ETICHIS & PRIVACY

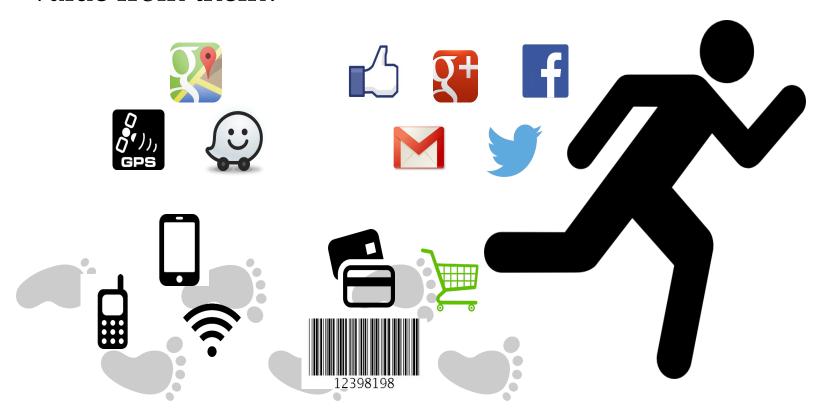
Anna Monreale Università di Pisa

Knowledge Discovery and Delivery Lab (ISTI-CNR & Univ. Pisa)

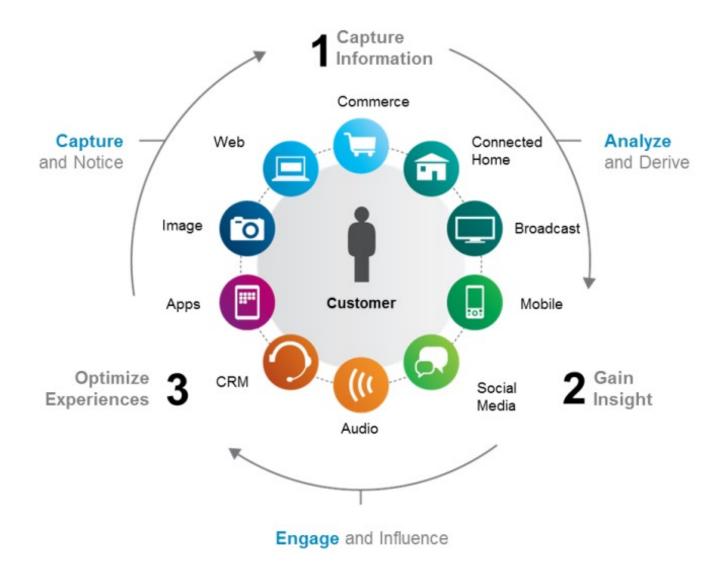
www-kdd.isti.cnr.it

Our digital traces

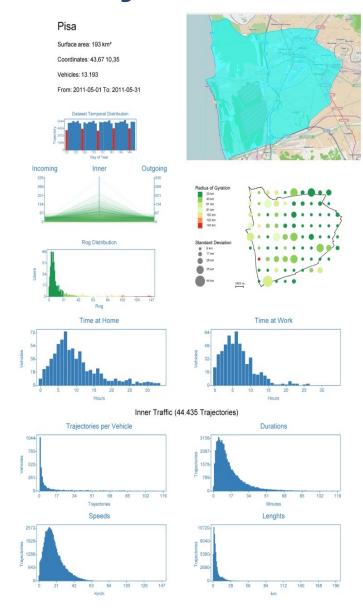
- We produce an unthinkable amount of data while running our daily activities.
- How can we manage all these data? Can we get an added value from them?

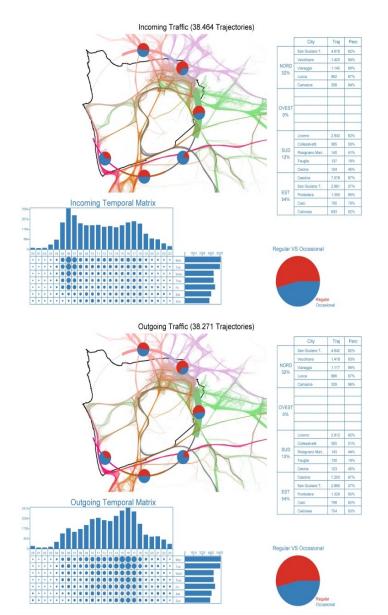


Big Data: new, more carefully targeted financial services

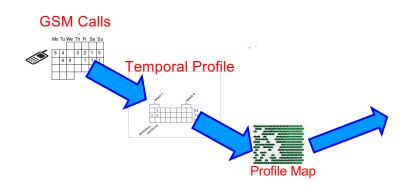


Mobility atlas of many cities

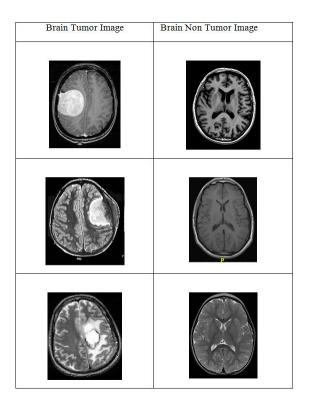




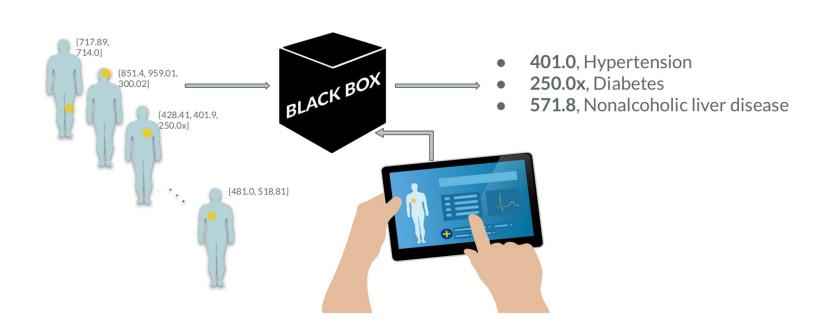
A Sociometer based on Mobile Phone Data for Real Time Demographics



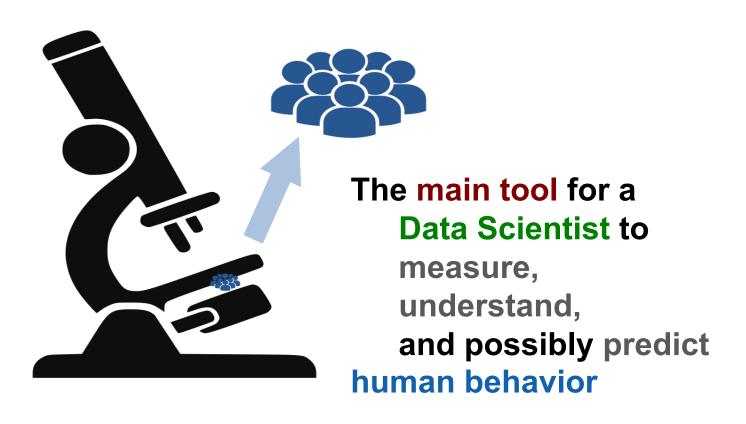
Al in healthcare



Al in healthcare



Al, Big Data Analytics & Social Mining



Artificial Intelligence: what is it now?

From encoding intelligent behavior

To **discovery** and **capture** intelligent behavior from **data**

Especially (but not only) personal data

Artificial Intelligence

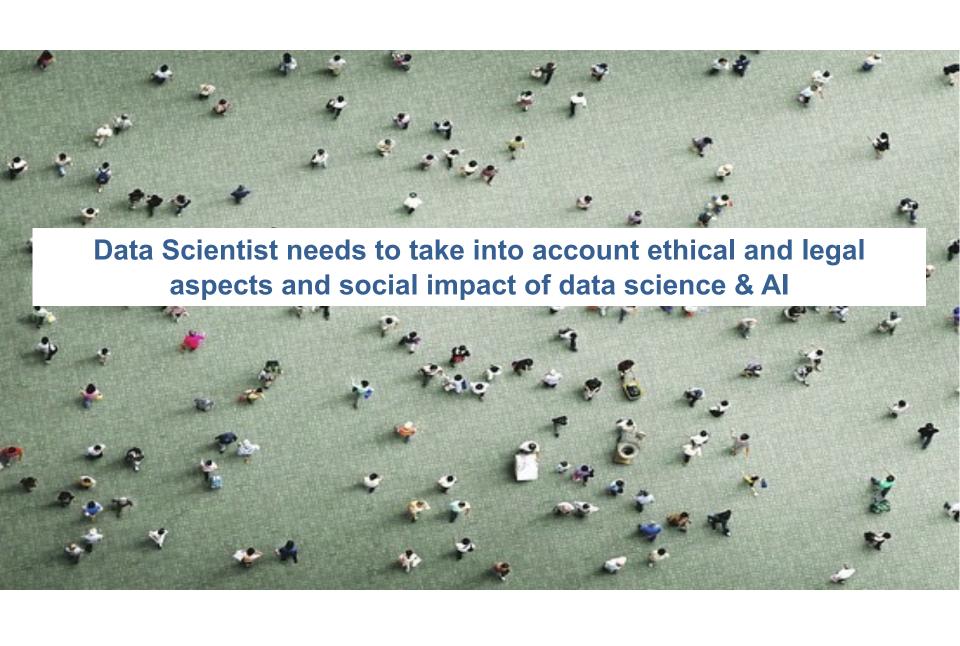
Collective Intelligence!!

- Learning from many examples
- Provide support for decision making
 - Enabling nowcasting, what-if simulations based on big data analytics & modeling

Learning from experience

 Data mining & machine learning + big data are the fulcrum of Al

- Big data = record the (human) experience
- IoT will facilitate this trend



EU Ethics Guidelines for AI – (2019)

Human-centric approach: Al as a means, not an end

Trustworthy AI as our foundational ambition, with three components

Lawful AI

complying with all applicable laws and regulations

Ethical AI

ensuring adherence to ethical principles and values

Robust AI

perform in a **safe**, **secure** and **reliable** manner, both form technical and a social perspective, with safeguards to foresee and prevent unintentional harm

Requirements

1. Human agency and oversight

- Fundamental rights
- Human agency
- Human oversight

2. Technical robustness

- Resilience to attack and security
- Safety
- Accuracy
- Reliability and reproducibility

3. Privacy and data governance

- Privacy and data protection
- Quality and integrity of data
- Access to data

4. Transparency

- Traceability
- Explainability

Requirements

5. Diversity, non-discrimination and fairness

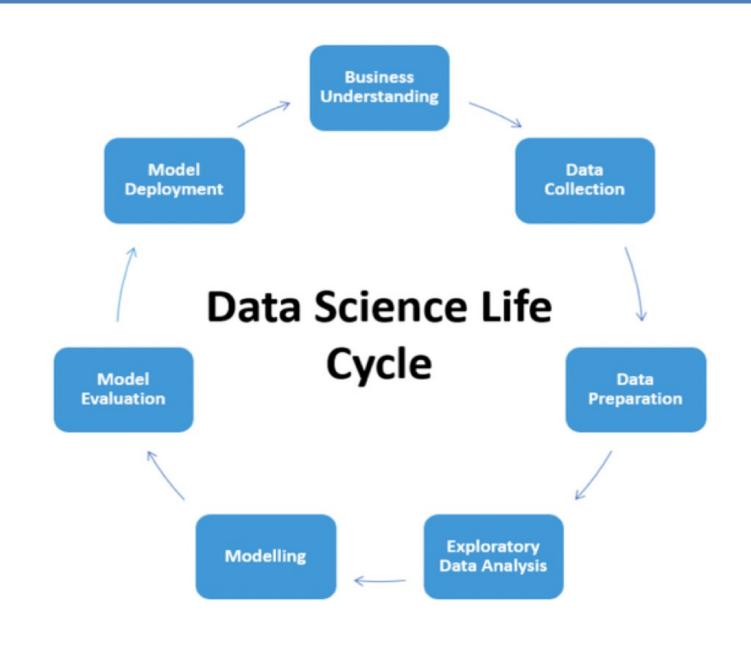
- Avoidance of unfair bias
- Accessibility and universal design
- Stakeholder Participation

6. Societal and environmental well-being

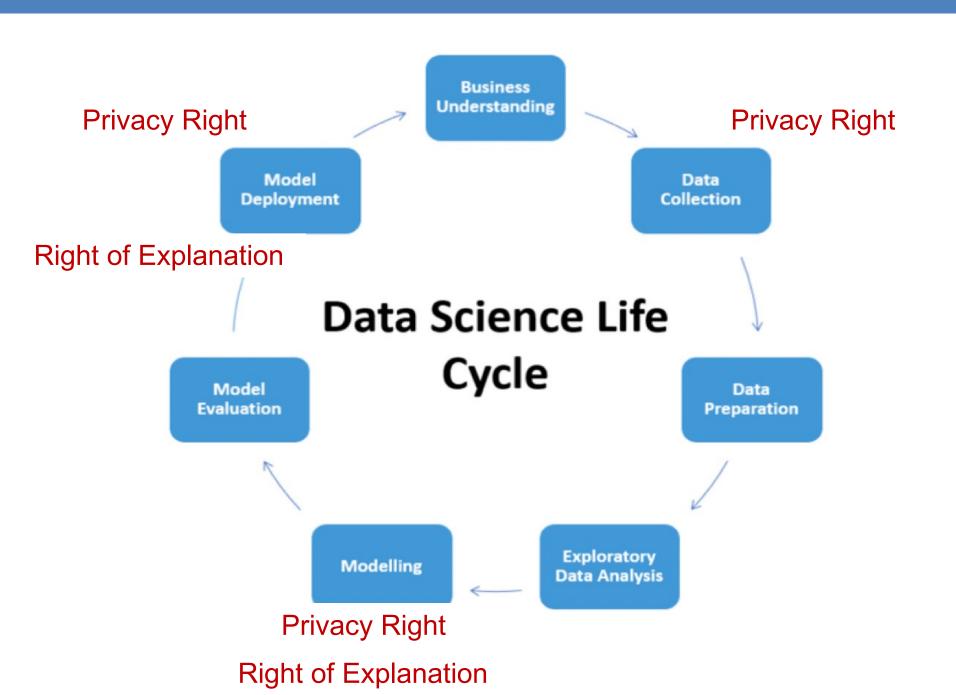
- Sustainable and environmentally friendly Al
- Social impact
- Society and Democracy

7. Accountability

- Minimisation and reporting of negative impacts
- Auditability
- Minimisation and reporting of negative impacts
- Trade-offs







PRIVACY & DATA PROTECTION

EU Legislation for protection of personal data

- European directives:
 - Data protection directive (95/46/EC)
 - ePrivacy directive (2002/58/EC) and its revision (2009/136/EC)
 - General Data Protection Regulation (May 2018)

http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=IT

EU: Personal Data

- Personal data is defined as any information relating to an identity or identifiable natural person.
- An identifiable person is one who can be identified, directly or indirectly, in particular by reference to an identification number or to one or more factors specific to his physical, physiological, mental, economic, cultural or social identity.

Personal Data

- Your name
- Home address
- Photo
- Email address
- Bank details
- Posts on social networking websites
- Medical information,
- Computer or mobile IP address
- Mobility traces
-

Sensitive Data

- Sensitive personal data is a specific set of "special categories" that must be treated with extra security
 - Racial or ethnic origin
 - Political opinions
 - Religious or philosophical beliefs
 - Trade union membership
 - Genetic data
 - Biometric data

EU Directive (95/46/EC) and GDPR

GOALS:

- protection protection of individuals with regard to the processing of personal data
- the free movement of such data
- User control on personal data
- The term "process" covers anything that is done to or with personal data:
 - collecting
 - recording
 - organizing, structuring, storing
 - adapting, altering, retrieving, consulting, using
 - disclosing by transmission, disseminating or making available, aligning or combining, restricting, erasing, or destroying data.

Anonymity according to 1995/46/EC

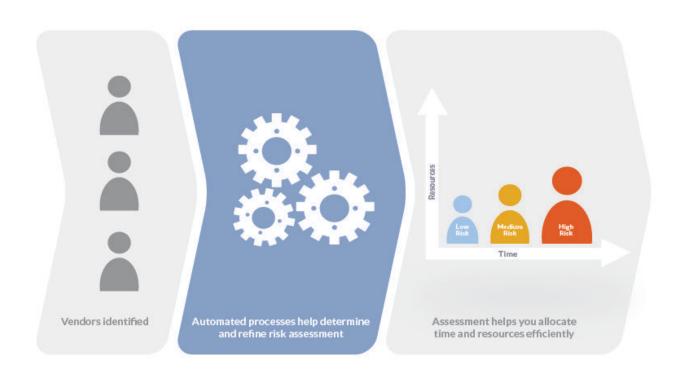
- The principles of protection must apply to any information concerning an identified or identifiable person;
- To determine whether a person is identifiable, account should be taken of all the means likely reasonably to be used either by the controller or by any other person to identify the said person
- The principles of protection shall not apply to data rendered anonymous in such a way that the data subject is no longer identifiable

Privacy by Design Principle

- Privacy by design is an approach to protect privacy by inscribing it into the design specifications of information technologies, accountable business practices, and networked infrastructures, from the very start
- Developed by Ontario's Information and Privacy Commissioner, Dr. Ann Cavoukian, in the 1990s
 - as a response to the growing threats to online privacy that were beginning to emerge at that time.

Privacy Risk Assessment

 GDPR requires that data controllers maintain an updated report on the privacy risk assessment on perosnal data collected



PSEUDONYMIZATION & ANONYMIZATION

Anonymization vs Pseudonimization

- Pseudonymization and Anonymization are two distinct terms often confused
- Anonymized data and pseudonymized data fall under very different categories in the regulation
- Anonymization guarantees data protection against the (direct and indirect) data subject re-identification
- Pseudonymization substitutes the identity of the data subject in such a way that additional information is required to re-identify the data subject

Pseudonymization

Substitute an identifier with a surrogate value called token

Substitute unique names, fiscal code or any attribute that identifies uniquely individuals in the data

Example of Pseudonymization

Name	Gender	DoB	ZIP Code	Diagnosis
Anna Verdi	F	1962	300122	Cancer
Luisa Rossi	F	1960	300133	Gastritis
Giorgio Giallo	М	1950	300111	Heart Attack
Luca Nero	M	1955	300112	Headache
Elisa Bianchi	F	1965	300200	Dislocation
Enrico Rosa	M	1953	300115	Fracture

ID	Gender	DoB	ZIP CODE	DIAGNOSIS
11779	F	1962	300122	Cancer
12121	F	1960	300133	Gastritis
21177	M	1950	300111	Heart Attack
41898	M	1955	300112	Headache
56789	F	1965	300200	Dislocation
65656	M	1953	300115	Fracture

Properties of a Surrogate Value

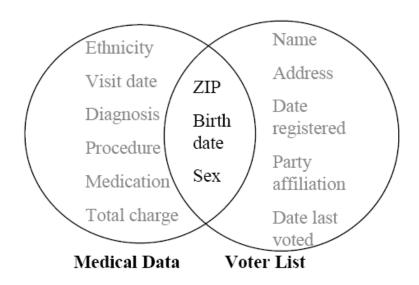
- Irreversible without private information
- Distinguishable from the original value

Is Pseudonymization enough for data protection?

Pseudonymized data are still Personal Data!!

Massachussetts' Governor

- Sweeney managed to re-identify the medical record of the governor of Massachussetts
 - MA collects and publishes sanitized medical data for state employees (microdata) left circle
 - voter registration list of MA (publicly available data) right circle
 - looking for governor's record
 - join the tables:
 - 6 people had his birth date
 - 3 were men
 - 1 in his zipcode



Latanya Sweeney: k-Anonymity: A Model for Protecting Privacy. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10(5): 557-570 (2002)

Linking Attack

Governor: Birth Date = **1950**, ZIP = **300111**

ID	Gender	YoB	ZIP	DIAGNOSIS
1	F	1962	300122	Cancer
2	F	1960	300133	Gastritis
3	М	1950	300111	Heart Attack
4	М	1955	300112	Headache
5	F	1965	300200	Dislocation
6	М	1953	300115	Fracture

Which is the disease of the Governor?

Making data anonymous

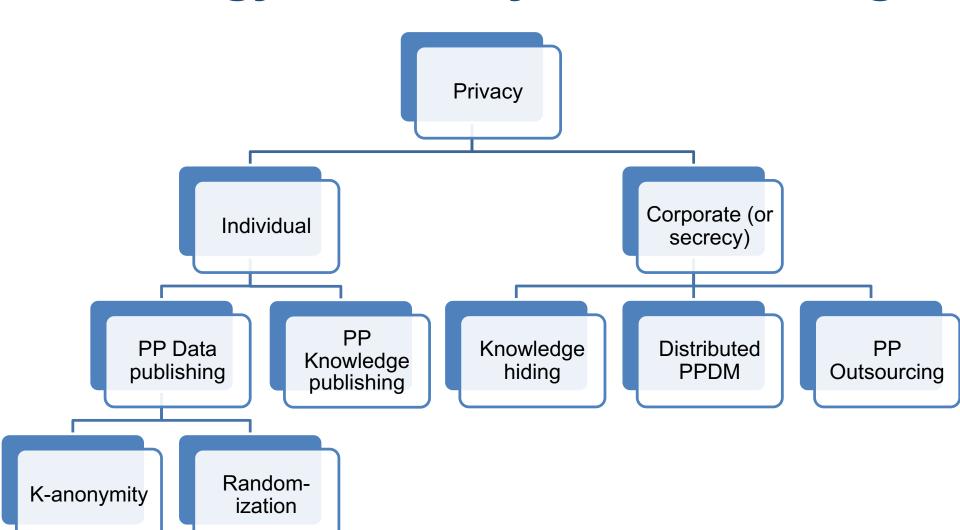
Kanonymin 11

Governor: Birth Date = **1950**, ZIP = **300111**

ID	Gender	YoB	ZIP	DIAGNOSIS
1	F	[1960-1956]	300***	Cancer
2	F	[1960-1956]	300***	Gastritis
3	М	[1950-1955]	30011*	Heart Attack
4	М	[1950-1955]	30011*	Headache
5	F	[1960-1956]	300***	Dislocation
6	М	[1950-1955]	30011*	Fracture

Which is the disease of the Governor?

Ontology of Privacy in Data Mining



Attribute classification

Identifiers

Quasi-identifiers

Sensitive

ID	Gender	YoB	ZIP	DIAGNOSIS
1	F	1962	300122	Cancer
2	F	1960	300133	Gastritis
3	M	1950	300111	Heart Attack
4	M	1955	300112	Headache
5	F	1965	300200	Dislocation
6	M	1953	300115	Fracture

K-Anonymity

- k-anonymity hides each individual among k-1 others
 - each QI set should appear at least k times in the released data
 - linking cannot be performed with confidence > 1/k
- How to achieve this?
 - Generalization: publish more general values, i.e., given a domain hierarchy, roll-up
 - Suppression: remove tuples, i.e., do not publish outliers. Often the number of suppressed tuples is bounded
- Privacy vs utility tradeoff
 - do not anonymize more than necessary
 - Minimize the distortion

Vulnerability of K-anonymity

ID	Gender	DoB	ZIP	DIAGNOSIS
1	F	1962	300122	Cancer
2	F	1960	300133	Gastritis
3	M	1950	300111	Heart Attack
4	M	1950	300111	Heart Attack
5	M	1950	300111	Heart Attack
6	M	1953	300115	Fracture

/-Diversity

- Principle
 - Each equivalence class has at least / well-represented sensitive values
- Distinct I-diversity
 - Each equivalence class has at least / distinct sensitive values

ID	Gende	er DoB	ZIP	DIAGNOSIS
1	F	1962	300122	Heart Attack
2	F	1960	300133	Headache
3	M	1950	300111	Dislocation
4	M	1950	300111	Fracture
5	М	1950	300111	Heart Attack
6	M	1953	300115	Headache

K-Anonymity

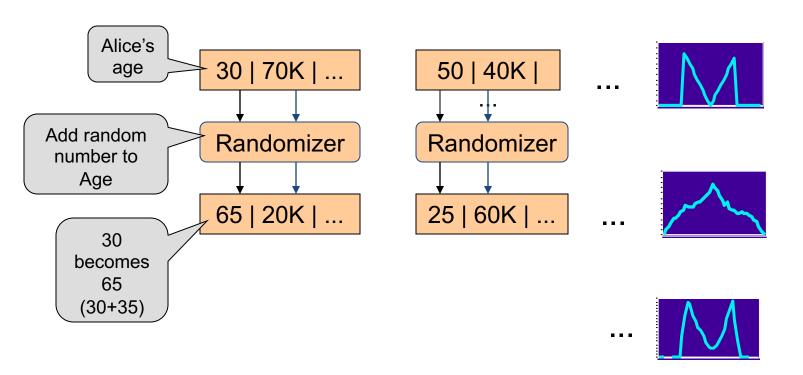
- Samarati, Pierangela, and Latanya Sweeney. "Generalizing data to provide anonymity when disclosing information (abstract)."
 In PODS '98.
- Latanya Sweeney: k-Anonymity: A Model for Protecting Privacy.
 International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10(5): 557-570 (2002)
- Machanavajjhala, Ashwin, Daniel Kifer, Johannes Gehrke, and Muthuramakrish- nan Venkitasubramaniam. "I-diversity: Privacy beyond k-anonymity." ACM Trans. Knowl. Discov. Data 1, no. 1 (March 2007): 24.
- Li, Ninghui, Tiancheng Li, and S. Venkatasubramanian. "t-Closeness: Privacy Beyond k-Anonymity and l-Diversity." ICDE 2007.

Randomization

- Original values x₁, x₂, ..., x_n
 - from probability distribution X (unknown)
- To hide these values, we use y₁, y₂, ..., y_n
 - from probability distribution Y
 - Uniform distribution between $[-\alpha, \alpha]$
 - Gaussian, normal distribution with $\mu = 0$, σ
- Given
 - $-x_1+y_1, x_2+y_2, ..., x_n+y_n$
 - the probability distribution of Y

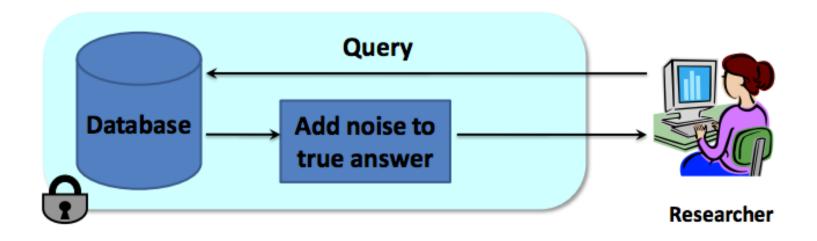
Estimate the probability distribution of X.

Randomization Approach Overview



Differential Privacy

 The risk to my privacy should not increase as a result of participating in a statistical database



- Add noise to answers such that:
 - Each answer does not leak too much information about the database
 - Noisy answers are close to the original answers

Cynthia Dwork: Differential Privacy. ICALP (2) 2006: 1-12

Attack

Name	Has Diabetes
Alice	yes
Bob	no
Mark	yes
John	yes
Sally	no
Jack	yes

- 1) how many persons have Diabetes? 4
- 2) how many persons, excluding Alice, have Diabetes? 3
- So the attacker can infer that Alice has Diabetes.

Solution: make the two answers similar

- 1) the answer of the first query could be 4+1 = 5
- 2) the answer of the second query could be 3+2.5=5.5

Differential Privacy



Randomization

- R. Agrawal and R. Srikant. Privacy-preserving data mining. In Proceedings of SIGMOD 2000.
- D. Agrawal and C. C. Aggarwal. On the design and quantification of privacy preserving data mining algorithms. In Proceedings of PODS, 2001.
- W. Du and Z. Zhan. Using randomized response techniques for privacy-preserving data mining. In Proceedings of SIGKDD 2003.
- A. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy breaches in privacy preserving data mining. In Proceedings of PODS 2003.
- A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke. Privacy preserving mining of association rules. In Proceedings of SIGKDD 2002.
- K. Liu, H. Kargupta, and J. Ryan. Random Projection-based Multiplicative Perturbation for Privacy Preserving Distributed Data Mining. IEEE Transactions on Knowledge and Data Engineering (TKDE), VOL. 18, NO. 1.
- K. Liu, C. Giannella and H. Kargupta. An Attacker's View of Distance Preserving Maps for Privacy Preserving Data Mining. In Proceedings of PKDD' 06

Differential Privacy

- Cynthia Dwork: Differential Privacy. ICALP (2) 2006: 1-12
- Cynthia Dwork: The Promise of Differential Privacy: A Tutorial on Algorithmic Techniques. FOCS 2011: 1-2
- Cynthia Dwork: Differential Privacy in New Settings. SODA 2010: 174-183

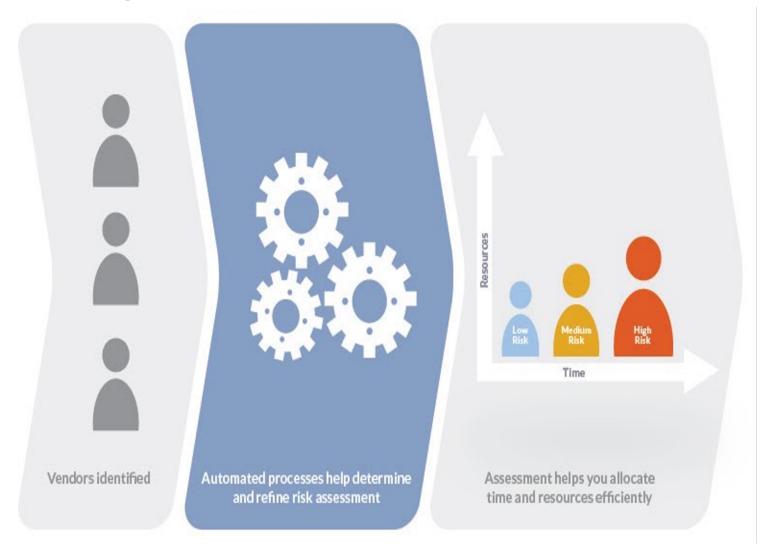
New Regulation

- Privacy by Design
- Privacy Risk Assessment

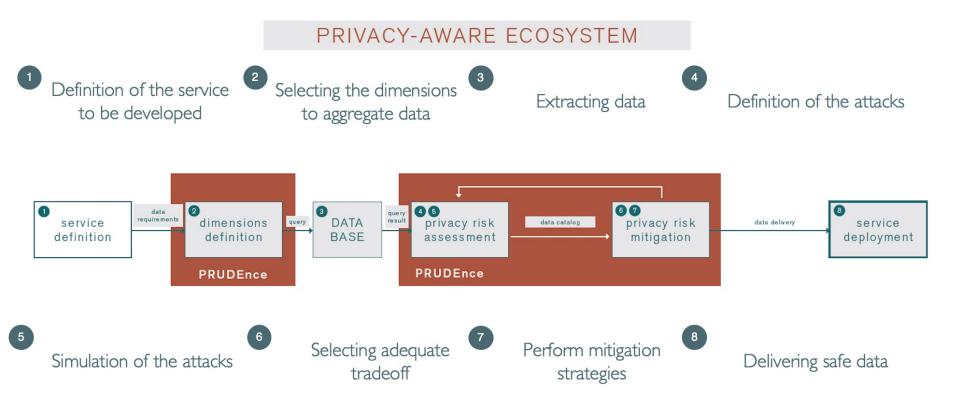
Privacy by design Methodology

- The framework is designed with assumptions about
 - The sensitive data that are the subject of the analysis
 - The attack model, i.e., the knowledge and purpose of a malicious party that wants to discover the sensitive data
 - The target analytical questions that are to be answered with the data
- Design a privacy-preserving framework able to
 - transform the data into an anonymous version with a quantifiable privacy guarantee
 - guarantee that the analytical questions can be answered correctly, within a quantifiable approximation that specifies the data utility

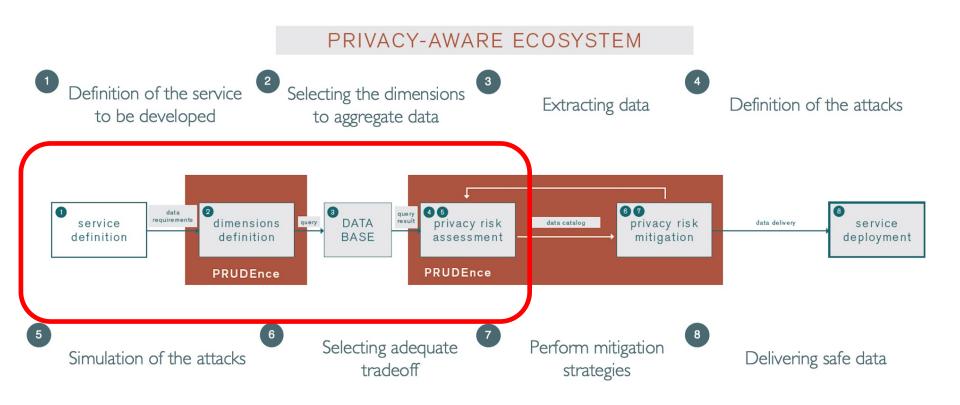
Privacy Risk Assessment



PRUDEnce privacy framework



PRUDEnce privacy framework



Attack Simulation

Background knowledge:

- 1. Gender, DoB, Zip
- 2. Gender, DoB
- 3. Gender, Zip
- 4. DoB, Zip
- 5. Gender
- 6. DoB
- 7. Zip

Tabulai uala	Ta	bul	lar	data
--------------	----	-----	-----	------

ID	Gender	DoB	ZIP CODE	DIAGNOSIS
11779	F	1962	300122	Cancer
12121	F	1960	300133	Gastritis
21177	М	1950	300111	Heart Attack
41898	M	1955	300112	Headache
56789	F	1965	300200	Dislocation
65656	М	1953	300115	Fracture

Background knowledge:

Sequences and Trajectories

All the possible sub-sequences!

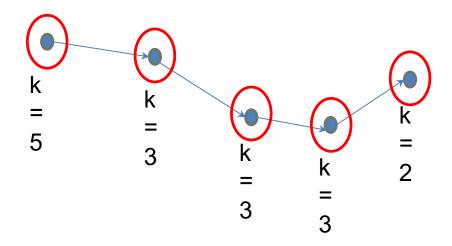
$$< loc_1, t_1 > < loc_2, t_2 > < loc_3, t_3 > < loc_4, t_4 > < loc_5, t_4 >$$

Compute the risk of re-identification for any subsequences and associate to the sequence the maximum risk

Privacy risk measures

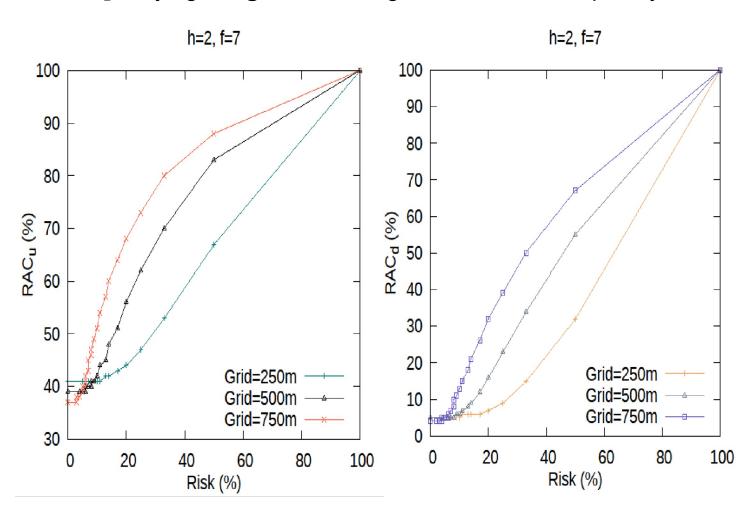
Probability of re-identification denotes the probability to correctly associate a record to a unique identity, *given* a BK

Risk of re-identification is the maximum probability of re-identification *given* a set of BK



Simulation Attack Model

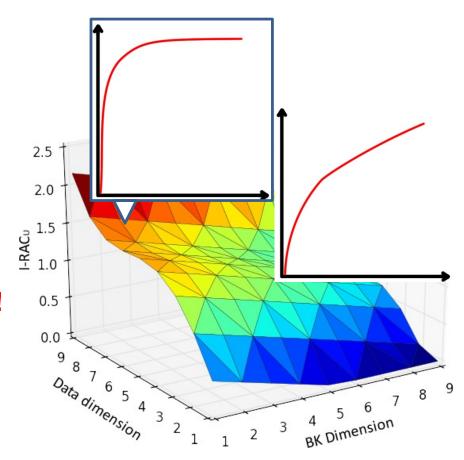
RAC_U and RAC_D varying the **grid** and fixing #location and frequency



Empirical Privacy Risk Assessment

- Defining a set of attacks based on common data formats
- Simulates these attacks on experimental data to calculate privacy risk

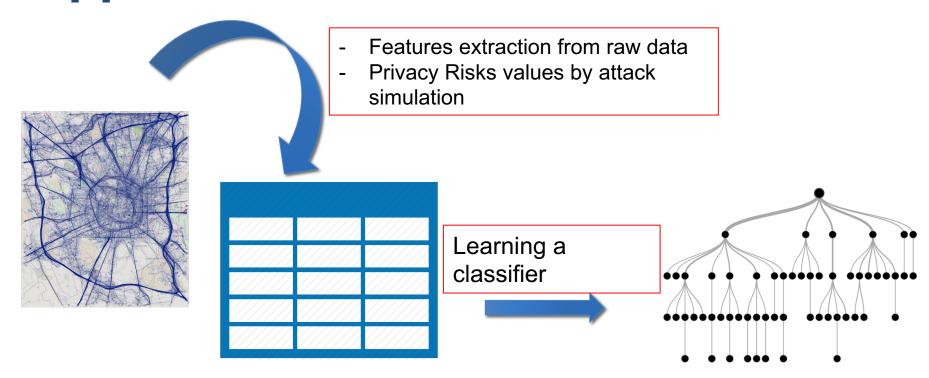
Time complexity is a problem!



PREDICTIVE APPROACH

- Using classification techniques to predict the privacy risks of individuals.
- 1. Simulate the risk of each individual R
- Extract from the dataset a set of individual features F
- 3. Construct a training dataset (F,R)
- Learning a classifier/regressor to predict the risk/risk level

Approach



For each new user extracting **Features** and using the classifier to predict the risk

Experiments on Mobility Data

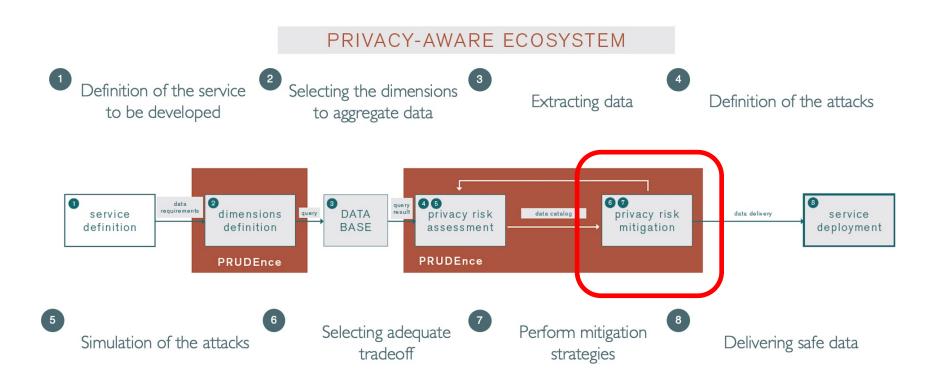
symbol	name	structures	attacks
V	visits		
\overline{V}	daily visits		LOCATION
D_{max}	max distance	trajectory	LOCATION LOCATION SEQUENCE
D_{sum}	sum distances		VISIT
\overline{D}_{sum}	D_{sum} per day		
D_{max}^{trip}	D_{max} over area	trajectory location set	
Locs	distinct locations	frequency vector	FREQUENT LOCATION
$Locs_{ratio}$	Locs over area	frequency vector location set	FREQUENT LOC. SEQUENCE
R_g	radius of gyration	nucha hility ya atau	
E	mobility entropy	probability vector	PROBABILITY
E_i	location entropy	probability vector probability vector dataset	FRODABILITI
U_i	individuals per lo-		
	cation	fraguanay yaatar	FREQUENCY
U_i^{ratio}	U_i over individuals	frequency vector, frequency vector dataset	PROPORTION
w_i	location frequency	nequency vector dataset	HOME AND WORK
w_i^{pop}	w_i over overall fre-		
	quency		
\overline{w}_i	daily location fre-		
	quency		

	configuration		Flore				$\mathbf{FI} o \mathbf{PI}$		$\mathbf{PI} o \mathbf{FI}$	
			ACC	F	ACC	F	ACC	F	ACC	F
		k = 2	0.94	0.94	0.93	0.93	0.93	0.92	0.93	0.93
Visit	locations with	k = 3	0.94	0.94	0.93	0.93	0.93	0.93	0.93	0.93
Vis	timestamps	k = 4	0.94	0.94	0.93	0.93	0.93	0.93	0.92	0.92
	1,10,000,000,000,000,000	k = 5	0.94	0.94	0.92	0.92	0.93	0.93	0.91	0.92
	avg ba	aseline	0.82	0.81	0.81	0.80				
cy		k = 2	0.90	0.89	0.83	0.82	0.79	0.79	0.76	0.70
len	locations	k = 3	0.94	0.93	0.89	0.89	0.84	0.86	0.83	0.79
ηba	with frequencies	k = 4	0.92	0.93	0.89	0.89	0.85	0.86	0.85	0.85
Frequency		k = 5	0.93	0.93	0.89	0.89	0.71	0.73	0.85	0.82
	avg ba	aseline	0.53	0.53	0.41	0.41				
HW	two most frequent locations		0.62	0.59	0.57	0.54	0.57	0.55	0.51	0.49
	avg baseline		0.37	0.37	0.28	0.29				
п		k = 2	0.93	0.92	0.86	0.86	0.87	0.87	0.85	0.81
Location	locations without	k = 3	0.95	0.95	0.91	0.91	0.87	0.87	0.87	0.82
ca	sequence	k = 4	0.95	0.95	0.91	0.91	0.89	0.89	0.89	0.86
Ľ		k = 5	0.95	0.95	0.91	0.91	0.89	0.90	0.87	0.85
	avg baseline		0.57	0.56	0.44	0.44				
ce ce		k = 2	0.93	0.92	0.88	0.87	0.88	0.87	0.86	0.83
L en	locations with	k = 3	0.94	0.94	0.88	0.89	0.90	0.89	0.73	0.66
ed	sequence	k = 4	0.94	0.94	0.89	0.89	0.85	0.87	0.86	0.82
Freq.Loc. Sequence		k = 5	0.93	0.94	0.89	0.89	0.90	0.90	0.86	0.83
	avg ba	aseline	0.58	0.57	0.46	0.45				
Frequent Location		k = 2	0.81	0.79	0.71	0.69	0.73	0.74	0.65	0.62
	locations without	k = 3	0.86	0.85	0.8	0.78	0.81	0.81	0.75	0.72
ed	sequence	k = 4	0.87	0.86	0.81	0.79	0.83	0.83	0.79	0.75
F_{Γ}	10	k = 5	0.87	0.87	0.81	0.8	0.82	0.83	0.78	0.75
2	avg b	aseline	0.65	0.65	0.56	0.55				

Measure importance

	Florence		Pisa			Florence		Pisa	
	measure	impo.	measure	impo.		measure	impo.	measure	impo.
1	\overline{V}	3.66	$Locs_{ratio}$	3.24	15	U_2^{ratio}	0.96	U_2^{ratio}	0.92
2	E	2.92	D_{sum}	3.22	16	U_n	0.88	U_n	0.88
3	D_{sum}	2.75	\overline{V}	2.87	17	w_n^{pop}	0.83	r_g	0.87
4	$Locs_{ratio}$	2.51	E	2.62	18	E_n	0.79	E_n	0.79
5	V	1.91	V	1.69	19	E_2	0.74	E_2	0.75
6	w_1^{pop}	1.77	Locs	1.66	20	D_{max}	0.68	w_n^{pop}	0.73
7	Locs	1.67	w_1^{pop}	1.62	21	D_{max}^{trip}	0.63	D_{max}^{trip}	0.67
8	U_1	1.44	U_1	1.46	22	r_g	0.61	D_{max}	0.58
9	U_1^{ratio}	1.32	U_1^{ratio}	1.40	23	w_1	0.42	\overline{w}_1	0.48
10	\overline{D}_{sum}	1.19	U_2	1.16	24	\overline{w}_2	0.40	w_1	0.44
11	U_2	1.12	U_n^{ratio}	1.09	25	\overline{w}_1	0.36	\overline{w}_2	0.36
12	w_2^{pop}	1.07	w_2^{pop}	1.07	26	w_n	0.13	w_n	0.15
13	E_1	1.05	E_1	1.06	27	\overline{w}_n	0.12	w_2	0.13
14	U_n^{ratio}	0.99	\overline{D}_{sum}	0.98	28	w_2	0.10	\overline{w}_n	0.13

PRUDEnce privacy framework



Privacy by Design in spatio-temporal sequence data

Knowledge Discovery and Delivery Lab (ISTI-CNR & Univ. Pisa)

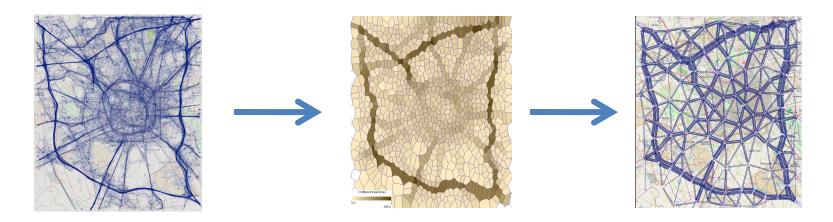
www-kdd.isti.cnr.it

Privacy-Preserving Framework

 Anonymization of movement data while preserving clustering

- Trajectory Linking Attack: the attacker
 - knows some points of a given trajectory
 - and wants to infer the whole trajectory
- Countermeasure: method based on
 - spatial generalization of trajectories
 - k-anonymization of trajectories

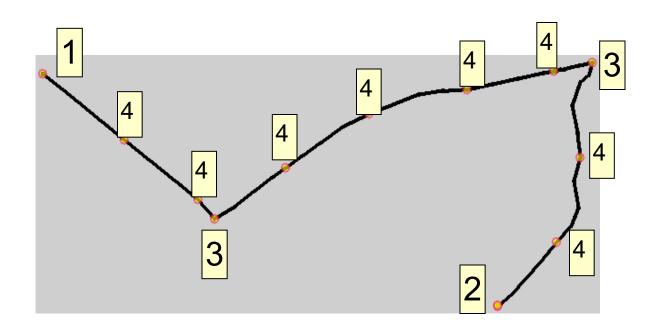
Trajectory Generalization



- Given a trajectory dataset
 - 1. Partition of the territory into Voronoi cells
 - 2. Transform trajectories into sequence of cells

Partition of territory: Characteristic points

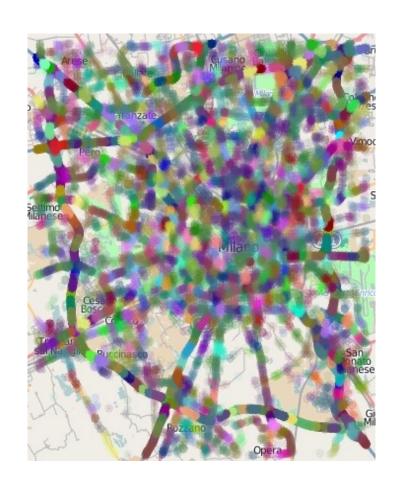
- Characteristic points extraction:
 - Starts (1)
 - Ends (2)
 - Points of significant turns (3)
 - Points of significant stops, and representative points from long straight segments (4)



Partition of territory: spatial clusters

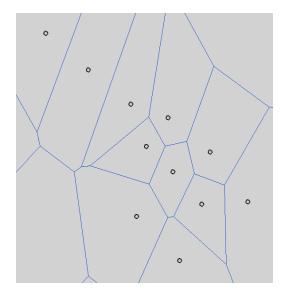
 Group the extracted points in Spatial Clusters with desired spatial extent

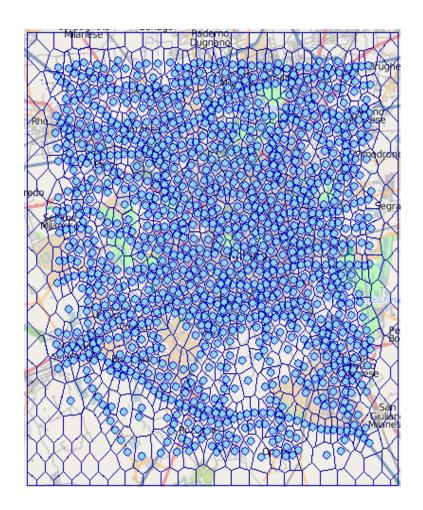
 MaxRadius: parameter to determine the spatial extent and so the degree of the generalization



Partition of territory: Voronoi Tessellation

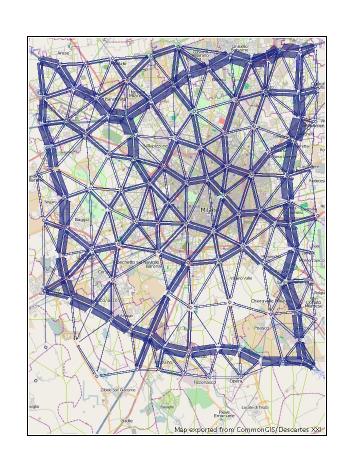
- Partition the territory into Voronoi cells
- The centroids of the spatial clusters used as generating points





Generation of trajectories

- Divide the trajectories into segments that link Voronoi cells
- For each trajectory:
 - the area a₁ containing its first point p₁ is found
 - The following points are checked
 - If a point p_i is not contained in a₁ for it the containing area a₂ is found
 - and so on ...
- Generalized trajectory: From sequence of areas to sequence of centroids of areas



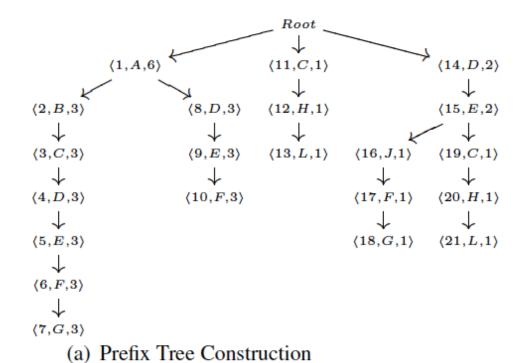
Generalization vs k-anonymity

- Generalization could not be sufficient to ensure kanonymity:
 - For each generalized trajectory there exist at least others k-1 different people with the same trajectory?
- Transformation strategy:
 - recovering portions of trajectories which are frequent at least k times
 - without introducing noise

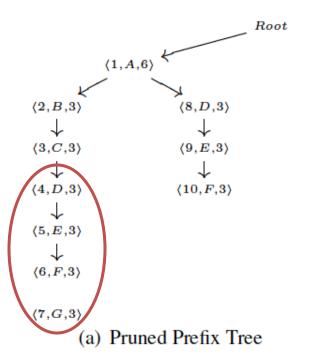
KAM-REC Approach

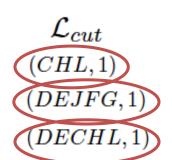
- The prefix tree is anonymized w.r.t. a threshold k
 - all the trajectories with support less than k are pruned from the prefix tree and put into a list
 - A subtrajectory is recovered and appended to the root if
 - appears in the prefix tree
 - appears in at least k different trajectories in the list

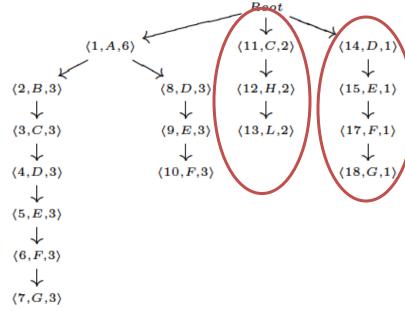
TREE BASED DATA



KAM-REC: Example

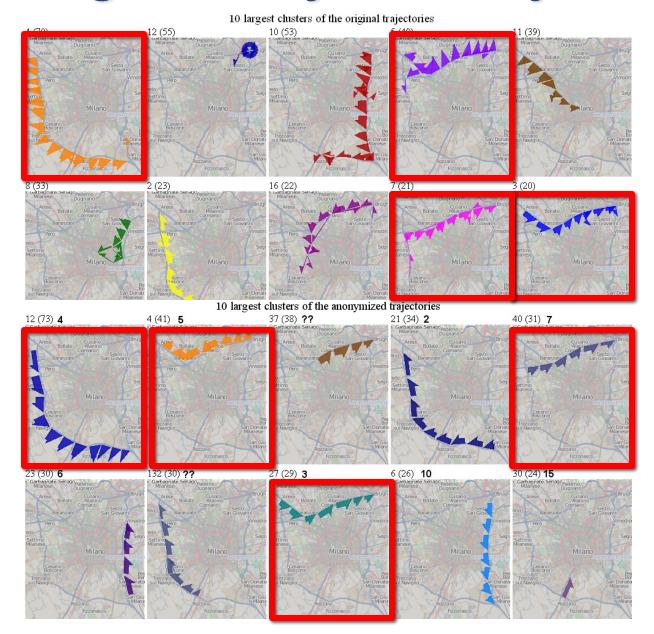






(b) Anonymized Prefix Tree

Clustering on Anonymized Trajectories



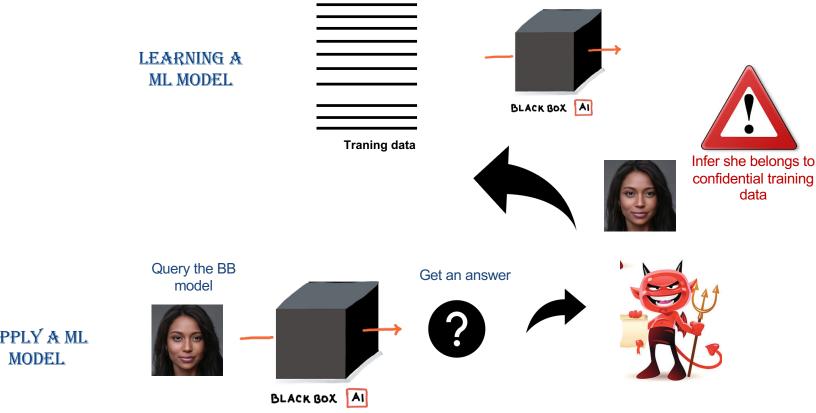
Probability of re-identification: k=16

Known Positions	Probability of re-identification
1 position	98% trajectories have a P <= 0.03 (K=30)
2 positions	98% of trajectories have a P <= 0.05 (K=20)
4 positions	99% of trajectories have a P <= 0.06 (K=17)

Assessing Privacy Risk on ML Models

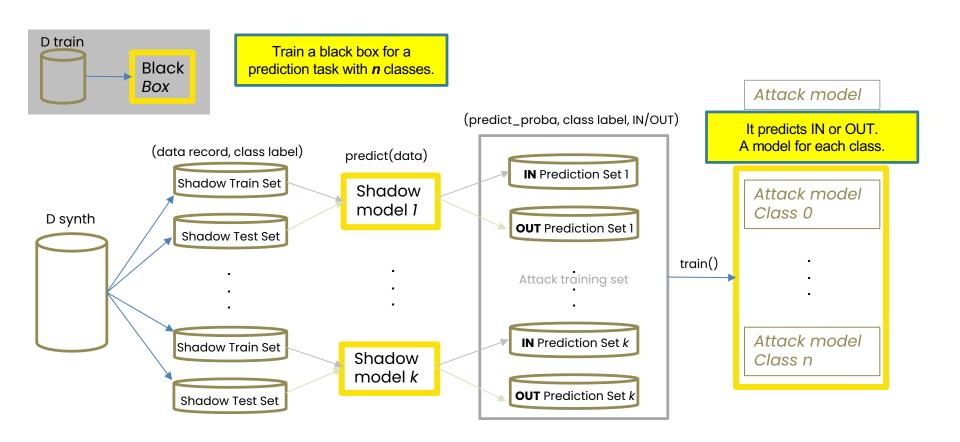
Can we jeopardize individual privacy without accessing data?

Privacy risk of ML models



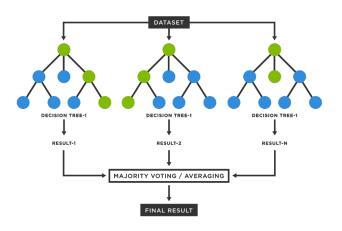
APPLY A ML

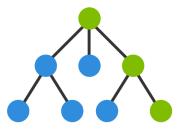
The privacy attack: MIA



Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks against machine learning models. In 2017 IEEE Symposium on Security and Privacy

Predictive Models





Data	Class Balance	Metric	Decision Tree	Random Forest
		$F1_1$	63 % ± .02	70 % ± .02
	$C_1 = 24\%$	P_1	60 % ± .01	69 % ± .02
Adult		R_1	58 % ± .05	87 % ± .03
	$C_0 = 76\%$	$F1_0$	90 % ± .00	86 % ± .00
		P_0	87 % ± .01	95 % ± .00
		R_0	92 % ± .01	80 % ± .01
	$C_1 = 26\%$	$F1_1$	70 % ± .01	82 % ± .01
		P_1	72 % ± .01	85 % ± .01
Diva		R_1	69 % ± .01	81 % ± .04
		$F1_0$	89 % ± .02	93 % ± .01
	$C_0 = 74\%$	P_0	88 % ± .00	94 % ± .00
		R_0	90 % ± .00	92 % ± .01

Performance of MIA

Data	Metric	Decision Tree	Random Forest
Adult	$F1_1$	79 % ± .01	70 % ± .01
	P_1	80 % ± .02	80 % ± .03
	R_1	77 % ± .01	67 % ± .01
Diva	$F1_1$	74 % ± .01	62 % ± .01
	P_1	71 % ± .01	74 % ± .00
	R_1	79 % ± .02	55 % ± .01

We report the metrics for the IN class, which is the class of records that were part of the training dataset.

There are worrying privacy issues when attacking the DT

High Precision for IN class (class 1) means that FP are few: low number of records OUT classified as IN

High Recall for IN class (class 1) means that FN are few: low number of records IN classified as OUT