
Neural Networks

The Neuron Metaphor
• Inspired by attempts to simulate biological neural systems.
• Neurons
• accept information from multiple inputs,
• transmit information to other neurons.

• Multiply inputs by weights along edges
• Apply some function to the set of inputs at each node

2Simulate the synaptic connection

Artificial Neural Networks (ANN)

X1 X2 X3 Y
1 0 0 -1
1 0 1 1
1 1 0 1
1 1 1 1
0 0 1 -1
0 1 0 -1
0 1 1 1
0 0 0 -1

X1

X2

X3

Y

Black box

Output

Input

Output Y is 1 if at least two of the three inputs are equal to 1.

Artificial Neural Networks (ANN)

X1 X2 X3 Y
1 0 0 -1
1 0 1 1
1 1 0 1
1 1 1 1
0 0 1 -1
0 1 0 -1
0 1 1 1
0 0 0 -1

S

X1

X2

X3

Y

Black box

0.3

0.3

0.3 t=0.4

Output
node

Input
nodes

î
í
ì

<-
³

=

-++=

 0 if1
0 if1

)(where

)4.03.03.03.0(321

x
x

xsign

XXXsignY

(or Bias b)

Artificial Neural Networks (ANN)

S

X1

X2

X3

Y

Black box

w1

t

Output
node

Input
nodes

w2

w3

• Model is an assembly of inter-connected
nodes and weighted links

• Output node sums up each of its input
value according to the weights of its links

• Compare output node against some
threshold t (also named bias b)
• Bias b => the output of the

transformation is biased toward being b
in the absence of any input. å

å

=

=

=

-=

d

i
ii

d

i
ii

Xwsign

tXwsignY

0

1

)(

)(

W0 = -t
X0 = 1

Characterizing the Artificial Neuron

• Input/Output signal may be:
• Real value
• Unipolar {0, 1}
• Bipolar [-1, +1]

• Weight (w or sigma): θij – strength of connection from unit j to unit i
• Learning amounts to adjusting the weights θij by means of an

optimization algorithm aiming to minimize a cost function, i.e., as in
biological systems training a perceptron model amounts to adapting
the weights of the links until they fit the input output relationships of
the underlying data.

6

Characterizing the Artificial Neuron

• The bias b is a constant that can be written as θi0x0 with x0 = 1 and θ i0 = b
such that

• The function f(𝑛𝑒𝑡!(x)) is the unit’s activation function for the output
neuron.
• The simplest case, f is the identity function, and the unit’s output is just its

net input. This is called a linear unit.
• Otherwise we can have other functions that we see later ….

𝑛𝑒𝑡! =%
"#$

%

θ!"𝑥"

The Perceptron Classifier

Perceptron

• Single layer network
• Contains only input and output nodes

• Activation function: f = sign(w•x)

• Applying model is straightforward

• X1 = 1, X2 = 0, X3 =1 => y = sign(0.2) = 1
î
í
ì

<-
³

=

-++=

 0 if1
0 if1

)(where

)4.03.03.03.0(321

x
x

xsign

XXXsignY

Learning Iterative Procedure

• During the training phase the weight parameters are adjusted until the
outputs of the perceptron become consistent with the true outputs of the
training examples.
• Initialize the weights (w0, w1, …, wm)
• Repeat
• For each training example (xi, yi)
• Compute f(w(k), xi)
• Update the weights:

• Until stopping condition is met
[] ii

k
i

kk xxwfyww),()()()1(-+=+ l

Iteration index

Learning rate

Perceptron Learning Rule

• Weight update formula:

• Intuition:
• Update weight based on error:
• If y=f(x,w), e=0: no update needed
• If y>f(x,w), e=2: weight must be increased so that f(x,w) will increase
• If y<f(x,w), e=-2: weight must be decreased so that f(x,w) will decrease

[] rate learning : ;),()()()1(ll ii
k

i
kk xxwfyww -+=+

[]),()(
i

k
i xwfye -=

The Learning Rate

• Is a parameter with value between 0 and 1 used to control the
amount of adjustment made in each iteration.
• If is close to 0 the new weight is mostly influenced by the value of the

old weight.
• If it is close to 1, then the new weight is mostly influenced by the

current adjustment.
• The learning rate can be adaptive: initially moderately large and the

gradually decreases in subsequent iterations.

Nonlinearly Separable Data

• Since f(w,x) is a linear
combination of input variables,
decision boundary is linear.
• For nonlinearly separable

problems, the perceptron fails
because no linear hyperplane can
separate the data perfectly.
• An example of nonlinearly

separable data is the XOR
function.

x1 x2 y
0 0 -1
1 0 1
0 1 1
1 1 -1

21 xxy Å=
XOR Data

Multilayer Neural Network

Multilayer Neural Network

• Hidden Layers: intermediary layers between input and
output layers.

• Different type of activation functions (sigmoid, linear,
hyperbolic tangent, etc.).

• Multi-layer neural network can solve any type of
classification task involving nonlinear decision surfaces.

• Perceptron is single layer.

• We can think to each hidden node as a perceptron that
tries to construct one hyperplane, while the output node
combines the results to return the decision boundary.

n1

n2

n3

n4

n5

x1

x2

Input
Layer

Hidden
Layer

Output
Layer

y

w31

w32

w41

w42

w53

w54

XOR Data

General Structure of ANN

Activation
function

g(Si)
Si Oi

I1

I2

I3

wi1

wi2

wi3

Oi

Neuron iInput Output

threshold, t

Input
Layer

Hidden
Layer

Output
Layer

x1 x2 x3 x4 x5

y

Training ANN means learning
the weights of the neurons

• The neurons perform a linear
transformation on this input
using the weights and biases.

• An activation function is
applied to it

• The output moves to the
next hidden layer

Artificial Neural Networks (ANN)

• Various types of neural network topology
• single-layered network (perceptron) versus

multi-layered network
• Feed-forward: connections only between

nodes of level Li and the next one Li+1
• Recurrent network: feedback connections in

which outputs of the model are fed back into
itself.

• Various types of activation functions (f)

)(å=
i

ii XwfY

Activation function: Sigmoid

• Logistic function (Sigmoid): values in [0,1]

• Derivative:

Activation function: Hyperbolic Tangent

• Hyperbolic Tangent has values in [-1,1]
• More complex wrt Sigmoid
• Better than sigmoid because symmetric wrt 0

and leads to a faster convergence
• We can obtain it by Sigmoid

• Derivative:

Hyperbolic Tangent

Activation function: RELU

• Rectified Linear Unit: values in [0,inf]

• It will output the input directly if it is positive,
otherwise, it will output zero

• Overcomes the vanishing gradient problem, allowing
models to learn faster and perform better.

𝑓 𝑛𝑒𝑡 = + 0 (𝑜𝑟 𝜖) 𝑓𝑜𝑟 𝑛𝑒𝑡 < 0
𝑛𝑒𝑡 𝑓𝑜𝑟 𝑛𝑒𝑡 ≥ 0

Activation function: Softmax

• Each value in the output of the softmax
function is interpreted as the probability of
membership for each class.

• Generalization of the logistic function to
multiple dimensions

• Useful for addressing a multiclass problem

Activation Functions Summary

Hyperbolic Tangent

𝑓 𝑥 = +0 𝑓𝑜𝑟 𝑥 < 0
1 𝑓𝑜𝑟 𝑥 ≥ 0

𝑓 𝑥 = 𝑥 𝑓 𝑥 =
1

1 + 𝑒!"

𝑓 𝑥 =
𝑒" − 𝑒!"

𝑒" + 𝑒!" 𝑓 𝑥 = +0 (𝑜𝑟 𝜖) 𝑓𝑜𝑟 𝑥 < 0
𝑥 𝑓𝑜𝑟 𝑥 ≥ 0

𝑓 𝑥! =
𝑒"!

∑# 𝑒""
Softmax Function

Training Multilayer NN

…

…

Output

Input

Hidden Layer

(F) Loss
J = 1

2 (y � y(d))2

(E) Output (sigmoid)
y = 1

1+2tT(�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+2tT(�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

Training Multilayer NN

…

…

Output

Input

Hidden Layer

(F) Loss
J = 1

2 (y � y�)2

(E) Output (sigmoid)
y = 1

1+2tT(�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+2tT(�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

E(𝑦, 𝑦∗)

How do we update these weights
given the loss is available only at
the output unit?

E

Error Backpropagation

…

…

Output

Input

Hidden Layer

E(𝑦, 𝑦∗)

Error is computed at the output
and propagated back to the input
by chain rule to compute the
contribution of each weight
(a.k.a. derivative) to the loss

A 2-step process
1. Forward pass - Compute the

network output
2. Backward pass – Compute the loss

function gradients and update

Forward propagation

Forward propagation

Learning Multi-layer Neural Network

• Can we apply perceptron learning to each node, including hidden nodes?

• Perceptron computes error e = y-f(w,x) and updates weights accordingly

• Problem: how to determine the true value of y for hidden nodes?

• Approximate error in hidden nodes by error in the output nodes

• Problems:
• Not clear how adjustment in the hidden nodes affect overall error
• No guarantee of convergence to optimal solution

Gradient Descent for Multilayer NN

• Error function to minimize:

• Weight update:

• The second term states that weight should be increased in a direction
reducing the overall error term
• The gradient descent learning rule moves a small (𝜆) step in the negative gradient

direction
• Gradient indicates the direction of growing of the function

• Activation function f must be differentiable
• Error function is nonlinear GD method can get trapped in a local minimum

j

k
j

k
j w

Eww
¶
¶

-=+ l)()1(

å å
=

÷÷
ø

ö
çç
è

æ
-=

N

i j
ijji xwftE

1
)(

2
1

yi

Quadratic function from
which we can find a global

minimum solution

2

Gradient Descent for Multilayer NN

• Weights are updated in the
opposite direction of the
gradient of the loss function.

• Gradient direction is the
direction of uphill of the error
function.
• By taking the negative we are

going downhill.
• Hopefully to a minimum of

the error.

j

k
j

k
j w

Eww
¶
¶

-=+ l)()1(

Gradient direction

w(k)

w(k+1)

Gradient Descent for Multilayer NN

wpi

wqi

Neuron i

Neuron p

Neuron q

Neuron x

Neuron y

wix

wiy

Hidden layer
k-1

Hidden layer
k

Hidden layer
k+1

• For output neurons, weight update
formula is the same as before (gradient
descent for perceptron)

• For hidden neurons:

𝑤!"
($%&) = 𝑤!"

($) + 𝜆𝑜"(1 − 𝑜") .
(∈*!

𝛿(𝑤"(

Output neurons: 𝛿(= 𝑜((1 − 𝑜()(𝑦𝑖 − 𝑜()

Hidden neurons: 𝛿(= 𝑜((1 − 𝑜() .
$∈*"

𝛿$𝑤($

Consider the Sigmoid 𝒐(𝒙) the derivative is 𝒐(𝒙)(𝟏 − 𝒐(𝒙))

Backpropagation in other words

• In order to get the loss of a node
(e.g. Z0), we multiply the value of its
corresponding f’(z) by the loss of the
node it is connected to in the next
layer (delta_1), by the weight of the
link connecting both nodes.
• We do the delta calculation step at

every unit, back-propagating the loss
into the neural net, and finding out
what loss every node/unit is
responsible for.

Backpropagation

Learning a MLNN
Inizialize 𝑛𝐻, 𝐰, 𝜆, Nun_𝑒𝑝𝑜𝑐ℎ, 𝑠𝑖𝑧𝑒mb

epoch = 0

do epoch = epoch +1
random sort the Training Set (𝑛 istances)
for each mini-batch B of 𝑠𝑖𝑧𝑒mb

reset gradiente

for each 𝐱 in B

forward step
backward step

update weights
Compute Loss
Compute accuracy on Training Set and Validation Set

while (not convergence and epoch < Num_𝑒𝑝𝑜𝑐ℎ)

Backpropagation: example

• All the weights are initialized to 0.5
• The learning rate is 1

• Activation function: 𝑍! = f(𝑛𝑒𝑡!) = H

HIJ#$%&!

• 𝑓K 𝑛𝑒𝑡 = 𝑍! 1 − 𝑍!
• ∆𝑤L! = 𝜆𝛿!𝑍!
• Output node: 𝛿!= (𝑇! − 𝑍!)𝑓K(𝑛𝑒𝑡)
• Hidden node: 𝛿!= ∑#(𝛿#𝑤!#) 𝑓K(𝑛𝑒𝑡) 1 2 3

654

7

0.9 0.6 1

1

Backpropagation: example
• 𝑍% = f(𝑛𝑒𝑡%) = &

&'(!"#$%

• 𝑓) 𝑛𝑒𝑡 = 𝑍% 1 − 𝑍%
• ∆𝑤*% = 𝜆𝛿%𝑍%
• Output node: 𝛿%= (𝑇% − 𝑍%)𝑓)(𝑛𝑒𝑡)
• Hidden node: 𝛿%= ∑+(𝛿+𝑤%+) 𝑓)(𝑛𝑒𝑡)

1 2 3

654

7

0.9 0.6 1

1

• 𝑛𝑒𝑡+ = 0.9 ∗ 0.5 + 0.6 ∗ 0.5 + 1 ∗ 0.5 = 1.25

• 𝑛𝑒𝑡, = 0.9 ∗ 0.5 + 0.6 ∗ 0.5 + 1 ∗ 0.5 = 1.25

• 𝑧+ = T& (&%-#$.&') = 0.77

• 𝑧, = T& (&%-#$.&') = 0.77

• 𝑛𝑒𝑡! = 0.77 ∗ 0.5 + 0.77 ∗ 0.5 + 1 ∗ 0.5 = 1.27

• 𝑧. = T& (&%-#$.&() = 0.78

Backpropagation: example
• 𝑍% = f(𝑛𝑒𝑡%) = &

&'(!"#$%

• 𝑓) 𝑛𝑒𝑡 = 𝑍% 1 − 𝑍%
• ∆𝑤*% = 𝜆𝛿%𝑍%
• Output node: 𝛿%= (𝑇% − 𝑍%)𝑓)(𝑛𝑒𝑡)
• Hidden node: 𝛿%= ∑+(𝛿+𝑤%+) 𝑓)(𝑛𝑒𝑡)

1 2 3

654

7

0.9 0.6 1

1

• 𝑛𝑒𝑡. = 1.25, 𝑛𝑒𝑡/ = 1.25, 𝑧. = 0.77, 𝑧/ = 0.77,
𝑛𝑒𝑡0 = 1.27, 𝑧0 = 0.78

• 𝛿0 = 0 − 0.78 ∗ 0.78 ∗ 1 − 0.78 = −0.13

• 𝛿. = −0.13 ∗ 0.5 ∗ 0.77 ∗ 1 − 0.77 = −0.11

• 𝛿/ = −0.13 ∗ 0.5 ∗ 0.77 ∗ 1 − 0.77 = −0.11

Backpropagation: example
• 𝑍% = f(𝑛𝑒𝑡%) = &

&'(!"#$%

• 𝑓) 𝑛𝑒𝑡 = 𝑍% 1 − 𝑍%
• ∆𝑤*% = 𝜆𝛿%𝑍%
• Output node: 𝛿%= (𝑇% − 𝑍%)𝑓)(𝑛𝑒𝑡)
• Hidden node: 𝛿%= ∑+(𝛿+𝑤%+) 𝑓)(𝑛𝑒𝑡)

1 2 3

654

7

0.9 0.6 1

1

• 𝑛𝑒𝑡. = 1.25, 𝑛𝑒𝑡/ = 1.25, 𝑧. = 0.77,
𝑧/ = 0.77, 𝑛𝑒𝑡0 = 1.27, 𝑧0 = 0.78
• 𝛿0 = −0.13
• 𝛿. = −0.11
• 𝛿/ = −0.11
• 𝑤.0 = 0.5 + 1 ∗ −0.13 ∗ 0.77 = 0.39
• 𝑤/0 = 0.5 + 1 ∗ −0.13 ∗ 0.77 = 0.39
• 𝑤10 = 0.5 + 1 ∗ −0.13 ∗ 1 = 0.36

Backpropagation: example
• 𝑍% = f(𝑛𝑒𝑡%) = &

&'(!"#$%

• 𝑓) 𝑛𝑒𝑡 = 𝑍% 1 − 𝑍%
• ∆𝑤*% = 𝜆𝛿%𝑍%
• Output node: 𝛿%= (𝑇% − 𝑍%)𝑓)(𝑛𝑒𝑡)
• Hidden node: 𝛿%= ∑+(𝛿+𝑤%+) 𝑓)(𝑛𝑒𝑡)

1 2 3

654

7

0.9 0.6 1

1

• 𝛿0 = −0.13, 𝛿. = −0.11, 𝛿/ = −0.11
• 𝑤.0 = 0.39, 𝑤/0 = 0.39, 𝑤10 = 0.36
• 𝑤2. = 0.5 + 1 ∗ −0.11 ∗ 0.9 = 0.48
• 𝑤2/ = 0.5 + 1 ∗ −0.11 ∗ 0.9 = 0.48
• 𝑤3. = 0.5 + 1 ∗ −0.11 ∗ 0.6 = 0.49
• 𝑤3/ = 0.5 + 1 ∗ −0.11 ∗ 0.6 = 0.49
• 𝑤4. = 0.5 + 1 ∗ −0.11 ∗ 1 = 0.48
• 𝑤4/ = 0.5 + 1 ∗ −0.11 ∗ 1 = 0.48

Learning Rate

On the Key Importance of Error Functions

• The error/loss/cost function reduces all the various good and bad
aspects of a possibly complex system down to a single number, a
scalar value, which allows candidate solutions to be compared.
• It is important, therefore, that the function faithfully represents our

design goals.
• If we choose a poor error function and obtain unsatisfactory results,

the fault is ours for badly specifying the goal of the search.

Design Issues in ANN

• Number of nodes in input layer
• One input node per binary/continuous attribute
• k or log2k nodes for each categorical attribute with k values

• Number of nodes in output layer
• One output for binary class problem
• k nodes for k-class problem

• Number of nodes in hidden layer
• Initial weights and biases

Characteristics of ANN

• Multilayer ANN are universal approximators but could suffer from overfitting if
the network is too large.
• Gradient descent may converge to local minimum.
• Model building can be very time consuming, but testing can be very fast.
• Can handle redundant attributes because weights are automatically learnt.
• Sensitive to noise in training data.
• Difficult to handle missing attributes.

References

• Artificial Neural Network. Chapter 5.4 and
5.5. Introduction to Data Mining.

