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What is “Explainable Al” ?

* Explainable-Al explores and investigates methods to produce or
complement Al models to make accessible and interpretable the
internal logic and the outcome of the algorithms, making such
process understandable by humans.

 Explicability, understood as incorporating both intelligibility (“how
does it work?”) for non-experts, e.g., patients or business customers,
and for experts, e.g., product designers or engineers) and
accountability (“who is responsible for”).



Interpretability

* To interpret means to give or provide the meaning or to explain and
present in understandable terms some concepts.

* In data mining and machine learning, interpretability is the ability to
explain or to provide the meaning in understandable terms to a
human.

https://www.merriam-webster.com/

Finale Doshi-Velez and Been Kim. 2017. Towards a rigorous science of interpretable machine learning. arXiv:1702.08608v2.


https://www.merriam-webster.com/
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Motivating Examples When a Computer
Program Keeps You in Jail

* Criminal Justice

* People wrongly denied The Big Read Artificial intelligence <+ Add to vaT)

Insurance: Robots learn the
business of covering risk

e Recidivism prediction
* Unfair Police dispatch

* Finance:
* Credit scoring, loan approval ford
. DY Stanfor —
Insurance quotes MEDICINE | NewsCenter =
* Healthcare
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* Al as 3™ party actor in physician -
patient relationship Researchers say use of artificial intelligence in medicine raises
* Learning must be done with ethical questions

available data: cannot randomize

cares given to patients | In a perspective piece, Stanford researchers discuss the ethical implications of using

machine-learning tools in making health care decisions for patients.
* Must validate models before use.



What is Al-assisted decision making?
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What is a Black Box Model?

A black box is a model,
whose internals are either
unknown to the observer or
they are known but
uninterpretable by humans.

Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., & Pedreschi, D. (2018). A survey of methods for explaining black box
models. ACM Computing Surveys (CSUR), 51(5), 93.
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Right of Explanation

General
Data
Protection
Regulation

Since 25 May 2018, GDPR establishes a right for all individuals to obtain “meaningful explanations of the logic involved” when
“automated (algorithmic) individual decision-making”, including profiling, takes place.



COMPAS recidivism black bias

DYLAN FUGETT BERNARD PARKER
Prior Offense Prior Offense
1attempted burglary 1resisting arrest ?»
without violence ’

Subsequent Offenses

:  3drug possessions Subsequent Offenses

i None

LOW RISK 3 HiGHrRisk 10

Fugett was rated low risk after being arrested with cocaine and
marijuana. He was arrested three times on drug charges after that.
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Military tank classification depends on the
background




Science and technology for the eXplanation
of Al decision making
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Dimensions of Interpretability

* Global and Local Interpretability:.
* Global: understanding the whole logic of a model
 Local: understanding only the reasons for a specific decision

e Time Limitation: the time that the user can spend for
understanding an explanation.

* Nature of User Expertise: users of a predictive model may have

different background knowledge and experience in the task.
The nature of the user expertise is a key aspect Ii i|

for interpretability of a model. IEeil



Desiderata of an Interpretable Model

* Interpretability (or comprehensibility): to which extent the model
and/or its predictions are human understandable. Is measured with

the complexity of the model.
* Fidelity: to which extent the model imitate a black-box predictor.

e Accuracy: to which extent the model predicts unseen instances.

- Alex A. Freitas. 2014. Comprehensible classification models: A position paper. ACM SIGKDD Explor. Newslett.



Desiderata of an Interpretable Model

Fairness: the model guarantees the protection of groups against
discrimination.

Privacy: the model does not reveal sensitive information about people.

Respect Monotonicity: the increase of the values of an attribute either
increase or decrease in a monotonic way the probability of a record of
being member of a class.

Usability: an interactive and queryable explanation is more usable than
a textual and fixed explanation.

Andrea Romei and Salvatore Ruggieri. 2014. A multidisciplinary survey on discrimination analysis. Knowl. Eng.

Yousra Abdul Alsahib S. Aldeen, Mazleena Salleh, and Mohammad Abdur Razzaque. 2015. A comprehensive review on
privacy preserving data mining. SpringerPlus .

Alex A. Freitas. 2014. Comprehensible classification models: A position paper. ACM SIGKDD Explor. Newslett.



Recognized Interpretable Models

1t 2@ — PREDICTION: p(survived = yes | X) = 0.671
female ' Polass? ’ OUTCOME: YES
3rd class not survived Feature contribution
sex?
y survived Eoaes <o
male age’? Age 20,034
}‘ not survived Sex | 1.194
Decision Tree Linear Model

if condition1 A conditiony A conditions then outcome

Rules

Value

3rd
52

female



There are several kinds of
explanations

Sorry, your loan application has been rejected.

Our analysis:

The following features

PercentInstaliTrad... NetFractionRevolv... NetFractionInstall...
NumRevolvingTra... NumBank2Nat(Tra... PercentTradesWB...

The following features

MSinceOldestTrad... AverageMInFile NumTotalTrades s I I

The following features 1o I l
Net Fraction Insta M Since Oldest Max Delq Ever BJ k P Vl h 1 Rw Xving v sfactory
MaxDelq2PublicR... MaxDelqEver Burden Trade Open n r ,ar s W Balance s
Utilz

@ InputValuve [ Increase By () Decrease By

Counterfactuals suggest where to increase (green, dashed) or decrease (red, striped) each feature.

Rory Mc Grath, Luca Costabello, Chan Le Van, Paul Sweeney, Farbod Kamiab, Zhao Shen, Freddy Lécué: Interpretable Credit Application Predictions With Counterfactual
Explanations. FEAP-Al4fin workshop, NeurlPS, 2018.



Complexity

* Opposed to interpretability. * Linear Model: number of non
zero weights in the model.

* Is only related to the model and not
to the training data that is unknown. ¢ Rule: number of attribute-value
pairs in condition.

* Generally estimated with a rough
approximation related to the size of ¢ Decision Tree: estimating the
the interpretable model. complexity of a tree can be hard.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. Why should i trust you?: Explaining the predictions of any classifier. KDD.
Houtao Deng. 2014. Interpreting tree ensembles with intrees. arXiv preprint arXiv:1408.5456.
Alex A. Freitas. 2014. Comprehensible classification models: A position paper. ACM SIGKDD Explor. Newslett.



Open the Black Box Prob\ems
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Problems Taxonomy
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BOX PROBLEMS

BLACK BOX
EXPLANATION

MODEL
EXPLANATION

|| ]

Y

OUTCOME
EXPLANATION

[ ]

TRANSPARENT
BOX DESIGN

MODEL
INSPECTION




XbD — eXplanation by Design @

Black-box System
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BBX - Black Box eXplanation

Black-box
Al System

Eji'ﬂ

Explanation

Input Data

- ) BLACK BOX
EXPLANATION
Explanation Sub-system
MODEL OUTCOME MODEL
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Classification Problem

TRAINING BLACK BOX
o | JETY »| BLACKBOX | »| PREDICTION
X =1{Xy, «ue, X}
TEST

SET




Model Explanation Problem

Provide an interpretable model able to mimic the overall logic/behavior of
the black box and to explain its logic.

R, : IFOutlook = Sunny) AND
(Windy= False) THEN Play=Yes
R, : IFOutlook = Sunny) AND
INTERPRETABLE (Windy= True) THEN Play=No

—p BLACKBOX |+—» GLOBAL .y | Ry IFQutlook = Overcas
THEN Play=Yes

PREDICTOR R, : IFOutiook = Rainy) AND

TEST
INSTANCES

(Humidity= High) THEN Play=No
X =1{Xy, «uey X} R, : IF(Outiook = Rainy) AND

(Humidity= Normal) THEN Play=Yes




Outcome Explanation Problem

Provide an interpretable outcome, i.e., an explanation for the outcome of
the black box for a single instance.

INTERPRETABLE
TEST R,: IF(Outlook = Sunny) AND
INSTANCE BLACK BOX PRIEOD?S[_OR . (Windy= False) THEN Play=Yes

X




Model Inspection Problem

Provide a representation (visual or textual) for understanding either how the
black box model works or why the black box returns certain predictions more
likely than others.

TEST VISUAL : ' :
INSTANCES > BLACKBOX | | RepRENTATION |T T ¢ |

X =1{Xy, «uey X}




Transparent Box Design Problem

Provide a model which is locally or globally interpretable on its own.

TRAINING
SET

INTERPRETABLE
LEARNER

X =1{Xy, «uey X}

TEST |
INSTANCE

X

INTERPRETABLE
PREDICTOR

A

R, : IFOutlook = Sunny) AND
(Windy= False) THEN Play=Yes

R, : IFOutlook = Sunny) AND
(Windy= True) THEN Play=No

R, : IF{Outlook = Overcast)

THEN Play=Yes

R, : IF{Outlook = Rainy) AND
(Humidity= High) THEN Play=No

R; : IFOutlook = Rainy) AND
(Humidity= Normal) THEN Play=Yes




Categorization p Yl
* The type of problem |
* The type of black box model that the explanator is able to open
* The type of data used as input by the black box model

* The type of explanator adopted to open the black box



Black Boxes Q«’_ ,
¢ 7. 000
* Neural Network (NN)

* Tree Ensemble (TE)

e Support Vector Machine (SVM)

* Deep Neural Network (DNN)




Types of Data

Table of baby-name data
(baby-2010.csv)

Field

name rank gender year " names

Jacob 1 bo 2010

ol ™~ One row

Isabella 1 girl 2010 (4 fields)
Ethan 2 boy 2010 I m a eS
Sophia 2 girl 2010 g
Michael 3 boy 2010

] ] L]

. H .

e 2000 rows ' '

. all told . '

Tabular
(TAB)




Explanators Q

— e
g ¢ 7. 000
* Decision Tree (DT)

* Decision Rules (DR)

e Features Importance (F/)
 Saliency Maps (SM)

* Sensitivity Analysis (SA)
 Partial Dependence Plot (PDP)
* Prototype Selection (PS)



Reverse Engineering

* The name comes from the fact that we can only observe
the input and output of the black box.

* Possible actions are:
* choice of a particular comprehensible predictor

» querying/auditing the black box with input records
created in a controlled way using random perturbations

w.r.t. a certain prior knowledge (e.g. train or test)

Input Output

* |t can be generalizable or not:
* Model-Agnostic
* Model-Specific




Model-Agnostic vs Model-Specific

TEST RANDOM DATA
INSTANCES ™ perrureamion | 7| BLACKBOX === PREDICTION
independentI |
v
INTERPRETABLE INTERPRETABLE ORACLE
PREDICTOR | LEARNER | *
| — T — T —
TEST ' | RANDOM DATA | !
nsTANCESE— | PERTURBATION . »| BLACKBOX |- »| PREDICTION :
| = |
I ‘ I
: dependent I & :
| I
INTERPRETABLE | _ INTERPRETABLE LEARNER ORACLE |
PREDICTOR ! I
' |
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Trepan [22] Craven et al. 1996 DT NN TAB v v
- [57] Krishnan et al. 1999 DT NN TAB v v v
DecText [12] Boz 2002 DT NN TAB v v v
GPDT [46] Johansson et al. 2009 DT NN TAB v v v v
Tree Metrics [17] Chipman et al. 1998 DT TE TAB v
CCM [26] Domingos et al. 1998 DT TE TAB v v v
- [34] Gibbons et al. 2013 DT TE TAB v v
STA [140] Zhou et al. 2016 DT TE TAB v
CDT [104]  Schetininetal. 2007 DT TE TAB v
— 38 Hara et al. 2016 DT TE TAB
TSP . .
Coni Rules Solving The Model Explanation Problem
G-REX
REFNE [141] Zhou et al. 2003 DR NN TAB v v v v
RxREN [6] Augasta et al. 2012 DR NN TAB v v v



Transparent methods

The explanation is embedded into the design of the Al system.

Most popular transparent methods: r = {age < 25, job = clerk, income < 900} -> deny
* Decision tree (rules)
* Regressors (feature importance) ® = {({income > 900} -> grant),
({17 < age < 25, job = other} -> grant)}
PR
100%
s UniformityCellSize < 2.5
benign malignant IF SEX = female
.97 .03 .16 .84
60% 40%
BareNuclei < 4.5 — UniformityCellShape < 2.5 AND Class = first
malignant
& THEN PREDICT Survived = true
niformityCeIISize <45
‘ WITH PRECISION 97%
9%
pareNuclel =29 AND COVERAGE 15%

malignant benign benign malignant
.33 .67 .80 .20 .80 .20 17 .83
2% 3% 2% 7%




Global Explainer: TREPAN

Global explainer designed to explain NN but o
usable for any type of black box. 85 .35
100%
UniformityCellSize < 2.5
It aims at approximating a NN with a DT ) eligrert
classifier using best-m-of-n rules. 60% 40%
BareNuclei < 4.5 ——UniformityCellShape < 2.5
. Lo malignant
At each node split the feature to split is &
selected on the original data extended with UniformityCellSize < 4.5
random samples respecting the current path. @
9%
It learns to predict the label returned by the Ba’e"“'e“zl
black box, not the original one. S - e TP
1.00 .00 .33 .67 .80 .20 17 .83 .04 .96
58% 2% 3% 7% 27%




Trepa N — DT, NN, TAB ) Uiy <25 5
o703 S
60% 40%
01 T = root of the tree() W
02 Q - <T, X, {}> niformit:gta/;)ISize<4.5
03 while Q not empty & size(T) < 1imit malignant
04 N, XN’ CN - pop(Q) BareNj:/loei<2.5
05 Zy = random (Xy, Cy) _ | 1 |
06 blackbox v, = b(z), y = b(Xy) %) 5D @5 O @
()77 auditing if same class(y U y,) 2% 3% 2% 7% 27%
08 continue
09 S = best split(Xy U Zy, v U vy,)
10 S’'= best m-of-n split(S)
11 N = update with split (N, S’)
12 for each condition ¢ in S’
13 C = new child of (N)
14 Cc = CNU {c}
15 X. = select with constraints (Xy, Cy)
16 put (Q, <C, X., Cg>)

Mark Craven and JudeW. Shavlik. 1996. Extracting tree-structured representations of trained networks. NIPS.
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§ & 5 $ 75 5 VAR A A A |
¢ F &§F F ¢ & 4 S
— [134] Xu et al. 2015 SM DNN IMG v v v
= (30] Fong et al. 2017 SM DNN IMG v
CAM [139] Zhou et al. 2016 SM DNN IMG Ve ‘i 7
Grad-CAM [106] Selvaraju et al. 2016 SM DNN IMG v v v
= [109]  Simonianetal. 2013 SM DNN IMG V ¥
PWD [7] Bach et al. 2015 SM DNN IMG v v
— [113] Sturm et al. 2016 SM DNN IMG v v
DTD [78] Montavon et al. 2017 SM DNN IMG v v
DeapLIFT [107]  Shrikumaretal. 2017 FI DNN ANY v v
CP [64 Landecker et al 2013 SM NN IMG
— [14 : -
———s Solving The Outcome Explanation Problem
= [ i al 016 G 3
ExplainD [89] Poulin et al. 2006 FI SVM TAB v v
_ [20]  Strumbeljetal. 2010 FI AGN TAB o v v v



SHAP

A prediction can be explained by assuming that each feature value of the instance is a "player" in a game

where the prediction is the payout. Shapley values tells us how to fairly distribute the "payout” among
the features.

‘, ) = €300,000
Example 9\
50 m?
\/ 2nd frITt])or ><

Prediction: You have trained a machine learning model to predict apartment prices. For a certain
apartment it predicts €300,000 and you need to explain this prediction.

The apartment has an area of 50 m2, is located on the 2nd floor, has a park nearby and cats are banned.
The average prediction is €310,000.

How much has each feature value contributed to the prediction compared to the average prediction?



SHAP

The average prediction is €310,000 while the prediction is €300,000

How much has each feature value contributed to the prediction
compared to the average prediction?

The answer is simple for linear regression models. The effect of each feature is the

weight of the feature times the feature value. This only works because of the linearity
of the model.

For more complex models, we need a different solution!!!!

GOAL: explain the difference between the actual prediction (€300,000) and the average
prediction (€310,000): a difference of -€10,000.



SHAP

GOAL: explain the difference between the actual prediction (€300,000) and the average
prediction (€310,000): a difference of -€10,000.

Game theory:
* The "game" is the prediction task for a single instance of the dataset.

 The "gain" is the actual prediction for this instance minus the average prediction for
all instances.

The "players" are the feature values of the instance that collaborate to receive the gain
(= predict a certain value).

The Shapley value is the average marginal contribution of a feature value across all
possible coalitions.



Shapely Values

One sample repetition to
estimate the contribution
of cat-banned to the
prediction when added to
the coalition of park-
nearby and area-50.

- %

V

rd

50 m?
1st floor

50 m?
1st floor

4
% ==p €310,000
>
% =) €320,000



SHAP

SHAP (SHapley Additive exPlanations) [M et
assigns each feature an importance m—» explanatio

value for a particular prediction by

means of an additive feature o 2 o

. . 34 18.34 20.34 22.34 2441 26.34 28.34 30.34
attribution method. 1 N T SRR € 4 |

PTRATIO = 15.3 LSTAT = 4.98 RM=6.575‘NOX=0.538 AGE=65.2>RAD=1

It assigns an importance value to U AP
each feature that represents the
effect on the model prediction of o S
including that feature o

Low

-4 -2 0 2 4 6
SHAP value (impact on model output)



Local Explanation

* The overall decision
boundary is complex

* |In the neighborhood of a
single decision, the
boundary is simple

* A single decision can be
explained by auditing the
black box around the
given instance and
learning a local decision.




LIME

0 1
01 Z = {1} duration_in_month <.
02 X 1lnstance to explailn Jaccount_check_status-=...
03 x! = realZinterpretable (x) personal_status_se:;..-.
04 for i in {1, 2, .., N} gxhwmﬁmmmm
05 z;= sample around(x’) Ce eyl
06 z = 1lnterpretabelZreal (z’)
07 Z = 72 U {<z;,, b(z;), d(x, z)>}
08 w = solve Lasso(Z, k)

09 return w

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. Why should | trust you?: Explaining the predictions of any classifier. KDD.




LIME

e LIME turns an image x to a vector x’ of interpretable superpixels
expressing presence/absence.

* |t generates a synthetic neighborhood Z by randomly perturbing x’
and labels them with the black box.

* It trains a linear regression model (interpretable and IocaIIy faithful)
and assigns a weight to each superpixel. '




LIME — tab data

* LIME does not really generate images with different information: it
randomly removes some superpixels, i.e. it suppresses the presence
of an information rather than modifying it.

* On tabular data LIME generates the neighborhood by changing the
feature values with other values of the domain.

x = {age=24, sex=male, income=1000} ( x = x’)

z = {age=30, sex=male, income=800} ( z = Z)



age < 25
tru, \%
job mcome < 1500
LORE - DR, AGN, TAB g NG <
mcome < 900 age < 17 job grant

z \ ...... / \ clerk \olther
O 1 < l nstance to eXp 1 a l n deny g'rant deny gmn?}. deny grant
02 Z_ = geneticNeighborhood(x, fitness_., N/2)
03 Z., = geneticNeighborhood(x, fitness,, N/2)
04 4 = 2. U 2, black box

05 ¢ = buildTree (Z, b(Z)%  auditing

06 r = (p —> y) = extractRule(c, Xx)
07 ¢ = extractCounterfactual (¢, r, X)
08 return e = <r, o¢>

| r = {age < 25, job = clerk, income £ 900} -> deny |

® = {{{income > 500} -> grant), pedresch, Franco T
({17 < age < 25, job = other} -> grant)}




Adversarial Black box Explainer generating Latent
Exemplars

* Explaining image classification
* Solving the drawback of LIME
* Exploit adversarial autoencoders

* Providing explanations based on examplars and counter examplars



Explaining Image classifiers



Background - Adversarial Autoencoder

Adversarial Autoencoder (AAE)

_____________________________________

| Nt 2 2 1.5
|
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Local Classifier Rule Extraction

@ Latent Local Rule-based Explainer (llore)

black

; o
box : l > H |
: ,
s ic

\
X —— encoder| ——> z —> |neighgen] ——> H ——> | disde |
i::) : __———"'—__— |

r=ifz;>0.1and z; £0.5 then ‘0’

Cp — {|f 7. < O 1 then 14' + R. Guidotti, A. Monreale, S. Ruggieri, D. Pedreschi, F.
1 d Turini, and F. Giannotti. Local rule-based explanations
|f 23 > 05 then ’8'} of black box decision systems. arXiv:1805.10820,

2018.



Saliency Map from Exemplars

o The saliency map s highlights areas of x
that contribute to b(x) and that push it
to # b(x).

e Itis obtained as follows:

o pixel-to-pixel-difference between x and
each exemplarin H

o each pixel of s is the median value of the
differences calculated for that pixel.

Red/Blue means consistent

diffesce “variable a

Yellow means no
difference “no change
area”



ABELE vs LIME Neighborhood

. ABELE




Saliency Map Comparison

e MNnist

fashion

=9 abele [|ime sal grad intg elrp trouser abele ||me sal grad intg elrp

l?l v a (| L

coat abele I|me saI grad intg eIrp

‘1]’4‘3 mﬂ /J@ [ﬁﬁﬂ

boot abele lime sal grad intg elrp

If!

=0 abele lime saI grad mtg elrp

m@l@gg@

=4 abele lime sal grad intg elrp
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Exemplars and Counter-Exemplars

e Mnist fashion

=9 b(x)=9 b(x)=9 b(x)=4 b(x trouser trouser trouser t-shirt coat

pEnEE i

=0 b(xX)=0b(x)=0 b(x)= coat coat coat pullover ghirt

olo[o]« |« Mmmmalt A

=4 b(x)= boot boot boot sheaker sandal

Glulufd| 2l alals] ol




Explaining time series classifiers



Setting The Stage - Autoencoder

ad V
I T . :I -
DO
m !
L # o
| O | m e n S IO n a I time series g convolutional layers ~ €ONVO lutional dense layer

aggregation layer

representation

= : ) [ /\m

1-3 December 2020, CogMI 2020




LASTS: Local Agnostic Subsequence-
based Time Series explainer

b(x) = 0 innaE Y

/X > D —> 2,0 —> | neighgen | —> Z —> @ learnTree |=> 9 ——rnd

N4 —l T e / l

= /I\ b(Z) 1

b 7 —— > 7 AN _:_> Y 0 explCexpl

LI N EEE l
s | , = | Lo~ ~
i f\/i -0 i < :CJ <—— | learnTree S @(— _\ S <—| shapelet | «<— Z*,Y* _>§ /ZE\ Z:t i
S B 1 l el

1-3 December 2020, CogMI 2020



LASTS Explanation

b0} = bell Instance to explain
5_
()
=
2
0_
0 20 40 60 80 100 120
time-steps
Exemplars -
p75_ b3* ) = bell oty = per COUNter-Exemplars
5.01
2.5
0.0
FaCtuaI Rule Shapelet-t;zs_e):dbz?lctual Rule ShapeIet-basqiol_)F;fnucrt]l:]aelI Rule fora Z Counter-FactuaI RUIG
54 == )r:ot-contained 12 { == i/ot—contained 2_. _
= contained ) X:: —— contained =~ ROAAA
il B 1




Latent Encoding and Neighborhood Generation

b(x)=0

X —>D—> Z,) —> | neighgen | —> 7 —> E]_
~— > 1|a]2]|s

X A — T
~~—Y v/\_\
b >7 XS

1-3 December 2020, CogMI 2020



Local Latent Rules and (Counter-)Exemplars Selection

Z Z*
3 o .
.
2 .
v 1.
learnTree 0
1
b(Z) T 1 -1
o~ i
>7 "L —>y s -2
NN

-4 -3 -2 -1 0 1

1-3 December 2020, CogMI 2020



F s

5.0

2.5

0.0

Exemplars and Counter Exemplars

b(Z%) = bell b(Z%) = funnel b(Z%) = cylinder
0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120
timesteps timesteps timesteps
~ . =k .
b(ZL) = seizure b(Z~.) = no_seizure
500 T 500 1
© )
2 0 3 0]
S S
—500 - —-500 1
0 50 100 150 0 50 100 150
timesteps timesteps

1-3 December 2020, CogMI 2020




From Exemplars to Counter-Exemplars

Classes Morphing

L
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shapelets
OCONOUDNDWNRERO

Shapelet-Based Rule Extraction

400 600

800

11011

0|01

Extracted Shapelets

AT

learnTree

5 oe—
«— £
2

1

S <

shapelet

(1’ 1’ 1, 1’ O’ 1’ O’ O’ 1’ O)d

1000

time series

oﬂmma

1-3 December 2020, CogMI 2020

IF S7 is NOT contained AND
S$ S1 AND s2 are contained

v

bell

r

IF S2 AND S7 are NOT contained
s AND S1 is contained

|

funnel



Comparing Time Series Explanations

b(Z~) = bell
b(x) = bell
(T
I
L
V)
)
H
V) ps— bell
S [
{ == not-contained 7.2
= contained I SX
MY (Vg
I
gs = funnel L
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—— contained =7 "7 TS
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Take-Home Messages

* Explainable Al is motivated by real-world application of Al
* Not a new problem — a reformulation of past research challenges in Al

* Multi-disciplinary: multiple Al fields, HCI, social sciences (multiple
definitions)
* In Machine Learning:

* Transparent design or post-hoc explanation?
e Background knowledge matters!

* We can scale-up symbolic reasoning by coupling it with representation
learning on graphs.

* In Al (in general): many interesting / complementary approaches



Open The Black Box!

* To empower individual against undesired effects of
automated decision making

* To reveal and protect new vulnerabilities
e To implement the “right of explanation”

e To improve industrial standards for developing Al-
powered products, increasing the trust of companies
and consumers

* To help people make better decisions
* To align algorithms with human values
 To preserve (and expand) human autonomy




Open Research Questions

T
T
T

nere is no agreement on what an explanation is
nere is not a formalism for explanations

nere is ho work that seriously addresses the

problem of quantifying the grade of
comprehensibility of an explanation for humans

* Is it possible to join local explanations to build a
globally interpretable model?

* What happens when black box make decision in
presence of latent features?

* What if there is a cost for querying a black box?
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