data collection is defined as (Kass and
Wasserman, 1995):

AN p .
BIC(M )= (D)-—logR
J o 2
O l;(D) is the log-likelihood of the data set D

® P, is a function of the number of independent parameters:
centroids coordinates, variance estimation.

® R is the number of points of a cluster

Approximate the probability that the M, is describing the real clusters
in the data
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BIC (Bayesian Information Criterion)

e Adjusted Log-likelihood of the model.

e The likelihood that the data is “explained by” the clusters according to
the spherical-Gaussian assumption of k-means

A P
BIC(M )=1 [D)-—LlogR
i 2
Focusing on the set D, of points which belong to centroid n

1 1
Plaifai € D) = G o0 (o s = P
[(D,) = 5 log(27) — 5 log(crz) — 5

+R,log R, — R, log R

It estimates how closely to the centroid are the points of the cluster.
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Mixture Models and the EM Algorithm
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Model-based clustering (probabilistic)

® In order to understand our data, we will assume that there
IS a generative process (a model) that creates/describes
the data, and we will try to find the model that best fits

the data.

— Models of different complexity can be defined, but we will
assume that our model is a distribution from which data points

are sampled
— Example: the data is the height of all people in Greece

® In most cases, a single distribution is not good enough to
describe all data points: different parts of the data
follow a different distribution
— Example: the data is the height of all people in Greece and
China
— We need a mixture model
— Different distributions correspond to different clusters in the data.
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Algorithm 9.2 EM algorithm.

1: Select an initial set of model parameters.

(As with K-means, this can be done randomly or in a variety of ways.)

repeat

Expectation Step For each object, calculate the probability
that each object belongs to each distribution, i.e., calculate
prob(distribution j|x;,O).

4.  Maximization Step Given the probabilities from the expectation step,
find the new estimates of the parameters that maximize the expected
likelihood.

5: until The parameters do not change.

(Alternatively, stop if the change in the parameters is below a specified
threshold.)

w1
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EM (Expectation Maximization) Algorithm

Initialize the values of the parameters in ® to some
random values

Repeat until convergence

- E-Step: Given the parameters 0 estimate the membership
probabilities P(G|x;) and P(C|x;)

- M-Step: Compute the parameter values that (in expectation)
maximize the data likelihood

E-Step: Assignment of points to clusters:
K-means: hard assignment,
EM: soft assignment

M-Step:
K-means: Computation of centroids
EM: Computation of the new model parameters

02/14/2018 Introduction to Data Mining, 2"d Edition
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Gaussian Distribution

Example: the data is the height of all people in
Greece

- Experience has shown that this data follows a Gaussian
(Normal) distribution

- Reminder: Normal distribution:

(x=p)*
e 202
\V2Tmo

- 4 = mean, o = standard deviation

P(x) =

02/14/2018 Introduction to Data Mining, 2"d Edition

47



Gaussian Model

@ \What is a model?

— A Gaussian distribution is fully defined by the mean
1 and the standard deviation o

— We define our model as the pair of parameters 6 =
(W 0)

® This is a general principle: a model is defined as
a vector of parameters 6
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Fitting the model

® \We want to find the normal distribution that best
fits our data

— Find the best values for yand o
— But what does best fit mean?
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Maximum Likelihood Estimation (MLE)

Suppose that we have a vector X = (x4, ..., x,,) of values
And we want to fit a Gaussian N (u, o) model to the data

Probability of observing point x;:

_(xi=p)?
202

Pl = e

Probability of observing all points (assume independence)

_(xj—p)?

P(X) = ﬁP(xi) = ﬁx/zl_nae 202
i=1 i=1

We want to find the parameters 6 = (u, o) that maximize
the probability P(X|60)
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Maximum Likelihood Estimation (MLE)

The probability P(X|0) as a function of 8 is called the
Likelihood function

©®) g IR =
L — 1—[ e 20
11 \V2To

It is usually easier to work with the Log-Likelihood
function

n
Gei — )° ——nlog2mr —nlogo
2
) 20 2

Maximum Likelihood Estimation
- Find parameters u, o that maximize LL(6)

n

LL(B) = —

S|

n
1
p= X; = Ux 0% = ;Z(xi_#)z = 0%
i=1

=1 Sample Mean Sample Variance
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MLE

Note: these are also the most likely parameters
given the data

P(X|6)P(6)
P(X)

P(O|X) =

If we have no prior information about 8, or X, then
maximizing P(X|0) is the same as maximizing
P(O|X)
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Mixture of Gaussians

® Suppose that you have the heights of people
from Greece and China and the distribution looks
like the figure below

02/14/2018

0
/
0 /
/ /

0 / \ / \ a5
z [ \ / \
- | \', / \ 2 30
3 / \ / \ &
£o0 / \ / % 25
El \ / 3
S0 \ / 220
4 2

/ 15

\
/ \
| \ 4
\
/ \
003l / \ 1
002 1
001 1
0 L L \
-10 0 5 10
x

(a) Probability density function for (b) 20,000 points generated from the
the mixture model. mixture model.

Figure 9.2. Mixture model consisting of two normal distributions with means of -4 and 4, respectively.
Both distributions have a standard deviation of 2.
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Mixture of Gaussians

@ In this case the data is the result of the mixture of
two Gaussians
— One for Greek people, and one for Chinese people

— ldentifying for each value which Gaussian is most
likely to have generated it will give us a clustering.
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Figure 9.2. Mixture model consisting of two normal distributions with means of -4 and 4, respectively.
Both distributions have a standard deviation of 2.
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Mixture Model

A value x; is generated according to the following
process:

- First select the nationality

With probability ; select Greek, with probability =, select China
(mg +mc = 1)

- Given the nationality, generate the point from the
corresponding Gaussian
P(x;|6;) ~ N(ug,0;) if Greece
P(x;|6c) ~ N(u,,0,) if China
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Mixture Models

Our model has the following parameters
O = (g, ¢, Ug, Kcr O, Oc)

Mixture probabilities Distribution Parameters

For value x;, we have:
P(x;|®) = msP(x;|0;) + mcP(x;|6¢)
For all values X = (xq,...,x,)

pixie) = | [Peule)
i=1

We want to estimate the parameters that maximize
the Likelihood of the data
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Mixture Models

Once we have the parameters

® = (g, e, Ug, Uc, O, Oc) We can estimate the

membership probabilities P(G|x;) and P(C|x;) for

each point x;:

- This is the probability that point x; belongs to the Greek
or the Chinese population (cluster)

P(x;|G)P(G)

P(x;|G)P(G) + P(x;|C)P(C)
P(x;|G)mg

~ P(x;|G)mg + P(x;|C)me

P(Glx;) =
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EM (Expectation Maximization) Algorithm

Initialize the values of the parameters in ©® to some
random values

Repeat until convergence

- E-Step: Given the parameters 0 estimate the membership
probabilities P(G|x;) and P(C|x;)

- M-Step: Compute the parameter values that (in expectation)
maximize the data likelihood

1 1 n .
e =— ) P(G|x; _ = , Fraction of
¢ nz (Glx;) , nZP(me fetll e

1=1 i=1
n
P(Clx;) - .
he = Z mpp— e = ZP Glx) MLE Estimates
i=1 =~ N*Tg if =’s were fixed
n n
P(Clx;) P(G|x;)
Jg=zn*n,; (x; — uc)? GGZ=Zn* ; (x; — ug)?
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Advantages & Disadvantages

@ Disadvantages of EM:

— It can be slow thus it's not suitable fot large
dimensionality

— It does not work in case of few data points
— It has difficulty in case of noise and outliers

® Advantages of EM:

— More geneal wrt K-means because it can use different
types f distributions

— It can find cluster with different size and shape
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