
Time Series - Similarity, Distances, 
Transformations and Clustering



What is a Time Series?

• A time series is a collection of observations 
made sequentially in time, generally at 
constant time intervals.
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Time Series are Ubiquitous

• You can measure many things … 
and things change over time.
• Blood pressure
• Donald Trump’s popularity rating
• The annual rainfall in Pisa
• The value of your stocks

• In addition, other data type can 
be seen as time series 
• Text data: words count
• Images: edges displacement
• Videos: object positioning
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Problems in Working with Time Series

• Large amount of data.
• Similarity is not easy to estimate.
• Differing data formats.
• Differing sampling rates.
• Noise, missing values, etc.



What We Can Do With Time Series?

• Trends, Seasonality

• Clustering

• Motif Discovery

• Rule Discovery

• Forecasting

• Classification
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Time Series Components

• A given TS consists of three systematic components including level, 
trend, seasonality, and one non-systematic component called noise.
• Level: The average value in the series.
• Trend: The increasing or decreasing value in the series.
• Seasonality: The repeating short-term cycle in the series.
• Noise: The random variation in the series.

• A systematic component have consistency or recurrence and can be 
described and modeled.
• A non-systematic component cannot be directly modeled.



Similarity, Distances and 
Transformations



Similarity

• All these problems require similarity 
matching.

• What is Similarity?
• It is the quality or state of being similar, likeness, 

resemblance, as a similarity of features. 

• In time series analysis we recognize two 
kinds of similarity:
• Similarity at the level of shape
• Similarity at the structural level



Shape-based Similarities



Defining Distance Measures

• Let A and B be two objects from the universe of possible 
objects. The distance (dissimilarity) is denoted by D(A,B).
• Properties in a distance measure.
• D(A,B) = D(B,A) Symmetry 
• D(A,A) = 0 Constancy
• D(A,B) = 0 IIf A = B Positivity
• D(A,B) ≤ D(A,C) + D(B,C) Triangular Inequality 
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Euclidean Distance

• Given two time series:
• Q = q1 … qn

• C = c1 … cn

• T1 = < 56,       176,        110,        95  >
• T2 = < 36,       126,        180,        80  >

D(T1,T2) = sqrt [ (56-36)2 + (176-126)2 + (110-180)2 + (95-80)2 ]

D(Q,C)

C

time
1 n

Q
time

1 n
( ) ( )å -º

=

n

i
ii cqCQD

1

2,



Problems with Euclidean Distance

• Euclidean distance is very sensitive to “distortions” in the data.
• These distortions are dangerous and should be removed.
• Most common distortions:
• Offset Translation
• Amplitude Scaling
• Linear Trend
• Noise

• They can be removed by using the appropriate transformations.



Transformation I: Offset Translation
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Transformation II: Amplitude Scaling
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Q = (Q - mean(Q)) / std(Q)

C = (C - mean(C)) / std(C)
D(Q,C)



Transformation III: Linear Trend

• Removing linear trend: fit the best fitting straight line to the time 
series, then subtract that line from the time series.
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Transformation IV: Noise

• The intuition behind removing noise is to average each datapoints 
value with its neighbors.

0 20 40 60 80 100 120 140
-4

-2

0

2

4

6

8

0 20 40 60 80 100 120 140
-4

-2

0

2

4

6

8

Q = smooth(Q)

C = smooth(C)
D(Q,C)



Moving Average

• Noise can be removed by a moving 
average (MA) that smooths the TS.
• Given a window of length w and a TS t, 

the MA is applied as follows
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Dynamic Time Warping

• Sometimes two time series that are 
conceptually equivalent evolve at different 
speeds, at least in some moments.

E.g. correspondence of peaks in 
two similar time series

Fixed Time Axis. Sequences are 
aligned “one to one”. Greatly suffers 
from the misalignment in data.
Euclidean.

Warped Time Axis. Nonlinear 
alignments are possible. Can correct 
misalignments in data.
Dynamic Time Warping.
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How is DTW Calculated?

• We create a matrix with size of |Q| by 
|C|, then fill it in with the distance 
between every pair of points in our two 
time series.
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The Euclidean distance works only on the 
diagonal of the matrix. The sequence of 
comparisons performed:
• Start from pair of points (0,0)
• After point (i,i) move to (i+1,i+1)
• End the process on (n,n)



How is DTW Calculated?

• The DTW distance can “freely” move 
outside the diagonal of the matrix
• Such cells correspond to temporally 

shifted points in the two time series
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How is DTW Calculated?

• Every possible warping between two 
time series, is a path through the matrix. 

• The constrained sequence of 
comparisons performed:
• Start from pair of points (0,0)
• After point (i,j), either i or j increase by one, 

or both of them
• End the process on (n,n)
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How is DTW Calculated?

• Every possible warping between two time 
series, is a path through the matrix. 
• We find the best one using a recursive 

definition of the DTW:

• Idea: best path must pass through (i-1,j), 
(i-1,j-1) or (i,j-1)

g(i,j)   = cost of best path reaching cell (i,j)
= d(qi,cj) + min{ g(i-1,j-1), g(i-1,j ), g(i,j-1) }

(i,j)(i,j-1)(i,j-2)

(i-1,j)(i-1,j-1)(i-1,j-2)

(i-2,j)(i-2,j-1)(i-2,j-2)
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Dynamic Programming Approach

Step 1: compute the matrix of all d(qi,cj)

• Point-to-point distances D(i,j) =  | Qi – Cj |

Step 2: compute the matrix of all path costs  g(i,j)
• Start from cell (1,1)

• Compute (2,1), (3,1), …, (n,1)
• Repeat for columns 2, 3, …, n

• Final result in last cell computed

Step 3: find the path with the lowest value (best alignment)

g(i,j)   =   d(qi,cj) + min{ g(i-1,j-1), g(i-1,j ), g(i,j-1) }
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Dynamic Programming Approach

Step 2: compute the matrix of all path costs  g(i,j)
• Start from cell (1,1)

g(1,1)   =   d(q1,c1) + min{ g(0,0), g(0,1), g(1,0)} 
=   d(q1,c1)
=   D(1,1)

• Compute (2,1), (3,1), …, (n,1)
g(i,1)   =   d(qi,c1) + min{ g(i-1,0), g(i-1,1), g(i,0) } 

=   d(qi,c1) + g(i-1,1)
=   D(i,1) + g(i-1,1)

• Repeat for columns 2, 3, …, n
– The general formula applies

D(1,1)

+ 
D(i,1)

min + 
D(i,1)

X X X

X X

g(i,j)   =   d(qi,cj) + min{ g(i-1,j-1), g(i-1,j ), g(i,j-1) }



Dynamic Programming Approach

Example
• c = < 3, 7, 4, 3, 4 > 
• q = < 5, 7, 6, 4, 2 > 

g(i,j)   =   d(qi,cj) + min{ g(i-1,j-1), g(i-1,j ), g(i,j-1) }



DTW – Exercise 1

• Given the following input time series:

• A) Compute the distance between “t1” and “t2”, using the DTW with 
distance between points computed as d(x,y) = |x – y|.
• B) If we repeat the computation of point (A) above, this time with a 

Sakoe-Chiba band of size r=1, does the result change? Why?
• C) If we compute DTW(T1,T2), where T1 is equal to t1 in reverse order

(namely T1=<0,1,6,3,4>) and similarly for T2 (namely T2=<1,0,7,6,3>), 
is it true that DTW(T1,T2) = DTW(t1,t2)? Discuss the problem without
providing any computation.



DTW – Exercise 1 - Solution
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DTW – Exercise 1 - Solution
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• A)

• B) No. Because the DTW optimal path remains inside the band of size r=1

• C) Yes. The optimal path in one direction is the same in the opposite direction. 
Though, the cumulative costs matrix might look different.



Dynamic Time Warping – A Real Example

• A Real Example
• This example shows 2 one-

week periods from the 
power demand time series.
• Note that although they 

both describe 4-day work 
weeks, the blue sequence 
had Monday as a holiday, 
and the red sequence had 
Wednesday as a holiday.



Comparison of Euclidean Distance and DTW
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Comparison of Euclidean Distance and DTW

• Classification using 1-NN
• Class(x) = class of most similar 

training object
• Leaving-one-out evaluation
• For each object: use it as test set, 

return overall average

Dataset Euclidean DTW
Word Spotting 4.78 1.10
Sign language 28.70 25.93
GUN 5.50 1.00
Nuclear Trace 11.00 0.00
Leaves# 33.26 4.07
(4) Faces 6.25 2.68
Control Chart* 7.5 0.33
2-Patterns 1.04 0.00

Error Rate



Comparison of Euclidean Distance and DTW

• Classification using 1-NN
• Class(x) = class of most similar 

training object
• Leaving-one-out evaluation
• For each object: use it as test set, 

return overall average
• DTW is two to three orders of 

magnitude slower than Euclidean 
distance.

Milliseconds
Dataset Euclidean DTW

Word Spotting 40 8,600
Sign language 10 1,110
GUN 60 11,820
Nuclear Trace 210 144,470
Leaves 150 51,830
(4) Faces 50 45,080
Control Chart 110 21,900
2-Patterns 16,890 545,123



What we have seen so far… 

• Dynamic Time Warping gives much better results than Euclidean 
distance on many problems.
• Dynamic Time Warping is very very slow to calculate!
• Is there anything we can do to speed up similarity search under DTW? 



Fast Approximations to DTW

• Approximate the time series with some compressed or downsampled
representation, and do DTW on the new representation. 
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Fast Approximations to DTW

• There is strong visual evidence to suggests it works well
• In the literature there is good experimental evidence for the utility of 

the approach on clustering, classification, etc.
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Global Constraints

• Slightly speed up the calculations
• Prevent pathological warpings
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Global Constraints

• A global constraint constrains the indices of the warping path wk = 
(i,j)k such that j-r £ i £ j+r, where r is a term defining allowed range of  
warping for a given point in a sequence.
• r can be considered as a window that reduces the number of calculus.

ri

Sakoe-Chiba Band Itakura Parallelogram



Accuracy vs. Width of Warping Window
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Structural-based Similarities



Structure or Model Based Similarity

• For long time series, shape based similarity give 
very poor results.
• We need to measure similarly based on high 

level structure.
• The basic idea is to:

1. extract global features from the time series, 
2. create a feature vector, and 
3. use it to measure similarity and/or classify

• Example of features: 
• mean, variance, skewness, kurtosis, 
• 1st derivative mean, 1st derivative variance, … 
• parameters of regression, forecasting, Markov model

A
B
C

Feature\Time Series A B C

Max Value 11 12 19

Mean 5.3 6.4 4.8

Min Value 3 2 5

Autocorrelation 0.2 0.3 0.5

… … … …



Compression Based Dissimilarity

• Use as features whatever structure a 
given compression algorithm finds.

• 𝑑 𝑥, 𝑦 = 𝐶𝐷𝑀 𝑥, 𝑦 = +(-,/)
+ - *+(/)

• Time series can be compressed using 
various transformations:

• Piecewise Linear Approximation
• Adaptive Piecewise Constant 

Approximation
• Symbolic Aggregate Approximation

Euclidean CDM



Time Series Approximation



Time Series Approximation

• Approximation: represent a TS into a new smaller and 
simpler space and use this novel representation for 
computing. 

• Approximation is a special form of Dimensionality 
Reduction specifically designed for TSs. 

• Approximation vs Compression: 
• the approximated space is always understandable 
• the compressed space is not necessarily understandable.



Discrete Fourier Transform (DFT)
• Apply a spectral decomposition of a signal

• DTF is a method to decompose functions depending on time into functions 
depending on frequency

• TS is a function depending on time
• we have a value for temperature for each point in time.

Jean Fourier: 1768-1830

TS: a combination of seasonality, trend, 
and noiseFrequency  is the 

number of 
complete cycles

• DFT extracts different seasonality patterns from a single time series variable
• Example: Given an hourly temperature data set, DFT can detect the presence 

of day/night variations and summer/winter variations
• it will tell you that those two seasonality (frequencies) are present in 

your data.



Discrete Fourier Transform (DFT)

Jean Fourier: 1768-1830

• A peak value at 10 Hz with a 
magnitude of one while all other 
frequencies are around zero.

• The original TS where has 10 
complete cycles in a second with 
an amplitude of one.

• Data comprises of 3 different 
elementary components with 3 
different frequencies (2, 5 and 10 Hz) 
at 3 different amplitudes (0.5, 1 and 2).



Discrete Fourier Transform (DFT)

• Sine functions of the different 
components.

• Data comprises of 3 different 
elementary components with 3 
different frequencies (2, 5 and 10 Hz) 
at 3 different amplitudes (0.5, 1 and 2).



Discrete Fourier Transform (DFT)

• The basic idea of spectral decomposition is that any signal can be represented 
by the super position of a finite number of sine/cosine waves

• Each wave is represented by a single complex number known as a Fourier 
coefficient as a linear combination of sines and cosines

• Keep only the first n/2 coefficients
• Many of the Fourier coefficients have very low amplitude and thus contribute 

little to reconstructed signal. 

• These low amplitude coefficients can be discarded without much loss of 
information thereby saving storage space.

• Pros
• Good ability to compress most natural signals.
• Fast, off the shelf DFT algorithms exist. O(nlog(n)).

• Cons
• Difficult to deal with sequences of different lengths.
• Cannot support weighted distance measures.

Jean Fourier

1768-1830



Piecewise Linear Approximation (PLA)
• Represent the time series as a sequence of straight lines.
• Lines could be connected or disconnected

• In the literature there are numerous algorithms available for segmenting time 
series.

• An open question is how to best choose K, the “optimal” number of segments 
used to represent a particular time series. 

• This problem involves a tradeoff between accuracy and compactness, and 
clearly has no general solution.

• Pros: 
• data compression
• noise filtering
• able to support some interesting non-Euclidean similarity measures

Karl Friedrich Gauss

1777 - 1855

Each line segment has 
• length 
• left_height
(right_height can 
be inferred by looking at 
the next segment)



Piecewise Aggregate Approximation (PAA)
• Represent the time series as a sequence of box basis functions 

with each box of the same size. 

• It approximates a TS by dividing it into equal-length segments 
and recording the mean value of the data points that fall within 
the segment. 

• It reduces the data from n dimensions to M dimensions by 
dividing the time series into M equi-sized ``frames’’.

• The mean value of the data falling within a frame is calculated, 
and a vector of these values becomes the data reduced 
representation.

• Pros
• Extremely fast to calculate
• Supports non Euclidean measures
• Supports weighted Euclidean distance



Adaptive Piecewise Constant Approximation (APCA)

• It allows the segments to have arbitrary lengths, which 
in turn needs two numbers per segment.

• The first number records the mean value of all the data 
points in segment, and the second number records the 
length of the segment.

• APCA has the advantage of being able to place a single 
segment in an area of low activity and many segments 
in areas of high activity. 

• In addition, one has to consider the structure of the 
data in question.

• Pros:
• Fast to calculate O(n)
• Supports non Euclidean measures
• Supports weighted Euclidean distance



Symbolic Aggregate Approximation (SAX)
• Convert the data into a discrete format, with a small alphabet size.

• A time series T of length n is divided into w equal-sized segments; 
the values in each segment are then approximated and replaced by 
a single coefficient, which is their average. 

• Aggregating these w coefficients form the PAA representation of T. 
• Next, we determine the breakpoints that divide the distribution 

space into ɑ equiprobable regions, where ɑ is the alphabet size 
specified by the user

• The breakpoints are determined such that the probability of a 
segment falling into any of the regions is approximately the same. 

• If the symbols are not equi-probable, some of the substrings would 
be more probable than others. Consequently, we would inject a 
probabilistic bias in the process.



Symbolic Aggregate Approximation (SAX)

• Once the breakpoints are determined, 
each region is assigned a symbol.
• The PAA coefficients can then be easily 

mapped to the symbols corresponding to 
the regions in which they reside. 
• The symbols are assigned in a bottom-up 

fashion, i.e., the PAA coefficient that falls 
in the lowest region is converted to “a”, 
in the one above to “b”, and so forth. 

baabccbc



Summary of Time Series Similarity

• If you have short time series
• use DTW after searching over the warping window size

• If you have long time series
• if you do know something about your data =>

extract features
• and you know nothing about your data => 

try compression/approximation based dissimilarity



Clustering



Clustering Time Series

• It is based on the similarity between time series.
• The most similar data are grouped into clusters, but the clusters 

themselves should be dissimilar.
• These groups to find are not predefined, i.e., it is an unsupervised 

learning task. 
• The two general methods of time series clustering are 

• Partitional Clustering and 
• Hierarchical Clustering



Types of Time Series Clustering

• Whole clustering: similar to that of conventional clustering of discrete 
objects. Given a set of individual time series data, the objective is to 
group similar time series into the same cluster. 
• Features-based clustering: extract features, or time series motifs (see 

next lectures) as the features and use them to cluster time series.
• Compression-based clustering: compress time series and run 

clustering on the compressed versions.
• Subsequence clustering: given a single time series, subsequence 

clustering is performed on each individual time series extracted from 
the long time series with a sliding window.



Hierarchical Clustering

• It computes pairwise distance, and then merges 
similar clusters in a bottom-up fashion, without 
the need of providing the number of clusters
• It is one of the best tools to data evaluation, by 

creating a dendrogram of several time series from 
the domain of interest.
• Its application is limited to small datasets due to 

its quadratic computational complexity.



Partitional Clustering

• Typically uses the K-Means algorithm (or some variant) to optimize 
the objective function by minimizing the sum of squared intra-cluster 
errors. 
• K-Means is perhaps the most commonly used clustering algorithm in 

the literature, one of its shortcomings is the fact that the number of 
clusters, K, must be pre-specified.
• Also the distance function plays a fundamental role both for the 

quality of the results and for the efficiency.
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