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Similarity and Dissimilarity

• Similarity
– Numerical measure of how alike two data objects are.

– Is higher when objects are more alike.

– Often falls in the range [0,1]

• Dissimilarity
– Numerical measure of how different are two data objects

– Lower when objects are more alike

– Minimum dissimilarity is often 0

– Upper limit varies

• Proximity refers to a similarity or dissimilarity



Similarity/Dissimilarity for one Attribute

p and q are the attribute values for two data objects.



Euclidean Distance

where n is the number of dimensions (attributes) and xk

and yk are, respectively, the kth attributes (components) or 
data objects x and y. Standardization is necessary, if scales 
differ.

• Standardization is necessary, if scales differ.



Euclidean Distance
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p1 0 2
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p4 5 1

Distance Matrix

p1 p2 p3 p4

p1 0 2.828 3.162 5.099

p2 2.828 0 1.414 3.162

p3 3.162 1.414 0 2

p4 5.099 3.162 2 0



Minkowski Distance

• Minkowski Distance is a generalization of Euclidean 
Distance

Where r is a parameter, n is the number of dimensions 
(attributes) and xk and yk are, respectively, the kth

attributes (components) or data objects x and y.



Minkowski Distance: Examples

• r = 1.  City block (Manhattan, taxicab, L1 norm) distance. 
– A common example of this is the Hamming distance, which is just the number of 

bits that are different between two binary vectors

• r = 2.  Euclidean distance

• r → .  “supremum” (Lmax norm, L norm) distance. 
– This is the maximum difference between any component of the vectors

• Do not confuse r with n, i.e., all these distances are defined for 
all numbers of dimensions.



Minkowski Distance

Distance Matrix

point x y

p1 0 2

p2 2 0

p3 3 1

p4 5 1

L1 p1 p2 p3 p4

p1 0 4 4 6

p2 4 0 2 4

p3 4 2 0 2

p4 6 4 2 0

L2 p1 p2 p3 p4

p1 0 2.828 3.162 5.099

p2 2.828 0 1.414 3.162

p3 3.162 1.414 0 2

p4 5.099 3.162 2 0

L p1 p2 p3 p4

p1 0 2 3 5

p2 2 0 1 3

p3 3 1 0 2

p4 5 3 2 0



Common Properties of a Distance

• Distances, such as the Euclidean distance, have 
some well-known properties.

1. d(x, y)  0   for all x and y and d(x, y) = 0 only if 
x = y. (Positive definiteness)

2. d(x, y) = d(y, x)   for all x and y. (Symmetry)
3. d(x, z)  d(x, y) + d(y, z)   for all points x, y, and z.  

(Triangle Inequality)

where d(x, y) is the distance (dissimilarity) between points 
(data objects), x and y.

• A distance that satisfies these properties is a metric



Common Properties of a Similarity

Similarities, also have some well-known properties.

1. s(x, y) = 1 (or maximum similarity) only if x = y. 

2. s(x, y) = s(y, x)   for all x and y. (Symmetry)

where s(x, y) is the similarity between points (data 
objects), x and y.



Binary Data

Categorical insufficient sufficient good very good excellent

p1 0 0 1 0 0

p2 0 0 1 0 0

p3 1 0 0 0 0

p4 0 1 0 0 0

item bread butter milk apple tooth-past

p1 1 1 0 1 0

p2 0 0 1 1 1

p3 1 1 1 0 0

p4 1 0 1 1 0



Similarity Between Binary Vectors

• Common situation is that objects, p and q, have only binary 
attributes

• Compute similarities using the following quantities
M01 = the number of attributes where p was 0 and q was 1
M10 = the number of attributes where p was 1 and q was 0
M00 = the number of attributes where p was 0 and q was 0
M11 = the number of attributes where p was 1 and q was 1

• Simple Matching and Jaccard Coefficients 
SMC =  number of matches / number of attributes 

=  (M11 + M00) / (M01 + M10 + M11 + M00)

J = number of 11 matches / number of not-both-zero attributes values

= (M11) / (M01 + M10 + M11) 



SMC versus Jaccard: Example

p =  1 0 0 0 0 0 0 0 0 0    

q =  0 0 0 0 0 0 1 0 0 1

M01 = 2   (the number of attributes where p was 0 and q was 1)
M10 = 1   (the number of attributes where p was 1 and q was 0)
M00 = 7   (the number of attributes where p was 0 and q was 0)
M11 = 0   (the number of attributes where p was 1 and q was 1)

SMC = (M11 + M00)/(M01 + M10 + M11 + M00) = (0+7) / (2+1+0+7) = 
0.7

J = (M11) / (M01 + M10 + M11) = 0 / (2 + 1 + 0) = 0
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Cosine Similarity

• If d1 and d2 are two document vectors, then

cos( d1, d2 ) = (d1 • d2) / ||d1|| ||d2||

where • indicates vector dot product and || d || is the length of vector d.

• Example:

d1 =  3 2 0 5 0 0 0 2 0 0 

d2 =  1 0 0 0 0 0 0 1 0 2

d1 • d2=  3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5

||d1|| = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)0.5 =  (42) 0.5 = 6.481

||d2|| = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2) 0.5 = (6) 0.5 = 2.245

cos( d1, d2 ) = .3150



Using Weights to Combine Similarities

• May not want to treat all attributes the same.

– Use non-negative weights 𝜔𝑘

– 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝐱, 𝐲 =
σ𝑘=1
𝑛 𝜔𝑘𝛿𝑘𝑠𝑘(𝐱,𝐲)

σ𝑘=1
𝑛 𝜔𝑘𝛿𝑘

• Can also define a weighted form of distance



Correlation

• Correlation measures the linear relationship 

between objects (binary or continuous)

• To compute correlation, we standardize data 

objects, p and q, and then take their dot product 

(covariance/standard deviation)



Visually Evaluating Correlation

Scatter plots 

showing the 

similarity from 

–1 to 1.



Information and Probability
• Information relates to possible outcomes of an event 

– transmission of a message, flip of a coin, or measurement of a 
piece of data 

• The more certain an outcome, the less information that 
it contains and vice-versa
– For example, if a coin has two heads, then an outcome of heads 

provides no information
– More quantitatively, the information is related to the 

probability of an outcome
• The smaller the probability of an outcome, the more information 

it provides and vice-versa

– Entropy is the commonly used measure



Entropy

• For 
– a variable (event), X, 

– with n possible values (outcomes), x1, x2 …, xn

– each outcome having probability, p1, p2 …, pn

– the entropy of X , H(X), is given by

𝐻 𝑋 = −෍

𝑖=1

𝑛

𝑝𝑖log2 𝑝𝑖

• Entropy is between 0 and log2n and is measured in bits
– Thus, entropy is a measure of how many bits it takes to 

represent an observation of X on average



Entropy Examples

• For a coin with probability p of heads and probability 

q = 1 – p of tails

𝐻 = −𝑝 log2 𝑝 −𝑞 log2 𝑞

– For p= 0.5, q = 0.5 (fair coin) H = 1

– For p = 1 or q = 1, H = 0



Entropy for Sample Data

• Suppose we have 

– a number of observations (m) of some attribute, X, e.g., 
the hair color of students in the class, 

– where there are n different possible values

– And the number of observation in the ith category is mi

– Then, for this sample

𝐻 𝑋 = −෍

𝑖=1

𝑛
𝑚𝑖

𝑚
log2

𝑚𝑖

𝑚



Mutual Information

• Information one variable provides about another

Formally, 𝐼 𝑋, 𝑌 = 𝐻 𝑋 +𝐻 𝑌 −𝐻(𝑋, 𝑌),  where

H(X,Y) is the joint entropy of X and Y, 

𝐻 𝑋, 𝑌 = −෍

𝑖

෍

𝑗

𝑝𝑖𝑗log2 𝑝𝑖𝑗

Where pij is the probability that the ith value of X and the jth value of Y occur 
together 

• For discrete variables, this is easy to compute

• Maximum mutual information for discrete variables is 
log2(min( nX, nY )), where nX (nY) is the number of values of X (Y) 



Mutual Information Example

Student 
Status

Count p -plog2p

Undergrad 45 0.45 0.5184

Grad 55 0.55 0.4744

Total 100 1.00 0.9928

Grade Count p -plog2p

A 35 0.35 0.5301

B 50 0.50 0.5000

C 15 0.15 0.4105

Total 100 1.00 1.4406

Student 
Status

Grade Count p -plog2p

Undergrad A 5 0.05 0.2161

Undergrad B 30 0.30 0.5211

Undergrad C 10 0.10 0.3322

Grad A 30 0.30 0.5211

Grad B 20 0.20 0.4644

Grad C 5 0.05 0.2161

Total 100 1.00 2.2710

Mutual information of Student Status and Grade =  0.9928 + 1.4406 - 2.2710 = 0.1624
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