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Time Series Classification

* Given a set X of n time series, X = {x;, x,, ..., x,}, each time series has
m ordered values x; = < X;;, X;5, ..., X;, > and a class value c;.

* The objective is to find a function f that maps from the space of
possible time series to the space of possible class values.

* Generally, it is assumed that all the TS have the same length m.



Shapelet-based Classification
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1. Represent a TS as a vector of Urtica dioica
distances with representative -
subsequences, namely shapelets. Verbena urticiolia

2. Use 1t as mput for machine m

learning classifiers.
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Time Series Shapelets

* Shapelets are TS subsequences which are
maximally representative of a class.

* Shapelets can provide interpretable results,
which may help domain practitioners better
understand their data.

* Shapelets can be significantly more
accurate/robust because they are local
features, whereas most other state-of-the-art
TS classifiers consider global features.
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Finding Shapelets

FindingShapeletBF (dataset D, MAXLEN, MINLEN)
1 candidates € GenerateCandidates(D, MAXLEN, MINLEN)
2 bsf gain € 0

3 For each S in candidates

4 gain € CheckCandidate(D, S)

5 If gain > bsf gain

6 bsf gain € gain

7 bsf shapelet € S

8 EndIf

9 EndFor

10 Return bsf shapelet




Generate Candidate

GenerateCandidates (dataset D, MAXLEN, MINLEN)

pool € O
| € MAXLEN
While / > MINLEN
For Tin D
pool € pool U St/
EndFor
€< 1-1
EndWhile
Return pool

Sliding a window of size / across all
of the time series objects in the

dataset D, extracts all of the possible
candidates and adds them to the pool
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Extract Subsequences of all Possible
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Check Candidates

CheckCandidate (dataset D, shapelet candidate S)

objects histogram € O
Foreach 7in D

dist € SubsequenceDist(7, S)

insert 7 into objects histogram by the key dist
EndFor

Return CalculateInformationGain(objects histogram)
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 Inserts all of the time series objects into the histogram objects histogram according to the
distance from the time series object to the candidate

e (alculate Information Gain



Distance with a Subsequence

* Distance from the TS to the subsequence SubsequenceDist(T, S) 1s a distance
function that takes time series 7" and subsequence S as mputs and returns a non-
negative value d, which is the distance from 7' to S.

» SubsequenceDist(T, S) = min(Dist(S, S')), for S' € S5

» where S is the set of all possible subsequences of T

* Intuitively, it 1s the distance between § and its best matching location in 7.

best —» :
matching > S
location :
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Check Candidates with IG

CalculateInformationGain (distance histogram obj hist)

1 split dist € OptimalSplitPoint(obj hist)
2 D;<O,D, <0

3 For d in obj hist

4 If d.dist < split dist

5 D; € Dy U d.objects

6 Else

7 D, € D, U d.objects

8 EndIf

9 EndFor

1

0 Return /(D) - (D)




Testing The Utility of a Candidate Shapelet

* Arrange the TSs 1n the dataset D based on the distance from the
candidate.

* Find the optimal split point that maximizes the information gain (same
as for Decision Tree classifiers)

* Pick the candidate achieving best utility as the shapelet
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 ATS dataset D consists of two classes, A and B.

* Given that the proportion of objects in class A 1s p(4) and the proportion of objects
in class B 1s p&)})

* The Entropy of D 1s: I(D) = -p(A)log(p(A)) -p(B)log(p(B)).

* Given a strategy that divides D into two subsets D; and D,, the information
remaining in the dataset after splitting 1s defined by the weighted average entropy

of each subset.

e If the fraction of objects in D; 1s f(D;) and in D, is f(D,), the total entropy of D
after splitting is /(D) = f{D,)I(D,) + f(D,)I(D).
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Split point

* Given a certain split strategy sp which divides distance from
D into two subsets D; and D,, the entropy shapelet = 5.1
before and after splitting is /(D) and I(D).
* The information gain for this splitting rule 1s:
° Galn(Sp) — I(D) - j(D) — Shapelet Dictionary ,\ :
= (D) - fIDID,) + DDy, e W

Does Q have a subsequence within .
Leaf Decision Tree

a distance 5.1 of shapem? | \
* We use the distance from 7 to a shapelet S as o no

the splitting rule sp. 0 1
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Problem

MAXLEN

* The total number of candidate 1s Z Z
(

T|-1+1)

J=MINLEN T .eD

* For each candidate you have to compute the distance between this
candidate and each training sample (space inefficiency)

* For instance
* 200 instances with length 275
* 7,480,200 shapelet candidates



Speedup

* Distance calculations form TSs to shapelet candidates 1s expensive.

* Reduce the time in two ways

 Distance Early Abandon: reducing the distance computation time between
two TS

* Admissible Entropy Pruning: reducing the number of distance calculations
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Distance Early Abandon

* We only need the minimum distance. bost mateh
b S Dist=0.4
ocaition !

e Method:

* Keep the best-so-far distance

O 10 20 30 40 50 60 70 8 90 100

* Abandon the calculation if the partial current
distance is larger than best-so-far.

Dist> 0.4

* We can avoid to compute the full distance for S
if the partial one is greater than the best so far

calculation =~
abandoned at this point

0O 10 20 30 40 50 60 70 8 90 100



Admissible Entropy Pruning

* We only need the best shapelet for each class y / N

* For a candidate shapelet

* We do not need to calculate the distance for each
training sample

 After calculating some training samples, 1f the
upper bound of information gain
(corresponding to the optimistic scenario) < best
candidate shapelet

* Stop calculation for that candidate and try next o029
candidate 5
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Time Series Motif Discovery

* Finding repeated patterns, i.e., pattern mining.

* Are there any repeated patterns, of length m in the TS?

N A Winding Dataset C _
| I | ( The angular speed ?f reel 2 )
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Why Find Motifs?

* Mining association rules in TS requires the discovery of motifs. These
are referred to as primitive shapes and frequent patterns.

» Several TS classifiers work by constructing typical prototypes of each
class. These prototypes may be considered motifs.

* Many TS anomaly detection algorithms consist of modeling normal
behavior with a set of typical shapes (which we see as motifs), and
detecting future patterns that are dissimilar to all typical shapes.



Matrix Profile

* The Matrix Profile (MP) is a data structure that annotates a TS and
can be exploited for many purposed: e.g. efficient Motif Discovery.

* Given a time series, T and a desired subsequence length, m.



Matrix Profile

m We can use sliding window of length m to

extract all subsequences of length m.

| T]-m+1



| T]-m+1

Matrix Profile

m We can then compute the pairwise
distance among these subsequences.
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Matrix Profile

* For each subsequence we keep only the distance with the closest

nearest nelghbor. set of all set of corresponding
subsequences nearest neighbor
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Matrix Profile

* The distance to the corresponding nearest neighbor of each
subsequence can be stored in a vector called matrix profile P.

time
series, T

matrix
profile, P

The matrix profile value at location i is the
distance between ' and its nearest neighbor



Matrix Profile

* The index of corresponding nearest neighbor of each subsequence is
also stored in a vector called matrix profile index.

:
time

.
series, T

: R——

matrix m

fil
pro I e 236 252 166 171 176 181 186mE9l 196 201 206 211 216 220 148 10 15 256 261 266 271 276 281 286 291 296 301 304 306 69 222 227 232 11 16 21 26 31 36 41 46 51 56 61 150 155 160 220 86 91 73 86 91 96 101 106 111 116 121 126 131 135 176 4 241
:
index, |

\ It turns out that ' ‘s nearest neighbor is

192 | 193 | 194 | 195 | 196

The matrix profile value at location i is the
distance between | and its nearest neighbor



Matrix Profile

 The MP index allows to find the nearest neighbor to any subsequence in constant time.
* Note that the pointers in the matrix profile index are not necessarily symmetric.

* If A points to B, then B may or may not point to A

* The classic TS motif: the two smallest values in the MP must have the same value, and
their pointers must be mutual.
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How to “read” a Matrix Profile

* For relatively low values, you know that the subsequence in the
original TS must have (at least one) relatively similar subsequence
elsewhere in the data (such regions are “motifs”)

* For relatively high values, you know that the subsequence in the
original TS must be unique in its shape (such areas are anomalies).

Must be an anomaly in the

/ original data, in this region.
We call these Time Series
Discords

| l |

0 500 1000 1500 2000 2500 3000

Must be conserved shapes (motifs) in the original
data, in these three regions



How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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Matrix profile is initialized as inf vector

This is just a toy example, so the values and the vector length does not fit the time series shown above




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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At the first iteration, a subsequence

is randomly selected from T




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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We compute the distances between

and every subsequences from T (time complexity = O(| T|log(|T])))
We then put the distances in a vector based on the position of the subsequences
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\ The distance between . and T; (first subsequence) is 3




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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We compute the distances between

and every subsequences from T (time complexity = O(| T|log(|T])))
We them put the distances in a vector based on the position of the subsequences
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Let say
the third value in the distance vector is O

happen to be the third subsequences, therefore




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.

|
m
inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf
in Matrix profile is updated by apply elementwise minimum to
these two vectors
3 2 5 3 4 5 1 2 9 8 4 2 3 4 8 6 2 1




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.

3 inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf
in Matrix profile is updated by apply elementwise minimum to

these two vectors
3 2 5 3 4 5 1 2 9 3 4 2 3 4 8 6 2 1




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.

3 2 | inf | 5 3 4 5 1 2 9 3 4 2 3 4 8 6

After we finish to update matrix profile for the first iteration




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.

3 2 | inf | 5 3 4 5 1 2 9 3 4 2 3 4 8 6 2 1

In the second iteration, we randomly select another subsequence ' and it happens to be the 12t
subsequences




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.

3 2 | inf | 5 3 4 5 1 2 9 3 4 2 3 4 8 6

Once again, we compute the distance between | and every subsequences of T




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.

3 2 | inf | 5 3 4 5 1 2 9 3 4 2 3 4 8 6

min I The same elementwise minimum

2 3 1 4 4 3 6 2 1 5 3 2 3 5 9 4




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.

2 2 | inf | 5 3 4 5 1 2 9 3 4 2 3 4 8 6

min i The same elementwise minimum

2 3 1 4 4 3 6 2 1 5 3 2 3 5 9 4




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.

2 2 | inf | 5 3 4 5 1 2 9 3 4 2 3 4 8 6

min I The same elementwise minimum

2 3 1 4 4 3 6 2 1 5 3 2 3 5 9 4




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.

2 2 1 5 3 4 5 1 2 9 3 4 2 3 4 8 6

min The same elementwise minimum

2 3 1 4 4 3 6 2 1 5 3 2 3 5 9 4




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.

We repeat the two steps (distance computation and update) until we have
used every subsequences




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.

There are |T| subsequences and the distance computation is O(|T|log(|T]))

The overall time complexity is O(| T|2%log(|T]))




Motif Discovery From Matrix Profile

time
series, T
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Local minimums are corresponding to motifs

matrix
profile, P



Motif Discovery From Matrix Profile
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* It is sometime useful to

e think of time series
subsequences as points in
o-. M-dimensional space.

* In this view, dense regions
in the m-dimensional space
correspond to regions of
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low corresponding MP.
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Motif/Shapelet Summary

* A motif is a repeated pattern/subsequence
in a given TS.

0 W 500 1000 ‘Yo 1500

Shapelet

* A shapelet is a pattern/subsequence which N
is maximally representative of a class with |
respect to a given dataset of TSs.

Verbena urticifolia Urtica dioica
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Abstract— The allpairs-similarity-search (or similarity join)
problem has been extensively studied for text and a handful of
other datatypes. Horwever, surprisingly litle progress has been

made on simlrity ins o fm e ubuence. The kot

ek For exceptonaly age e, the g
castas 2

including mo6if discovery, novelty discovery, shapelet discovery,
semantic segmentation, density estimation, and contrast set
‘mining.

Kewords—Time Seris; Similariy Joins; Morif Discovery
1. INTRODUCTION
all.pairs-similarity-search (also known as similarity
Jon) el e v vt T i sk
Given a colleciion of data objects,refrieve the nearest neighbor
for cach opjecs. In e et domain e sl has
applications in a host lems, including community
Pary dophate dernon - sollsvontie  Hherng
clustering, and query refinement [1]. While virtally all text
roccsing algontins have analogues in dme serics dra
mining, there has been suprisingly litle progress on Time
Serics subsequences All-Pairs-Similarity-Scarch (TSAPSS).

We believe that this lack of progress stems not from a lack

terest in this useful primitive, but from the davating nanure
of the problem. Consider the following example that reflects the.
needs of an indusiral collaborator. A boiler at a chemical

a similarity self-join on this data with week-long sbiequeces
(10.080) to discover operating regitmes (sumumer vs. wint

Hight il s eovy il e The abvious sesed oop

algoitn_ requies 152850692560 Fucliden  disanee
s, If we assume cach one takes 0.0001 seconds

l]\rn the o il e 1538 oy The e coniuton nrmh
v that we can reduce this tim

o lhe~hel o ot Moscove vt o s

join can be computed ted incrementally. Thus we

could maintain this join essentially forever on a standard

top, even if the data arrival frequency was awuch faster than

deskto

Our algorithim uses an ultra-fast similarity scarch algorithm

malized Euclidean distance 35 a subroutine,

exploiting the overlap between subsequences wsing the classic
Fast Fouricr Transform (FFT) algorithm.

Our method has the following advantages features:

It et proiding 0 fle poives o e il

It

is simple and parameter-fiee. In contrast, the more

ecnrel et spsce ABSS alzontms requine bulding and

uning spatial access methods andor hash functions.
il eqites an ncomequential spase veiead

|\\sr O(n) with 2 small constant factor.

Vile oue evoer algorts i exiencly scalble, for

:xu:nul\, large datascts we can compute the results in an

anytime fashion, allowing ultra-fast approximare solut

Having computd the similiy on for  dtaset, we can

incrementally update it very cf
i

ently. In many domains
ans we can effectively maintain exact joins on

sreuning data forever

4 provides full joins, climinating the need to

pcify a sy hashob, ich s e il how s
near impossible task in this domain.

Our sgorithn s cmbarmassingly paraliclzabl. both on
eomltnere neneoscnrs and in dictebortod cuc
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ABSTRACT

time series has been attrac
the past decade. Recent empirical vidence has strongly suggesicd
hat the simple nearest nesghbor agorthm s very dificult t beat
for most ime seris problems. While this may be considered good

youd e clsificaion accncy, we o wish o gain e
jrspmpion
e we introduce a new time series primitive, fime sories

Shapetos whichaddeescs thoe mtaons Taformally. shapeles
are tme series subsequences which are in some sense maximally

eptesentative of 4 class. As we shall show wilh extensive
empirical evaluations in diverse domains, algorithans based on the
i series shapelet primitives can be interpretable, more accurate
and significantly faste than state-of the-art clasifirs
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1. INTRODUCTION

Whill the last decade has seen 3 huge interest in time series

classificaion, to date the most accurte and robust method is the

impl o aighbr ot [AL12114). Wle th nwet
scighbor algorithm has the advantages of simplicity and not
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Chief smong
requremens, i e fct st dos nt el i sboms
iy a paticulas object was assigned to @ paricular

In this work we present & novel tme series data mining primitive
ed tm s shapeet. aormly shapelets e e ey
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Becawe we e defmng s sl e ol we il ke

(sunging netls) and Verbena uricifolia. These two plants e
commonly confused, hence the colloquial name "false netle” for
Verbena uriciia

Urtica dioica

£ Leaves from o speces. Note that several
et e the et it e

e can see in . he differences
i the global shape are very subile. Furthermore, it is very
common for leaves to have distorions or “occlusions” due o

e iy to confuse bal

measuces of shape. lnstead we auempt the following. We frst
convert cach leaf nto 8 one-dimensional representation a5 shown
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seprescntations have been successfully used for the
Ciicanon g and oo deceron ofshopes i ecenn
‘years [8]. Howeser, here w shbor
Gnoaficr il cihr the rtaon invasion) Euchdean disance of
Dynamic Time Warping (DTW) distance does not significanty
ouperform random _gucssing. The reason for_the poor
pecformance of these otherwise very comperit

to be duc to the fact that the data s somewhat noisy (ic. insect
bites, and different stem length). and this noise s enough to
swamp the subtle differences in the shape:



