
Support Vector Machine



SVM

• This technique has its roots in statistical learning

• Promising results in different applications
• Text classification, handwritten digit recognition

• Works very well with high-dimensional data

• Represents the decision bourndary by a subset of training examples
• Support vectors



Linear Separators 

• Binary classification can be viewed 
as the task of separating classes in 
feature space

• Find a linear hyperplane (decision 
boundary) that separates the data.



Maximum Margin Hyperplanes

• One possible solution.
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Linear Separators 

• Another possible solution.
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Linear Separators 

• Other possible solutions.
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Linear Separators 

• Let’s focus on B1 and B2.
• Which one is better?
• How do you define better?
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Support Vector Machine (SVM)

• SVM represents the decision boundary using a subset of the 
training examples, known as the support vectors.

• SVM is based on the concept of maximal margin hyperplane



Classification Margin

• Decision Boundary is associated to 2 
hyperplanes obtained by support 
vectors

• Examples closest to the hyperplane are 
support vectors. 

• Margin d of the separator is the 
distance between support vectors.

• A simple binary classification problem:
• buys computer = yes à +1
• buys computer = no à -1
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Linear SVM: Separable Case

• A linear SVM is a classifier that searches for 
a hyperplane with the largest margin (a.k.a. 
maximal margin classifier).

• w and b are parameters.

• Given w and b the classifier works as
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Maximum Margin Hyperplanes

• The best solution is the hyperplane 
that maximizes the margin.
• Thus, B1 is better than B2.
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Learning a Linear SVM

• Learning the model is equivalent to determining w and b.
• How to find w and b?
• Objective is to maximize the margin by minimizing
• Subject to the following constraints

• This is a constrained optimization problem: a Quadratic 
optimization problem, a well-known class of mathematical 
programming problem, and many algorithms exist for solving them 
(with many special ones built for SVMs)
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Linear SVM: Nonseparable Case 

• What if the problem is not 
linearly separable?



Slack Variables

• The inequality constraints must be 
relaxed to accommodate the nonlinearly 
separable data.
• This is done introducing slack variables 𝜉

into the constrains of the optimization 
problem

• 𝜉 provides an estimate of the error of the 
decision boundary on the misclassified 
training examples.
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Learning a Nonseparable Linear SVM
• Objective  to minimize

• Subject to to the constraints

• where C and k are user-specified 
parameters representing the penalty 
of misclassifying the training 
instances

• Parameter C can be viewed as a way to 
control overfitting:  it “trades off” the 
relative importance of maximizing the 
margin and fitting the training data.
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C is a regularization parameter and 
allows to control overfitting:
• small C allows constraints to be easily ignored 

→ large margin -> misclassification 
• large C makes constraints hard to ignore → 

narrow margin (overfitting)
• C = ∞ enforces all constraints: hard margin



Nonlinear SVM

• What if the decision boundary is not 
linear?



Nonlinear SVM

• The trick is to transform the data 
from its original space 𝑥 into a new 
space Φ(𝑥) so that a linear decision 
boundary can be used.
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