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K-means Clustering

Partitional clustering approach
Number of clusters, K, must be specified
Each cluster is associated with a centroid (center point)

Each point is assigned to the cluster with the closest
centroid

The basic algorithm is very simple

: Select K points as the initial centroids.

: repeat

1
2
3:  Form K clusters by assigning all points to the closest centroid.
4:  Recompute the centroid of each cluster.

5

: until The centroids don’t change
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Example of K-means Clustering
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Example of K-means Clustering
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K-means Clustering — Details

® Initial centroids are often chosen randomly.
—  Clusters produced vary from one run to another.

® The centroid is (typically) the mean of the points in the
cluster.

® ‘Closeness’ is measured by Euclidean distance, cosine
similarity, correlation, etc.

® K-means will converge for common similarity measures
mentioned above.

® Most of the convergence happens in the first few
iterations.

—  Often the stopping condition is changed to ‘Until relatively few
points change clusters’

® ComplexityisO(n*K*I1*d)

—  n =number of points, K = number of clusters,
| = number of iterations, d = number of attributes
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Evaluating K-means Clusters

® Most common measure is Sum of Squared Error (SSE)
— For each point, the error is the distance to the nearest cluster
— To get SSE, we square these errors and sum them.

SSE:ZK:ZdistZ(mi,x)
i=1 xeC; 2

® X is a data point in cluster C, and m; is the representative
point for cluster Ci 2

can show that mi corresponds to the center (mean) of

the cluster R S

® Given two sets of clusters, we prefer the one with the
smallest error

® One easy way to reduce SSE is to increase K, the number of
clusters

® A good clustering with smaller K can have a lower SSE than
a poor clustering with higher K
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Two different K-means Clusterings

3 * *
.
L
25F *4% ¢ .:fs
000“}0, .. .
2 v el e, Original Points
0‘»’3 0" *
1.5F .0 000 e ,
> ¢ 7S .
1 *
[ *
0.5 o °
e " e
[ ] . | |
IR b
r Y I r = u
2 15 1 05 0 05 1 15 2
X
3 3F ¢
. *»
25+ 25 0“0. o
$ o
’0 00
2 2 &
15 15F .00 o
> . > 0
1 1k .
® * ® *
0.5 .o 0.5 o ®
[ 1] | ] q (L) ] q
® ® u ® [ u
[J L - L ° ) ]
0 "o. o 0 "o. o
° e . _ [ I |
2 15 -1 05 0 05 15 2 2 15 -1 05 0 05 15
X X

Optimal Clustering Sub-optimal Clustering

02/14/2018 Introduction to Data Mining, 2"d Edition



Limitations of K-means

® K-means has problems when clusters are of
differing
— Sizes
— Densities
— Non-globular shapes

@ K-means has problems when the data contains
outliers.
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Limitations of K-means: Differing Sizes

Original Points

K-means (3 Clusters)
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Overcoming K-means Limitations
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One solution is to use many clusters.
Find parts of clusters, but need to put together.
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Limitations of K-means: Differing Density
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Overcoming K-means Limitations
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Limitations of K-means: Non-globular Shapes

Original Points K-means (2 Clusters)
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Overcoming K-means Limitations

Original Points K-means Clusters
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Empty Clusters

@ K-means can yield empty clusters
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Handling Empty Clusters

@ Basic K-means algorithm can yield empty
clusters

@ Several strategies

= Choose a point and assign it to the cluster
+Choose the point that contributes most to SSE
+Choose a point from the cluster with the highest SSE

e If there are several empty clusters, the above can
be repeated several times.
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Pre-processing and Post-processing

® Pre-processing
— Normalize the data
— Eliminate outliers

@ Post-processing
— Eliminate small clusters that may represent outliers

— Split ‘loose’ clusters, i.e., clusters with relatively high
SSE

— Merge clusters that are ‘close’ and that have relatively
low SSE

— Can use these steps during the clustering process
¢ ISODATA
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Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids ...
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Importance of Choosing Initial Centroids ...
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Problems with Selecting Initial Points

e |Ifthere are K ‘real’ clusters then the chance of selecting
one centroid from each cluster is small.

—  Chance is relatively small when K is large
— If clusters are the same size, n, then

p_ number of ways to select one centroid from each cluster K Inf K
B number of ways to select K centroids - (Kn)K KK

—  For example, if K = 10, then probability = 10!/101° = 0.00036

—  Sometimes the initial centroids will readjust themselves in
‘right’ way, and sometimes they don't

—  Consider an example of five pairs of clusters
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10 Clusters Example

Starting with two initial centroids in one cluster of each pair of clusters
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10 Clusters Example
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Starting with two initial centroids in one cluster of each pair of clusters
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10 Clusters Example

Starting with some pairs of clusters having three initial centroids, while other
have only one.
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10 Clusters Example

Iteration 1
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Starting with some pairs of clusters having three initial centroids, while other have only one.
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Solutions to Initial Centroids Problem

@ Multiple runs
— Helps, but probability is not on your side

® Sample and use hierarchical clustering to determine
Initial centroids

® Select more than K initial centroids and then select among
these Iinitial centroids

— Select most widely separated
® Postprocessing

® Generate a larger number of clusters and then perform a
hierarchical clustering

® Bisecting K-means
— Not as susceptible to initialization issues
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Updating Centers Incrementally

@ In the basic K-means algorithm, centroids are
updated after all points are assigned to a centroid

@ An alternative Is to update the centroids after
each assignment (incremental approach)

— Each assignment updates zero or two centroids
— More expensive

— Introduces an order dependency

— Never get an empty cluster

— Can use “weights” to change the impact
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Finding the best number of clusters

® In k-means the number of clusters K'is given

— Partition n objects into predetermined number of
clusters

— Finding the “right” number of clusters is part of

the problem o
|

|

|

|

SSE
O P N W A O O N © ©
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Convergence of K-Means

® Define goodness measure of cluster ¢ as sum of squared
distances from cluster centroid:

— SSE(c,s)=2%, (d. —s_)? (sum over all d, in cluster c)
— G(C,s) = 2. SSE(c,s)

® Re-assignment monotonically decreases G
— It is a coordinate descent algorithm (opt one component at a time)

® At any step we have some value for G(C,s)
1) Fix s, optimize C = assign d to the closest centroid = G(C,s) <= G(C,s)
2) Fix C’, optimize s = take the new centroids = G(C',s’ ) <= G(C,s) <= G(C,s)

The new cost is smaller than the original one - local minimum
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Bisecting K-means
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Bisecting K-means

Variant of K-means that can produce
a hierarchical clustering

Algorithm 8.2 Bisecting K-means algorithm.

1: Initialize the list of clusters to contain the cluster consisting of all points.
2: repeat
3:  Remove a cluster from the list of clusters.
{Perform several “trial” bisections of the chosen cluster.}
for : = 1 to number of trials do
Bisect the selected cluster using basic K-means.
end for
Select the two clusters from the bisection with the lowest total SSE.
9:  Add these two clusters to the list of clusters.
10: until Until the list of clusters contains K clusters.
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Bisecting K-Means

@ The algorithm is exhaustive terminating at singleton
clusters (unless K is known)

@ Terminating at singleton clusters
—Is time consuming
—Singleton clusters are meaningless

—Intermediate clusters are more likely to correspond to
real classes

@ No criterion for stopping bisections before singleton
clusters are reached.
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Combining Bisecting K-means and K-means

® The resulting clusters can be refined by using their
centroids as the initial centroids for the basic K-
means.

® Why is this necessary?

— K-means algorithm is guaranteed to find a clustering
that represents a local minimum wrt the SSE

— Bisecting K-means uses the K- means algorithm
locally to bisect individual clusters.

— The final set of clusters does not represent a
clustering that is a local minimum wrt the total
SSE
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X-Means

® X-Means clustering algorithm is an extended K-Means
which tries to automatically determine the number of
clusters based on BIC scores.

® As Bisecting K-means starts with only one cluster

® The X-Means goes into action after each run of K-Means,
making local decisions about which subset of the
current centroids should split in order to better fit the data.

® The splitting decision is done by computing the Bayesian
Information Criterion (BIC).
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Bayesian Information Criterion (BIC)

® A strategy to stop the Bisecting algorithm when meaningful
clusters are reached to avoid over-splitting

® Using BIC as splitting criterion of a cluster in order to decide
whether a cluster should split or no

® BIC measures the improvement of the cluster structure
between a cluster and its two children clusters.

e Compute the BIC score of:
— A cluster
— Two children clusters

e BIC approximates the probability that the M; is describing the
real clusters in the data
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BIC based split

——— Parent cluster:

BIC(K=1)=198
\ 0
\
__, Two resulting
clusters:
BIC(K=2)=22

45

The BIC score of the parent cluster is less than BIC score
of the generated cluster structure => we accept the
bisection.
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X-Means

e Forward search for the appropriate value of k in a given
range [y, f:
— Recursively split each cluster and use BIC score to
decide if we should keep each split

1. Run K-means with k=r,

2. Improve structure
3. Ifk>r,,, Stop and return the best-scoring model

® Use local BIC score to decide on keeping a split

® Use global BIC score to decide which K to output at the
end
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X-Means

1. K-means with k=3

2. Split each centroid in 2
children moving a distance
propotional to the region size
in opposite direction (random)

3. Run 2-means in

- 4. Compare BIC of 4. Only centroids with
each region locall , :
J y parent and children higher BIC survives
e El':'%ﬁ.:: 1j=2471
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BIC Formula

® The BIC score of a data collection is defined as (Kass and
Wasserman, 1995):

A p .
BIC(M )=I (D}-—LlogR
JooJ 2
O fj (D) IS the log-likelihood of the data set D

e P, is a function of the number of independent parameters:
centroids coordinates, variance estimation.

® R is the number of points of a cluster

Approximate the probability that the M; is describing the real clusters
in the data
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BIC (Bayesian Information Criterion)

e Adjusted Log-likelihood of the model.

e The likelihood that the data is “explained by” the clusters according to
the spherical-Gaussian assumption of k-means

n P .
BIC(M )=1 [D)-—LlogR
JoJ 2
Focusing on the set D,, of points which belong to centroid n

1 1
P(zi|z; € Dy) = (2no2)Mz P (—ﬁ”wi = Mn||2)
2 Rn Rn > M ~ Rn - I{
[(D,) = 5 log(27) — 5 log(c?) — 5

+R,log R, — R, log R

It estimates how closely to the centroid are the points of the cluster.
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Mixture Models and the EM Algorithm
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Model-based clustering (probabilistic)

@ In order to understand our data, we will assume that there
IS a generative process (a model) that creates/describes
the data, and we will try to find the model that best fits

the data.

— Models of different complexity can be defined, but we will
assume that our model is a distribution from which data points

are sampled
— Example: the data is the height of all people in Greece
® In most cases, a single distribution is not good enough to
describe all data points: different parts of the data
follow a different distribution
— Example: the data is the height of all people in Greece and
China
— We need a mixture model
— Different distributions correspond to different clusters in the data.
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Algorithm 9.2 EM algorithm.

1: Select an initial set of model parameters.

(As with K-means, this can be done randomly or in a variety of ways.)

2: repeat

3:  Expectation Step For each object, calculate the probability
that each object belongs to each distribution, i.e., calculate
prob(distribution j|x;,©).

4:  Maximization Step Given the probabilities from the expectation step.
find the new estimates of the parameters that maximize the expected
likelihood.

5. until The parameters do not change.

(Alternatively, stop if the change in the parameters is below a specified
threshold.)
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EM (Expectation Maximization) Algorithm

Initialize the values of the parameters in © to some
random values

Repeat until convergence

- E-Step: Given the parameters 0 estimate the membership
probabilities P(G|x;) and P(C|x;)

- M-Step: Compute the parameter values that (in expectation)
maximize the data likelihood

E-Step: Assignment of points to clusters:
K-means: hard assignment,
EM: soft assignment

M-Step:
K-means: Computation of centroids
EM: Computation of the new model parameters

02/14/2018 Introduction to Data Mining, 2"d Edition
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Gaussian Distribution

Example: the data is the height of all people in
Greece

- Experience has shown that this data follows a Gaussian
(Normal) distribution

- Reminder: Normal distribution:

(x—p)?
202

P(x) = \/Ecre

» 1 = mean, o = standard deviation

02/14/2018 Introduction to Data Mining, 2"d Edition
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Gaussian Model

® What is a model?

— A Gaussian distribution is fully defined by the mean
1 and the standard deviation o

— We define our model as the pair of parameters 6 =
(4, o)

® This is a general principle: a model is defined as
a vector of parameters 6
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Fitting the model

® We want to find the normal distribution that best
fits our data

— Find the best values for y and o
— But what does best fit mean?
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Maximum Likelihood Estimation (MLE)

Suppose that we have a vector X = (x4, ..., x,,) of values
And we want to fit a Gaussian N (u, o) model to the data
Probability of observing point x;:

1 _(xi—w)?
Plxi) = VZﬂroe o

Probability of observing all points (assume independence)

_(xj—p)?

P(X) = ﬁP(xi) = ﬁ\/%ae 202
i=1 i=1

We want to find the parameters 6 = (u, o) that maximize
the probability P(X|6)

02/14/2018 Introduction to Data Mining, 2"d Edition
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Maximum Likelihood Estimation (MLE)

The probability P(X|0) as a function of 6 is called the
Likelihood function

L _(xi—p)?
1) = | [ = 2
= 21O

It is usually easier to work with the Log-Likelihood
function

n
(o —w? 1
' 352 2'nl-::sg 2mr —nlogo
=1
Maximum Likelihood Estimation
- Find parameters p, o that maximize LL(8)

1
n

LL(®) = —

n 1 n
p= X; = px 0’ = ;Z(xf—#)"‘ = oy
=1 i=1

Sample Mean Sample Variance

]

L
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MLE

Note: these are also the most likely parameters
given the data

P(X|0)P(6)

P(O|X) = P(X)

If we have no prior information about 6, or X, then
maximizing P(X|0) is the same as maximizing
P(O|X)

02/14/2018 Introduction to Data Mining, 2"d Edition
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Mixture of Gaussians

® Suppose that you have the heights of people
from Greece and China and the distribution looks
like the figure below
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Figure 9.2. Mixture model consisting of twe normal distributions with means of -4 and 4, respectively.
Both distributions have a standard deviation of 2.

Introduction to Data Mining, 2"d Edition 53



Mixture of Gaussians

@ In this case the data is the result of the mixture of
two Gaussians
— One for Greek people, and one for Chinese people

— ldentifying for each value which Gaussian is most
likely to have generated it will give us a clustering.
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(a) Probability density function for (b) 20,000 points generated from the
the mixture model. mixture model.

Figure 9.2. Mixture model consisting of two normal distributions with means of -4 and 4, respectively.
Both distributions have a standard deviation of 2.
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Mixture Model

A value x; is generated according to the following
process:

- First select the nationality

With probability m; select Greek, with probability . select China
(mg +mc = 1)

- Given the nationality, generate the point from the
corresponding Gaussian
P(x;|60;) ~ N(ug, oz) if Greece
P(x;|6c) ~ N(u.,o.) if China
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Mixture Models

Our model has the following parameters
O = (7g, ¢, U Hc) TG, Oc)

Mixture probabilities Distribution Parameters

For value x;, we have:
P(x;|®) = moP(x;|0;) + m-P(x;|6,)
For all values X = (xq,...,x,)

pixio) = | [Pcxle)
=1

We want to estimate the parameters that maximize
the Likelihood of the data
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Mixture Models

Once we have the parameters

© = (¢, e, Ug, Uc, O, 0c) We can estimate the

membership probabilities P(G|x;) and P(C|x;) for

each point x;:

- This is the probability that point x; belongs to the Greek
or the Chinese population (cluster)

P(x;|G)P(G)

P(x;|G)P(G) + P(x;|C)P(C)
P(x;|G)mg

~ P(x;|G)mg + P(x;|C)me

P(Glx;) =
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EM (Expectation Maximization) Algorithm

Initialize the values of the parameters in © to some
random values
Repeat until convergence

- E-Step: Given the parameters 0 estimate the membership
probabilities P(G|x;) and P(C|x;)

- M-Step: Compute the parameter values that (in expectation)
maximize the data likelihood

n
1 1 <& :
Mg = —Z P(G|x) o = —Z P(Clx;) Fraction of
n & ni population in G,C
n
P(Clx;) = P(G|x;) :
‘”C‘Zn*nc x; pe= ) ———x, MLE Estimates
i=1 = "* 7 if m’s were fixed
n n
P(C|x;) P(G|x;)
2 _ i L 2 2 _ i o 2
= ) am CTH GE= ) Gk
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Advantages & Disadvantages

e Disadvantages of EM:

— It can be slow thus it's not suitable fot large
dimensionality

— It does not work in case of few data points
— It has difficulty in case of noise and outliers

e Advantages of EM:

— More geneal wrt K-means because it can use different
types f distributions

— It can find cluster with different size and shape
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