
Neural Networks



The Neuron Metaphor
• Inspired by attempts to simulate biological neural systems. 
• Neurons
• accept information from multiple inputs, 
• transmit information to other neurons.

• Multiply inputs by weights along edges
• Apply some function to the set of inputs at each node

2Simulate the synaptic connection



Artificial Neural Networks (ANN)
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Artificial Neural Networks (ANN)
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• Model is an assembly of inter-connected 
nodes and weighted links

• Output node sums up each of its input 
value according to the weights of its links

• Compare output node against some 
threshold t (also named bias b)
• Bias b => the output of the 

transformation is biased toward being b 
in the absence of any input. å
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Characterizing the Artificial Neuron

• Input/Output signal may be:
• Real value
• Unipolar {0, 1}
• Bipolar [-1, +1]

• Weight (w or sigma): θij – strength of connection from unit j to unit i
• Learning amounts to adjusting the weights θij by means of an 

optimization algorithm aiming to minimize a cost function, i.e., as in 
biological systems training a perceptron model amounts to adapting 
the weights of the links until they fit the input output relationships of 
the underlying data.
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Characterizing the Artificial Neuron

• The bias b is a constant that can be written as θi0x0 with x0 = 1 and θ i0 = b 
such that 

• The function f(𝑛𝑒𝑡!(x))  is the unit’s activation function for the output 
neuron. 
• The simplest case, f is the identity function, and the unit’s output is just its 

net input. This is called a linear unit. 
• Otherwise we can have other functions that we see later ….
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The Perceptron Classifier



Perceptron

• Single layer network
• Contains only input and output nodes

• Activation function:  f = sign(w•x)

• Applying model is straightforward

• X1 = 1, X2 = 0, X3 =1 => y = sign(0.2) = 1
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Learning Iterative Procedure

• During the training phase the weight parameters are adjusted until the 
outputs of the perceptron become consistent with the true outputs of the 
training examples.
• Initialize the weights (w0, w1, …, wm)
• Repeat
• For each training example (xi, yi)
• Compute f(w(k), xi)
• Update the weights: 

• Until stopping condition is met
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Perceptron Learning Rule

• Weight update formula:

• Intuition:
• Update weight based on error:  
• If y=f(x,w), e=0: no update needed
• If y>f(x,w), e=2: weight must be increased so that f(x,w) will increase
• If y<f(x,w), e=-2: weight must be decreased so that f(x,w) will decrease
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The Learning Rate

• Is a parameter with value between 0 and 1 used to control the 
amount of adjustment made in each iteration.
• If is close to 0 the new weight is mostly influenced by the value of the 

old weight.
• If it is close to 1, then the new weight is mostly influenced by the 

current adjustment.
• The learning rate can be adaptive: initially moderately large and the 

gradually decreases in subsequent iterations.



Nonlinearly Separable Data

• Since f(w,x) is a linear 
combination of input variables, 
decision boundary is linear.
• For nonlinearly separable 

problems, the perceptron fails 
because no linear hyperplane can 
separate the data perfectly.
• An example of nonlinearly 

separable data is the XOR 
function.
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0 0 -1
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Multilayer Neural Network



Multilayer Neural Network

• Hidden Layers: intermediary layers between input and 
output layers.

• Different type of activation functions (sigmoid, linear, 
hyperbolic tangent, etc.).

• Multi-layer neural network can solve any type of 
classification task involving nonlinear decision surfaces.

• Perceptron is single layer.

• We can think to each hidden node  as a perceptron that 
tries to construct one hyperplane, while the output node 
combines the results to return the decision boundary.
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General Structure of ANN
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Training ANN means learning 
the weights of the neurons

• The neurons perform a linear 
transformation  on this input 
using the weights and biases.

• An activation function is 
applied to it 

• The output moves to the 
next hidden layer



Artificial Neural Networks (ANN)

• Various types of neural network topology
• single-layered network (perceptron) versus  

multi-layered network
• Feed-forward: connections only between 

nodes of level Li and the next one Li+1
• Recurrent network: feedback connections in 

which outputs of the model are fed back into 
itself. 

• Various types of  activation functions (f)
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Activation function: Sigmoid

• Logistic function (Sigmoid): values in [0,1]

• Derivative:



Activation function: Hyperbolic Tangent 

• Hyperbolic Tangent has values in [-1,1]
• More complex wrt Sigmoid
• Better than sigmoid because symmetric wrt 0 

and leads to a faster convergence
• We can obtain it by Sigmoid 

• Derivative:

Hyperbolic Tangent



Activation function: RELU

• Rectified Linear Unit: values in [0,inf]

• It will output the input directly if it is positive, 
otherwise, it will output zero

• Overcomes the vanishing gradient problem, allowing 
models to learn faster and perform better.

𝑓 𝑛𝑒𝑡 = + 0 (𝑜𝑟 𝜖) 𝑓𝑜𝑟 𝑛𝑒𝑡 < 0
𝑛𝑒𝑡 𝑓𝑜𝑟 𝑛𝑒𝑡 ≥ 0



Activation function: Softmax

• Each value in the output of the softmax
function is interpreted as the probability of 
membership for each class.

• Generalization of the logistic function to 
multiple dimensions

• Useful for addressing a multiclass problem



Activation Functions Summary

Hyperbolic Tangent
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Training Multilayer NN
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Training Multilayer NN
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given the loss is available only at
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Error Backpropagation
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Error is computed at the output 
and propagated back to the input 
by chain rule to compute the 
contribution of each weight 
(a.k.a. derivative) to the loss

A 2-step process
1. Forward pass - Compute the 

network output
2. Backward pass – Compute the loss

function gradients and update



Forward propagation 



Forward propagation



Learning Multi-layer Neural Network

• Can we apply perceptron learning to each node, including hidden nodes?

• Perceptron computes error e = y-f(w,x) and updates weights accordingly

• Problem: how to determine the true value of y for hidden nodes?

• Approximate error in hidden nodes by error in the output nodes

• Problems: 
• Not clear how adjustment in the hidden nodes affect overall error 
• No guarantee of convergence to optimal solution



Gradient Descent for Multilayer NN

• Error function to minimize:

• Weight update:

• The second term states that weight should be increased in a direction 
reducing the overall error term
• The gradient descent learning rule moves a small (𝜆) step in the negative gradient 

direction
• Gradient indicates the direction of growing of the function

• Activation function f must be differentiable
• Error function is nonlinear GD method can get trapped in a local minimum
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Gradient Descent for Multilayer NN

• Weights are updated in the 
opposite direction of the 
gradient of the loss function.

• Gradient direction is the 
direction of uphill of the error 
function.
• By taking the negative we are 

going downhill.
• Hopefully to a minimum of 

the error.
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Gradient Descent for Multilayer NN
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• For output neurons, weight update 
formula is the same as before (gradient 
descent for perceptron)

• For hidden neurons:
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Backpropagation in other words

• In order to get the loss of a node 
(e.g. Z0), we multiply the value of its 
corresponding f’(z) by the loss of the 
node it is connected to in the next 
layer (delta_1), by the weight of the 
link connecting both nodes.
• We do the delta calculation step at 

every unit, back-propagating the loss 
into the neural net, and finding out 
what loss every node/unit is 
responsible for.



Backpropagation



Learning a MLNN
Inizialize 𝑛𝐻, 𝐰, 𝜆, Nun_𝑒𝑝𝑜𝑐ℎ, 𝑠𝑖𝑧𝑒mb

epoch = 0 

do epoch = epoch +1 
random sort the Training Set (𝑛 istances) 
for each mini-batch B of 𝑠𝑖𝑧𝑒mb

reset gradiente

for each 𝐱 in B 

forward step 
backward step 

update weights
Compute Loss 
Compute accuracy on Training Set and Validation Set 

while (not convergence and epoch < Num_𝑒𝑝𝑜𝑐ℎ)



Backpropagation: example

• All the weights are initialized to 0.5
• The learning rate is 1

• Activation function: 𝑍! = f(𝑛𝑒𝑡!) = H

HIJ#$%&!

• 𝑓K 𝑛𝑒𝑡 = 𝑍! 1 − 𝑍!
• ∆𝑤L! = 𝜆𝛿!𝑍!
• Output node: 𝛿!= (𝑇! − 𝑍!)𝑓K(𝑛𝑒𝑡)
• Hidden node: 𝛿!= ∑#(𝛿#𝑤!#) 𝑓K(𝑛𝑒𝑡) 1 2 3
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Backpropagation: example
• 𝑍% = f(𝑛𝑒𝑡%) = &

&'(!"#$%

• 𝑓) 𝑛𝑒𝑡 = 𝑍% 1 − 𝑍%
• ∆𝑤*% = 𝜆𝛿%𝑍%
• Output node: 𝛿%= (𝑇% − 𝑍%)𝑓)(𝑛𝑒𝑡)
• Hidden node: 𝛿%= ∑+(𝛿+𝑤%+) 𝑓)(𝑛𝑒𝑡)
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• 𝑛𝑒𝑡+ = 0.9 ∗ 0.5 + 0.6 ∗ 0.5 + 1 ∗ 0.5 = 1.25

• 𝑛𝑒𝑡, = 0.9 ∗ 0.5 + 0.6 ∗ 0.5 + 1 ∗ 0.5 = 1.25

• 𝑧+ = T& (&%-#$.&') = 0.77

• 𝑧, = T& (&%-#$.&') = 0.77

• 𝑛𝑒𝑡! = 0.77 ∗ 0.5 + 0.77 ∗ 0.5 + 1 ∗ 0.5 = 1.27

• 𝑧. = T& (&%-#$.&() = 0.78



Backpropagation: example
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• 𝑛𝑒𝑡. = 1.25, 𝑛𝑒𝑡/ = 1.25, 𝑧. = 0.77, 𝑧/ = 0.77,
𝑛𝑒𝑡0 = 1.27, 𝑧0 = 0.78

• 𝛿0 = 0 − 0.78 ∗ 0.78 ∗ 1 − 0.78 = −0.13

• 𝛿. = −0.13 ∗ 0.5 ∗ 0.77 ∗ 1 − 0.77 = −0.11

• 𝛿/ = −0.13 ∗ 0.5 ∗ 0.77 ∗ 1 − 0.77 = −0.11



Backpropagation: example
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• 𝑛𝑒𝑡. = 1.25, 𝑛𝑒𝑡/ = 1.25, 𝑧. = 0.77,
𝑧/ = 0.77, 𝑛𝑒𝑡0 = 1.27, 𝑧0 = 0.78
• 𝛿0 = −0.13
• 𝛿. = −0.11
• 𝛿/ = −0.11
• 𝑤.0 = 0.5 + 1 ∗ −0.13 ∗ 0.77 = 0.39
• 𝑤/0 = 0.5 + 1 ∗ −0.13 ∗ 0.77 = 0.39
• 𝑤10 = 0.5 + 1 ∗ −0.13 ∗ 1 = 0.36



Backpropagation: example
• 𝑍% = f(𝑛𝑒𝑡%) = &
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• 𝛿0 = −0.13, 𝛿. = −0.11, 𝛿/ = −0.11
• 𝑤.0 = 0.39, 𝑤/0 = 0.39, 𝑤10 = 0.36
• 𝑤2. = 0.5 + 1 ∗ −0.11 ∗ 0.9 = 0.48
• 𝑤2/ = 0.5 + 1 ∗ −0.11 ∗ 0.9 = 0.48
• 𝑤3. = 0.5 + 1 ∗ −0.11 ∗ 0.6 = 0.49
• 𝑤3/ = 0.5 + 1 ∗ −0.11 ∗ 0.6 = 0.49
• 𝑤4. = 0.5 + 1 ∗ −0.11 ∗ 1 = 0.48
• 𝑤4/ = 0.5 + 1 ∗ −0.11 ∗ 1 = 0.48



Learning Rate



On the Key Importance of Error Functions

• The error/loss/cost function reduces all the various good and bad 
aspects of a possibly complex system down to a single number, a 
scalar value, which allows candidate solutions to be compared.
• It is important, therefore, that the function faithfully represents our 

design goals. 
• If we choose a poor error function and obtain unsatisfactory results, 

the fault is ours for badly specifying the goal of the search.



Design Issues in ANN

• Number of nodes in input layer 
• One input node per binary/continuous attribute
• k or log2k nodes for each categorical attribute with k values

• Number of nodes in output layer
• One output for binary class problem
• k nodes for k-class problem

• Number of nodes in hidden layer
• Initial weights and biases



Characteristics of ANN

• Multilayer ANN are universal approximators but could suffer from overfitting if 
the network is too large.
• Gradient descent may converge to local minimum.
• Model building can be very time consuming, but testing can be very fast. 
• Can handle redundant attributes because weights are automatically learnt.
• Sensitive to noise in training data.
• Difficult to handle missing attributes.
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