
AN ALTERNATIVE METHOD
FOR ASSOCIATION RULES

R. Agrawal, R. Srikant: "Fast Algorithms for Mining Association Rules",
Proc. of the 20th Int'l Conference on Very Large Databases, 1994.

The Apriori algorithm
Level-wise approach

Ck = candidate itemsets of size k
Lk = frequent itemsets of size k

Candidate
generation

Frequent
itemset

generation

1. k = 1, C1 = all items
2. While Ck not empty

3. Scan the database to find which itemsets in
Ck are frequent and put them into Lk

4. Use Lk to generate a collection of candidate
itemsets Ck+1 of size k+1

5. k = k+1

Factors affecting the complexity
• Choice of minimum support threshold
• lowering min support results in more frequent itemsets this may

increase number of candidates and max length of frequent itemsets
• Dimensionality (number of items of the dataset)
• more space is needed to store support count of each item
• if number of frequent items also increases, both computation and I/O

costs may also increase
• Size of database
• since Apriori makes multiple passes, run time of algorithm may

increase with number of transactions
• Average transaction length
• transaction length increases with denser data sets
• this may increase max length of frequent itemsets and traversals of

hash tree (number of subsets in a transaction increases with its
length)

THE FP-TREE AND THE
FP-GROWTH ALGORITHM

Overview
• The FP-tree contains a compressed
representation of the transaction database.
• A trie (prefix-tree) data structure is used
• Each transaction is a path in the tree – paths can

overlap.

• Once the FP-tree is constructed the recursive,
divide-and-conquer FP-Growth algorithm is used
to enumerate all frequent itemsets.

FP-tree Construction
• The FP-tree is a trie (prefix tree)

• Since transactions are sets of items, we
need to transform them into ordered
sequences so that we can have
prefixes
• Otherwise, there is no common prefix

between sets {A,B} and {B,C,A}

• We need to impose an order to the
items
• Initially, assume a lexicographic order.

TID Items
1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {B,C}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}

FP-tree Construction
• Initially the tree is empty

null
TID Items
1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {B,C}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}

FP-tree Construction
• Reading transaction TID = 1

• Each node in the tree has a label consisting of the item
and the support (number of transactions that reach that
node, i.e. follow that path)

TID Items
1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {B,C}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}

null

A:1

B:1

Node label = item:support

FP-tree Construction
• Reading transaction TID = 2

• We add pointers between nodes that refer to the
same item

TID Items
1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {B,C}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}

null

A:1

B:1

B:1

C:1

D:1

Each transaction is a path in the tree

FP-tree Construction
TID Items
1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {B,C}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}

null

A:1

B:1

B:1

C:1

D:1

After reading
transactions TID=1, 2:

Item Pointer
A
B
C
D
E

Header Table

The Header Table and the
pointers assist in
computing the itemset
support

FP-tree Construction
• Reading transaction TID = 3
TID Items
1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {B,C}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}

null

A:1

B:1

B:1

C:1

Item Pointer
A
B
C
D
E

A:1

D:1

FP-tree Construction
• Reading transaction TID = 3
TID Items
1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {B,C}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}

null

B:1

B:1

C:1

D:1
Item Pointer
A
B
C
D
E

A:2

C:1

D:1

E:1

FP-tree Construction
• Reading transaction TID = 3
TID Items
1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {B,C}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}

null

B:1

B:1

C:1

D:1
Item Pointer
A
B
C
D
E

A:2

C:1

D:1

E:1

Each transaction is a path in the tree

FP-Tree Construction

null

A:7

B:5

B:3

C:3

D:1

C:1

D:1C:3

D:1

D:1

E:1

E:1

TID Items
1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {B,C}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}

Pointers are used to assist
frequent itemset generation

D:1
E:1

Transaction
Database

Item Pointer
A
B
C
D
E

Header table

Each transaction is a path in the tree

FP-tree size
• Every transaction is a path in the FP-tree
• The size of the tree depends on the compressibility

of the data

• Extreme case: All transactions are the same, the FP-
tree is a single branch

• Extreme case: All transactions are different the size
of the tree is the same as that of the database (bigger
actually since we need additional pointers)

Item ordering
• The size of the tree also depends on the ordering of the items.
• Heuristic: order the items in according to their frequency from larger

to smaller.
• We would need to do an extra pass over the dataset to count

frequencies

• Example:
TID Items
1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {B,C}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}

TID Items
1 {Β,Α}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {Β,Α,C}
6 {Β,Α,C,D}
7 {B,C}
8 {Β,Α,C}
9 {Β,Α,D}
10 {B,C,E}

σ(Α)=7, σ(Β)=8,
σ(C)=7, σ(D)=5,
σ(Ε)=3

Ordering : Β,Α,C,D,E

Finding Frequent Itemsets
• Input: The FP-tree
• Output: All Frequent Itemsets and their support
• Method: Divide and Conquer:

• Consider all itemsets that end in: E, D, C, B, A
• For each possible ending item, consider the itemsets with last

item equal to one of items preceding it in the ordering
• E.g, for E, consider all itemsets with last item D, C, B, A. In this

way we get all the itemsets ending at DE, CE, BE, AE
• Proceed recursively this way.
• Do this for all items.

Frequent itemsets

All Itemsets

Ε D C B A

DE CE BE AE CD BD AD BC AC AB

CDE BDE ADE BCE ACE ABE BCD ACD ABD ABC

ACDE BCDE ABDE ABCE ABCD

ABCDE

Frequent Itemsets

All Itemsets

Ε D C B A

DE CE BE AE CD BD AD BC AC AB

CDE BDE ADE BCE ACE ABE BCD ACD ABD ABC

ACDE BCDE ABDE ABCE ABCD

ABCDE

Frequent?

Frequent?

Frequent?

We can generate all itemsets this way
We expect the FP-tree to contain a lot less

Using the FP-tree to find frequent itemsets

null

A:7

B:5

B:3

C:3

D:1

C:1

D:1C:3

D:1

D:1

E:1

E:1

TID Items
1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {B,C}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}

Bottom-up traversal of the tree.

First, itemsets ending in E, then D,
etc, each time a suffix-based class

D:1
E:1

Transaction
Database

Item Pointer
A
B
C
D
E

Header table

null

A:7

B:5

B:3

C:3

D:1

C:1

D:1C:3

D:1

D:1

E:1 E:1D:1
E:1

Item Pointer
A
B
C
D
E

Header table

Subproblem: find frequent
itemsets ending in E

§ We will then see how to compute the support for the possible itemsets

Finding Frequent Itemsets

null

A:7

B:5

B:3

C:3

D:1

C:1

D:1C:3

D:1

D:1

E:1 E:1D:1
E:1

Item Pointer
A
B
C
D
E

Header table

Ending in D

Finding Frequent Itemsets

null

A:7

B:5

B:3

C:3

D:1

C:1

D:1C:3

D:1

D:1

E:1 E:1D:1
E:1

Item Pointer
A
B
C
D
E

Header table

Ending in C

Finding Frequent Itemsets

null

A:7

B:5

B:3

C:3

D:1

C:1

D:1C:3

D:1

D:1

E:1 E:1D:1
E:1

Item Pointer
A
B
C
D
E

Header table

Ending in B

Finding Frequent Itemsets

null

A:7

B:5

B:3

C:3

D:1

C:1

D:1C:3

D:1

D:1

E:1 E:1D:1
E:1

Item Pointer
A
B
C
D
E

Header table

Ending in Α

Finding Frequent Itemsets

Algorithm
• For each suffix X
• Phase 1

• Construct the prefix tree for X as shown before, and
compute the support using the header table and the
pointers

• Phase 2
• If X is frequent, construct the conditional FP-tree for X

in the following steps
1. Recompute support
2. Prune infrequent items
3. Prune leaves and recurse

null

A:7

B:5

B:3

C:3

D:1

C:1

D:1C:3

D:1

D:1

E:1 E:1D:1
E:1

Item Pointer
A
B
C
D
E

Header table

Phase 1 – construct
prefix tree

Find all prefix paths that
contain E

Suffix Paths for Ε:

{A,C,D,E}, {A,D,Ε}, {B,C,E}

Example

null

A:7 B:3

C:3C:1

D:1

D:1

E:1 E:1

E:1

Phase 1 – construct
prefix tree

Find all prefix paths that
contain E

Prefix Paths for Ε:

{A,C,D,E}, {A,D,Ε}, {B,C,E}

Example

null

A:7 B:3

C:3C:1

D:1

D:1

E:1 E:1

E:1

Compute Support for E
(minsup = 2)

How?

Follow pointers while
summing up counts:
1+1+1 = 3 > 2

E is frequent

{E} is frequent so we can now consider suffixes DE, CE, BE, AE

Example

null

A:7 B:3

C:3C:1

D:1

D:1

E:1 E:1

E:1

Phase 2
Convert the prefix tree of E into a
conditional FP-tree

Two changes

(1) Recompute support

(2) Prune infrequent

Example

E is frequent so we proceed with Phase 2

null

A:7 B:3

C:3C:1

D:1

D:1

E:1 E:1

E:1

Example

Recompute Support

The support counts for some of the
nodes include transactions that do
not end in E

For example in null->B->C->E we
count {B, C}

Property to satisfy: The support of
any node is equal to the sum of the
support of leaves with label E in its
subtree

null

B:3

C:3C:1

D:1

D:1

E:1 E:1

E:1

A:7

Example

The support of any node is
equal to the sum of the
support of leaves with label E
in its subtree

null

B:3

C:1C:1

D:1

D:1

E:1 E:1

E:1

A:7

Example

null

A:7 B:1

C:1C:1

D:1

D:1

E:1 E:1

E:1

Example

null

A:7 B:1

C:1C:1

D:1

D:1

E:1 E:1

E:1

Example

null

A:7 B:1

C:1C:1

D:1

D:1

E:1 E:1

E:1

Example

null

A:2 B:1

C:1C:1

D:1

D:1

E:1 E:1

E:1

Example

null

A:2 B:1

C:1C:1

D:1

D:1

E:1 E:1

E:1

Example

null

A:2 B:1

C:1C:1

D:1

D:1

E:1 E:1

E:1

Truncate

Delete the nodes of Ε

Example

null

A:2 B:1

C:1C:1

D:1

D:1

E:1 E:1

E:1

Truncate

Delete the nodes of Ε

Example

null

A:2 B:1

C:1C:1

D:1

D:1

Truncate

Delete the nodes of Ε

Example

null

A:2 B:1

C:1C:1

D:1

D:1

Prune infrequent
In the conditional FP-tree
some nodes may have
support less than minsup

e.g., B needs to be pruned
This means that B appears
with E less than minsup
times

Example

null

A:2 B:1

C:1C:1

D:1

D:1

Example

null

A:2 C:1

C:1

D:1

D:1

Example

null

A:2 C:1

C:1

D:1

D:1

The conditional FP-tree for E

Repeat the algorithm for {D, E}, {C, E}, {A, E}

Example

null

A:2 C:1

C:1

D:1

D:1

Example

Phase 1

Find all prefix paths that contain D (DE) in the conditional FP-tree

null

A:2

C:1

D:1

D:1

Example

Phase 1

Find all prefix paths that contain D (DE) in the conditional FP-tree

null

A:2

C:1

D:1

D:1

Example

Compute the support of {D,E} by following the pointers in the tree
1+1 = 2 ≥ 2 = minsup

{D,E} is frequent

null

A:2

C:1

D:1

D:1

Example

Phase 2

Construct the conditional FP-tree
1. Recompute Support
2. Prune nodes

null

A:2

C:1

D:1

D:1

Example

Recompute support

null

A:2

C:1

D:1

D:1

Example

Prune nodes

null

A:2

C:1

Example

Prune nodes

null

A:2

C:1 Small support

Example

Prune nodes

null

A:2

Example

Final condition FP-tree for {D,E}

The support of A is ≥ minsup so {A,D,E} is frequent
Since the tree has a single node we return to the next
subproblem

null

A:2 C:1

C:1

D:1

D:1

Example

The conditional FP-tree for E

We repeat the algorithm for {D,E}, {C,E}, {A,E}

null

A:2 C:1

C:1

D:1

D:1

Example

Phase 1

Find all prefix paths that contain C (CE) in the conditional FP-tree

null

A:2 C:1

C:1

Example

Phase 1

Find all prefix paths that contain C (CE) in the conditional FP-tree

null

A:2 C:1

C:1

Example

Compute the support of {C,E} by following the pointers in the tree
1+1 = 2 ≥ 2 = minsup

{C,E} is frequent

null

A:2 C:1

C:1

Example

Phase 2

Construct the conditional FP-tree
1. Recompute Support
2. Prune nodes

null

A:1 C:1

C:1

Example

Recompute support

null

A:1 C:1

C:1

Example

Prune nodes

null

A:1

Example

Prune nodes

null

A:1

Example

Prune nodes

null

Example

Prune nodes

Return to the previous subproblem

null

A:2 C:1

C:1

D:1

D:1

Example

The conditional FP-tree for E

We repeat the algorithm for {D,E}, {C,E}, {A,E}

null

A:2 C:1

C:1

D:1

D:1

Example

Phase 1

Find all prefix paths that contain A (AE) in the conditional FP-tree

null

A:2

Example

Phase 1

Find all prefix paths that contain A (AE) in the conditional FP-tree

null

A:2

Example

Compute the support of {A,E} by following the pointers in the tree
2 ≥ minsup

{A,E} is frequent

There is no conditional FP-tree for {A,E}

Example
• So for E we have the following frequent itemsets
{E}, {D,E}, {C,E}, {A,E} {ADE}

• We proceed with D

null

A:7

B:5

B:3

C:3

D:1

C:1

D:1C:3

D:1

D:1

E:1 E:1D:1
E:1

Item Pointer
A
B
C
D
E

Header table

Ending in D

Example

null

A:7

B:5

B:3

C:3

D:1

C:1

D:1C:3

D:1

D:1

D:1

Phase 1 – construct
prefix tree

Find all prefix paths that
contain D

Support 5 > minsup, D is
frequent

Phase 2
Convert prefix tree into
conditional FP-tree

Example

null

A:7

B:5

B:3

C:3

D:1

C:1

D:1C:1

D:1

D:1

D:1

Recompute support

Example

null

A:7

B:2

B:3

C:3

D:1

C:1

D:1C:1

D:1

D:1

D:1

Recompute support

Example

null

A:3

B:2

B:3

C:3

D:1

C:1

D:1C:1

D:1

D:1

D:1

Recompute support

Example

null

A:3

B:2

B:3

C:1

D:1

C:1

D:1C:1

D:1

D:1

D:1

Recompute support

Example

null

A:3

B:2

B:1

C:1

D:1

C:1

D:1C:1

D:1

D:1

D:1

Recompute support

Example

null

A:3

B:2

B:1

C:1

D:1

C:1

D:1C:1

D:1

D:1

D:1

Prune nodes

Example

null

A:3

B:2

B:1

C:1C:1

C:1

Prune nodes

Example

null

A:3

B:2

B:1

C:1C:1

C:1

Construct conditional FP-trees for {C,D}, {B,D}, {A,D}

And so on….

Example

Observations
• At each recursive step we solve a subproblem

• Construct the prefix tree
• Compute the new support
• Prune nodes

• Subproblems are disjoint so we never consider
the same itemset twice

• Support computation is efficient – happens
together with the computation of the frequent
itemsets.

Observations
• The efficiency of the algorithm depends on the
compaction factor of the dataset

• If the tree is bushy then the algorithm does not
work well, it increases a lot of number of
subproblems that need to be solved.

