Data Cleaning

- How to handle anomalous values
- How to handle outliers
- Data Transformations

Anomalous Values

- Missing values
 - NULL, ?

Unknown Values

- Values without a real meaning

• Not Valid Values

Values not significant

Manage Missing Values

- 1. Elimination of records
- 2. Substitution of values

Note: it can influence the original distribution of numerical values

- Use mean/median/mode
- Estimate missing values using the probability distribution of existing values
- Data Segmentation and using mean/mode/median of each segment
- Data Segmentation and using the probability distribution within the segment
- Build a model of classification/regression for computing missing values

Discretization

- Discretization is the process of converting a continuous attribute into an ordinal attribute
 - A potentially infinite number of values are mapped into a small number of categories
 - Discretization is commonly used in classification
 - Many classification algorithms work best if both the independent and dependent variables have only a few values

Discretization: Advantages

- Hard to understand the optimal discretization
 - We should need the real data distribution
- Original values can be **continuous** and **sparse**
- Discretized data can be **simple** to be interpreted
- Data distribution after discretization can have a **Normal shape**
- Discretized data can be too much **sparse yet**
 - Elimination of the attribute

Unsupervised Discretization

- Characteristics:
 - No label for the instances
 - The number of classes is unknown

- Techniques of *binning*:
 - Natural binning

- \rightarrow Intervals with the same width
- Equal Frequency binning \rightarrow Intervals with the same frequency
- Statistical binning Quartile)
- \rightarrow Use statistical information (Mean, variance,

Università di Pisa

Discretization of quantitative attributes

Solution: each value is replaced by the interval to which it belongs. height: 0-150cm, 151-170cm, 171-180cm, >180c weight: 0-40kg, 41-60kg, 60-80kg, >80kg income: 0-10ML, 11-20ML, 20-25ML, 25-30ML, >30ML

CID	height	weight	income
1	151-171	60-80	>30
2	171-180	60-80	20-25
3	171-180	60-80	25-30
4	151-170	60-80	25-30

Problem: the discretization may be useless (see weight).

How to choose intervals?

- 1. Interval with a fixed "reasonable" granularity Ex. intervals of 10 cm for height.
- 2. Interval size is defined by some domain dependent criterion Ex.: 0-20ML, 21-22ML, 23-24ML, 25-26ML, >26ML
- 3. Interval size determined by analyzing data, studying the distribution and find breaks or using clustering

Natural Binning

- Simple
- Sort of values, subdivision of the range of values in k parts with the same size

$$\delta = \frac{x_{\max} - x_{\min}}{k}$$

• Element x_i belongs to the class i if

$$x_j \in [x_{min} + i\delta, x_{min} + (i+1)\delta)$$

• It can generate distribution very unbalanced

Example

Bar	Beer	Price
А	Bud	100
А	Becks	120
С	Bud	110
D	Bud	130
D	Becks	150
Е	Becks	140
Е	Bud	120
F	Bud	110
G	Bud	130
Н	Bud	125
Н	Becks	160
Ι	Bud	135

- $\delta = (160-100)/4 = 15$
- class 1: [100,115)
- class 2: [115,130)
- class 3: [130,145)
- class 4: [145, 160]

Equal Frequency Binning

• Sort and count the elements, definition of k intervals of f, where:

$$f = \frac{N}{k}$$

(N = number of elements of the sample)

- The element x_i belongs to the class j if $j \times f \le i < (j+1) \times f$
- It is not always suitable for highlighting interesting correlations

Bar	Beer	Price
А	Bud	100
А	Becks	120
С	Bud	110
D	Bud	130
D	Becks	150
E	Becks	140
E	Bud	120
F	Bud	110
G	Bud	130
Н	Bud	125
Η	Becks	160
Ι	Bud	135

Example

- f = 12/4 = 3
- class 1: {100,110,110}
- class 2: {120,120,125}
- class 3: {130,130,135}
- class 4: {140,150,160}

100 110 120 130 140 150 160

How many classes?

• If too few

 \Rightarrow Loss of information on the distribution

• If too many

=> Dispersion of values and does not show the form of distribution

• The optimal number of classes is function of N elements (Sturges, 1929)

$$C = 1 + \frac{10}{3} \log_{10}(N)$$

 The optimal width of the classes depends on the variance and the number of data (Scott, 1979)
 3.5.5

$$h = \frac{3, 5 \cdot s}{\sqrt{N}}$$

Supervised Discretization

• Characteristics:

- The discretization has a quantifiable goal
- The number of classes is known

• Techniques:

- discretization based on Entropy
- discretization based on percentiles

Entropy based approach

- Minimizes the entropy wrt a label
- **Goal:** maximizes the purity of the intervals
- Decisions about the purity of an interval and the minimum size of an interval
- To overcome such concerns use statistical based approaches:
 - start with each attribute value as a separate interval
 - create larger intervals by merging adjacent intervals that are similar according to a statistical test

A simple approach

- Starts by bisecting the initial values so that the resulting two intervals give minimum entropy.
- The splitting process is then with another interval, typically choosing the interval with the worst (highest) entropy
- Stop when a user-specified number of intervals is reached, or a stopping criterion is satisfied.

Binarization

- Binarization maps a continuous or categorical attribute into one or more binary variables
- Typically used for association analysis
- Often convert a continuous attribute to a categorical attribute and then convert a categorical attribute to a set of binary attributes
 - Association analysis needs asymmetric binary attributes
 - Examples: eye color and height measured as {low, medium, high}

Binarization

n = log₂(m) binary digits are required to represent m integers.

It can generate some correlations

Table 2.5. Conversion of a categorical attribute to three binary attributes.

Categorical Value	Integer Value	x_1	x_2	x_3
aw ful	0	0	0	0
poor	1	0	0	1
OK	2	0	1	0
good	3	0	1	1
great	4	1	0	0

- One variable for each
 possible value
- Only presence or absence
- Association Rules requirements

Table 2.6. Conversion of a categorical attribute to five asymmetric binary attributes.

Categorical Value	Integer Value	x_1	x_2	x_3	x_4	$ x_5 $
aw ful	0	1	0	0	0	0
poor	1	0	1	0	0	0
OK	2	0	0	1	0	0
good	3	0	0	0	1	0
great	4	0	0	0	0	1

Data Transformation: Motivations

- Data with errors and incomplete
- Data not adequately distributed
 - Strong asymmetry in the data
 - Many peaks
- Data transformation can reduce these issues

Attribute Transformation

- An attribute transform is a function that maps the entire set of values of a given attribute to a new set of replacement values such that each old value can be identified with one of the new values
 - Simple functions: x^k , log(x), e^x , |x|
 - Normalization
 - Refers to various techniques to adjust to differences among attributes in terms of frequency of occurrence, mean, variance, range
 - Take out unwanted, common signal, e.g., seasonality

Università di Pisa

 In statistics, standardization refers to subtracting off the means and dividing by the standard deviation

Properties of trasformation

• Define a transformation T on the attribute X:

Y = T(X)

such that :

- *Y* preserve the **relevant** information of *X*
- Y eliminates at least one of the problems of X
- Y is more **useful** of X

Transformation Goals

• Main goals:

- stabilize the variances
- normalize the distributions
- Make linear relationships among variables

• Secondary goals:

- simplify the elaboration of data containing features you do not like
- represent data in a scale considered more suitable

Why linear correlation, normal distributions, etc?

- Many statistical methods require
 - linear correlations
 - normal distributions
 - the absence of outliers
- Many data mining algorithms have the ability to automatically treat non-linearity and nonnormality
 - The algorithms work still better if such problems are treated

Normalizations

• min-max normalization

$$v' = \frac{v - min_A}{max_A - min_A} (new max_A - new min_A) + new min_A$$

• z-score normalization

$$v' = \frac{v - mean_A}{stand _ dev_A}$$

normalization by decimal scaling

 $v' = \frac{v}{10^{j}}$ Where *j* is the smallest integer such that Max(|v'|)<1

Example of decimal scaling

- Let the input data is: -10, 201, 301, -401, 501, 601, 701
- To normalize the above data,
 - Step 1: Maximum absolute value in given data(m): 701
 - Step 2: Divide the given data by 1000 (i.e j=3)
 - Result: -0.01, 0.201, 0.301, -0.401, 0.501, 0.601, 0.701

Transformation functions

• Exponential transformation

$$T_{p}(x) = \begin{cases} ax^{p} + b & (p \neq 0) \\ c \log x + d & (p = 0) \end{cases}$$

- with *a*,*b*,*c*,*d* and *p* real values
 - Preserve the order
 - Preserve some basic statistics
 - They are continuous functions
 - They are derivable
 - They are specified by simple functions

Università di Pisa

Better Interpretation

Linear Transformation

I€ = 1936.27 Lit.

$$-p=1, a=1936.27, b=0$$

$$T_{p}(x) = \begin{cases} ax^{p} + b & (p \neq 0) \\ c \log x + d & (p = 0) \end{cases}$$

°C= 5/9(°F -32) - p = 1, a = 5/9, b = -160/9

Stabilizing the Variance

Logarithmic Transformation

$$T(x) = c \log x + d$$

- Applicable to positive values
- Makes homogenous the variance in log-normal distributions
 - E.g.: normalize seasonal peaks

Logarithmic Transformation: Example

Bar	Beer	Gain
А	Bud	20
А	Becks	10000
С	Bud	300
D	Bud	400
D	Becks	5
E	Becks	120
Ε	Bud	120
F	Bud	11000
G	Bud	1300
Н	Bud	3200
Н	Becks	1000
I	Bud	135

2481,8182	Mean
4079,0172	Standard Deviation
5	Min
120	1° Quartile
400	Median
2250	3° Quartile
11000	Max

UNIVERSITÀ DI PISA

Data are sparse!!!

Logarithmic Transformation: Example

Bar	Beer	Gain (log)
Α	Bud	1,301029996
Α	Becks	4
С	Bud	2,477121255
D	Bud	2,602059991
D	Becks	0,698970004
E	Becks	2,079181246
E	Bud	2,079181246
F	Bud	4,041392685
G	Bud	3,113943352
Η	Bud	3,505149978
Н	Becks	3
1	Bud	2,130333768

Mean	2,595567
Standard Deviation	1,065137
Min	0,69897
First Quartile	2,079181
Median	2,60206
3rd Quartile	3,309547
Max	4,041393

Stabilizing the Variance

$$T(x) = ax^p + b$$

- p = 1/c, c integer number
 - To make homogenous the variance of particular distributions e.g., Poisson Distribution

Reciprocal Transformation

- **-** *p* < 0
- Suitable for analyzing time series, when the variance increases too much wrt the mean

Università di Pisa

Outliers on single dimension

- Interquartile Range for detecting outliers
 - IQR = Q3-Q1
 - Define a range with lower bound L=Q1-1.5*IQR and upper bound U=Q3+1.5*IQR
 - X is outlier if X > U or X<L
 - For the **substitution** of the outlier X you have two options
 - With L or U
 - Median

Z-score based approach:

- Standardize the data using z-score
- When data is regularly distributed, 95% of instances fall between z-scores of \pm 1.96 and 99% of cases fall between z-scores of \pm 2.58.
- A z-score of 0 denotes the mean.
- The usual value for identifying outliers is \pm 3.29: any z-score greater than +3.29 or less than -3.29 is an outlier case
- **Substitution**: converting X with z-score > 3.29
 - to the value that corresponds with a **z-score of 3.0**. This approach assumes that a normal distribution includes values that fall within 3σ above or below a standardized mean score of 0.
 - to the value that corresponds with a z-score of 0 that is the **mean value**

