Data Mining Classification: Basic Concepts and Techniques

Lecture Notes for Chapter 3

Introduction to Data Mining, 2nd Edition by Tan, Steinbach, Karpatne, Kumar

Classification Model Evaluation

Model Evaluation

- Metrics for Performance Evaluation
 How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Metrics for Performance Evaluation

Focus on the predictive capability of a model

 Rather than how fast it takes to classify or build models, scalability, etc.

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Confusion Matrix:

	PREDICTED CLASS						
ACTUAL CLASS		Class=Yes	Class=No				
	Class=Yes	а	b				
	Class=No	С	d				

Metrics for Performance Evaluation...

	PREDICTED CLASS						
		Class=Yes	Class=No				
ACTUAL	Class=Yes	a (TP)	b (FN)				
CLASS	Class=No	c (FP)	d (TN)				

Most widely-used metric:

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Limitation of Accuracy

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10
 - If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any class 1 example

Cost Matrix

	PREDICTED CLASS					
	C(i j)	Class=Yes	Class=No			
ACTUAL	Class=Yes	C(Yes Yes)	C(No Yes)			
CLASS	Class=No	C(Yes No)	C(No No)			

C(i|j): Cost of misclassifying class j example as class i

Computing Cost of Classification

Cost Matrix	PREDICTED CLASS				
ACTUAL CLASS	C(i j)	+	-		
	+	-1	100		
		1	0		

Model M ₁	PREDICTED CLASS				
ACTUAL CLASS		+	-		
	+	150	40		
	-	60	250		

Accuracy = 80% Cost = 3910
 Model M2
 PREDICTED CLASS

 ACTUAL CLASS
 +

 250
 45

 5
 200

Accuracy = 90% Cost = 4255

Cost-Sensitive Measures

Precision (p) =
$$\frac{TP}{TP + FP}$$

Recall (r) = $\frac{TP}{TP + FN}$
F-measure (F) = $\frac{2rp}{r + p} = \frac{2TP}{2TP + FN + FP}$

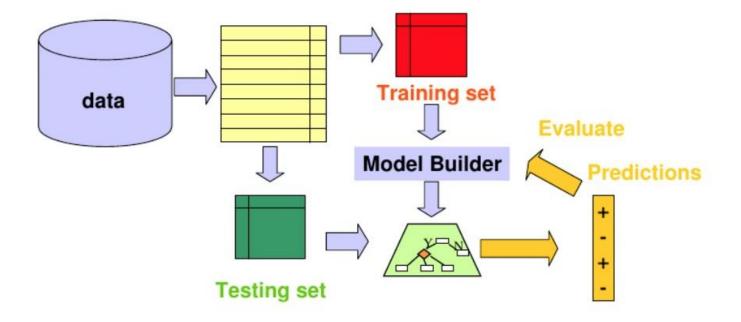
- Precision is biased towards C(Yes|Yes) & C(Yes|No)
 Recall is biased towards C(Yes|Yes) & C(No|Yes)
- F-measure is biased towards all except C(No|No)

Weighted Accuracy =
$$\frac{w_1 a + w_4 d}{w_1 a + w_2 b + w_3 c + w_4 d}$$

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Methods for evaluation

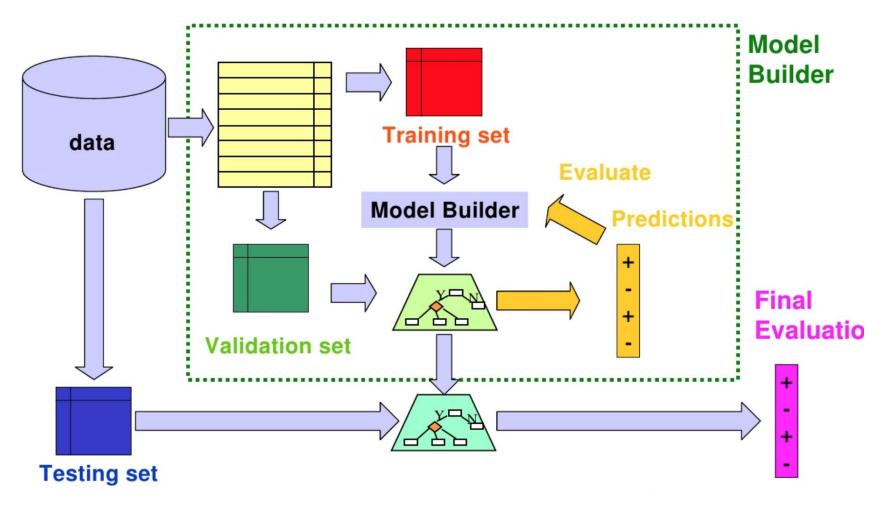


Parameter Tuning

- It is important that the test data is not used in any way to create the classifier
- Some learning schemes operate in two stages:
 - **Stage 1**: builds the basic structure
 - **Stage 2**: optimizes parameter settings
 - The test data can't be used for parameter tuning!
 - Proper procedure uses three sets:
 - training data,
 - validation data,
 - test data
 - Validation data is used to optimize parameters
- Once evaluation is complete, all the data can be used to build the final classifier
- Generally, the larger the training data the better the classifier
- The larger the test data the more accurate the error estimate

11/11/2024

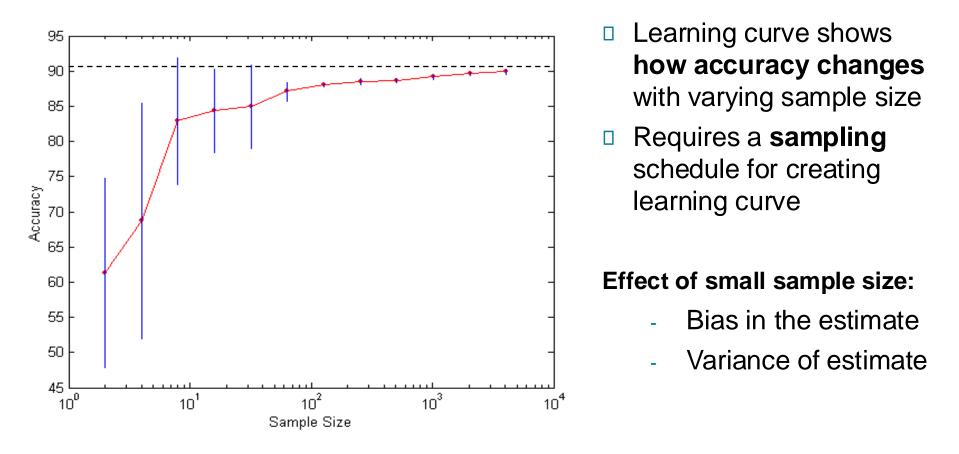
Evaluation: training, validation, test



Methods for Performance Evaluation

- How to obtain a reliable estimate of performance?
- Performance of a model may depend on other factors besides the learning algorithm:
 - Class distribution
 - Cost of misclassification
 - Size of training and test sets

Learning Curve



- 1. How much a classification model benefits from adding more training data?
- 2. Does the model suffer from a variance error or a bias error?

Methods of Estimation

- Holdout
 - Reserve 2/3 for training and 1/3 for testing
- Random subsampling
 - Repeated holdout
- Cross validation
 - Partition data into k disjoint subsets
 - k-fold: train on k-1 partitions, test on the remaining one
 - Leave-one-out: k=n
- Stratified sampling
 - oversampling vs undersampling
- Bootstrap
 - Sampling with replacement

Small & Unbalanced Data

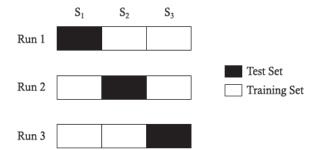
- The holdout method reserves a certain amount for testing and uses the remainder for training
- Usually, one third for testing, the rest for training
- For small or "unbalanced" datasets, **samples might not be representative**
 - For instance, few or none instances of some classes
- Stratified sample
 - Balancing the data
 - Make sure that each class is represented with approximately equal proportions in both subsets

Repeated holdout method

- Holdout estimate can be made more reliable by repeating the process with different subsamples
 - In each iteration, a certain proportion is randomly selected for training (possibly with stratification)
 - The error rates on the different iterations are averaged to yield an overall error rate
- This is called the **repeated holdout method**
- Still not optimum: the different test sets overlap

Cross-validation

- Avoids overlapping test sets
 - **First step:** data is split into k subsets of equal size
 - Second step: each subset in turn is used for testing and the remainder for training
- This is called k-fold cross-validation
- Often the subsets are stratified before crossvalidation is performed
- The error estimates are averaged to yield an overall error estimate
- Even better: repeated stratified cross-validation
 E.g. ten-fold cross-validation is repeated ten times and results are averaged (reduces the variance)



Model Evaluation

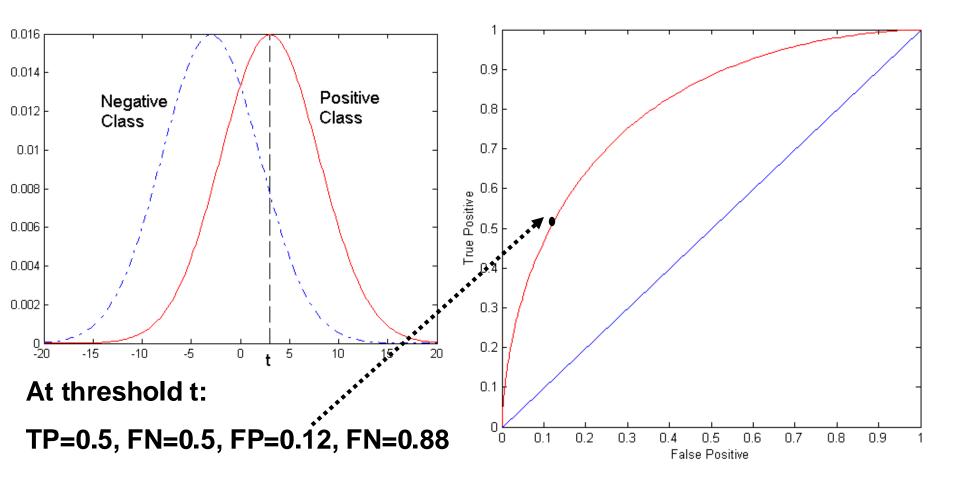
- Metrics for Performance Evaluation
 How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

ROC (Receiver Operating Characteristic)

- Developed in 1950s for signal detection theory to analyze noisy signals
 - Characterize the trade-off between positive hits and false alarms
- ROC curve plots TP (on the y-axis) against FP (on the x-axis)
- Performance of each classifier represented as a point on the ROC curve
 - changing the threshold of algorithm, sample distribution or cost matrix changes the location of the point

ROC Curve

- 1-dimensional data set containing 2 classes (positive and negative)
- any points located at x > t is classified as positive

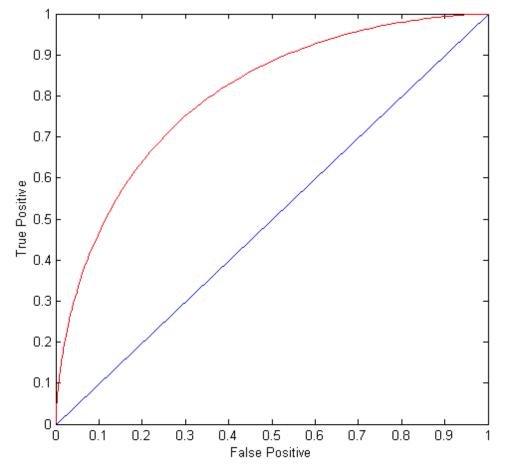


ROC Curve

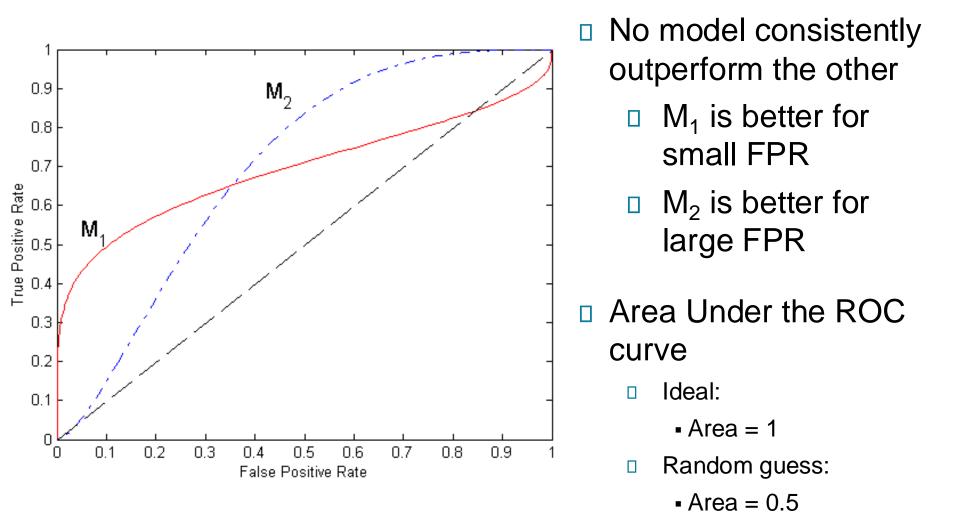
(TP,FP):

- (0,0): declare everything to be negative class
- (1,1): declare everything to be positive class
- ı (0,1): ideal
- Diagonal line:
 - Random guessing
 - Below diagonal line:

 prediction is opposite of the true class



Using ROC for Model Comparison



How to Construct an ROC curve

Instance	P(+ A)	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

• Use classifier that produces posterior probability for each test instance P(+|A)

- Sort the instances according to P(+|A) in decreasing order
- Apply threshold at each unique value of P(+|A)
- Count the number of TP, FP, TN, FN at each threshold
- TP rate, TPR = TP/(TP+FN)
- FP rate, FPR = FP/(FP + TN)

How to construct an ROC curve

	Class	+		+	-	-	-	+	-	+	+				
Threshold	=< k	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00			
	ТР	5	4	4	3	3	3	3	2	2	1	0			
	FP	5	5	4	4	3	2	1	1	0	0	0			
	TN	0	0	1	1	2	3	4	4	5	5	5			
	FN	0	1	1	2	2	2	2	3	3	4	5	Inst.	P(+ A)	True
→	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0		C	Class
→	FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	0	1	0.95	+
									2	0.93	+				
			0.8 -					\checkmark					3	0.87	-
			0.7						-				4	0.85	-
ROC	Cur	rve:	0.6 - 0.5 -				/						5	0.85	-
			0.4		/				-				6	0.85	+
			0.3 - 0.2 -	/									7	0.76	-
			0.2						-				8	0.53	+
).1 0.2	0.3 0.	.4 0.5	0.6 0.7	7 0.8	0.9 1				9	0.43	-
													10	0.25	+

Test of Significance

Given two models:

- Model M1: accuracy = 85%, tested on 30 instances
- Model M2: accuracy = 75%, tested on 5000 instances
- Can we say M1 is better than M2?
 - How much confidence can we place on accuracy of M1 and M2?
 - Can the difference in performance measure be explained as a result of random fluctuations in the test set?

Confidence Interval for Accuracy

- Prediction can be regarded as a Bernoulli trial (binomial random experiment)
 - A Bernoulli trial has 2 possible outcomes
 - Possible outcomes for prediction: correct or wrong
 - Probability of success is constant
 - Collection of Bernoulli trials has a Binomial distribution:
 - $x \sim Bin(N, p)$ **x**: # of correct predictions, **N** trials, **p** constant prob.
 - e.g: Toss a fair coin 50 times, how many heads would turn up? Expected number of heads = N×p = 50 × 0.5 = 25

Given x (# of correct predictions) or equivalently, acc=x/N, and N (# of test instances)

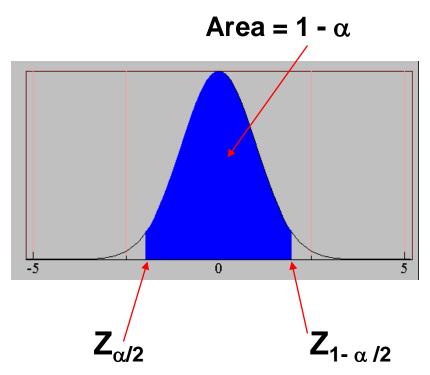
Can we predict p (true accuracy of model)?

Confidence Interval for Accuracy

For large test sets (N > 30),

- acc has a normal distribution with mean p and variance p(1-p)/N
- the confidence interval for acc can be derived as follows:

$$P(Z_{\alpha/2} < \frac{acc - p}{\sqrt{p(1-p)/N}} < Z_{1-\alpha/2})$$
$$= 1 - \alpha$$



Confidence Interval for p:

 $p = \frac{2 \times N \times acc + Z_{\alpha/2}^{2} \pm \sqrt{Z_{\alpha/2}^{2} + 4 \times N \times acc - 4 \times N \times acc^{2}}}{2(N + Z_{\alpha/2}^{2})}$

Confidence Interval for Accuracy

- Consider a model that produces an accuracy of 80% when evaluated on 100 test instances:
 - N=100, acc = 0.8
 - Let $1-\alpha = 0.95$ (95% confidence)
 - Which is the confidence interval?

- From probability table,
$$Z_{\alpha/2}$$
=1.96

N	50	100	500	1000	5000
p(lower)	0.670	0.711	0.763	0.774	0.789
p(upper)	0.888	0.866	0.833	0.824	0.811

1-α	Ζ
0.99	2.58
0.98	2.33
0.95	1.96
0.90	1.65

Comparing Performance of 2 Models

- Given two models, say M1 and M2, which is better?
 - M1 is tested on D1 (size=n1), found error rate = e_1
 - M2 is tested on D2 (size=n2), found error rate = e_2
 - Assume D1 and D2 are independent
 - If n1 and n2 are sufficiently large, then

$$e_1 \sim N(\mu_1, \sigma_1)$$
$$e_2 \sim N(\mu_2, \sigma_2)$$

- Approximate variance of error rates: $\hat{\sigma}_i = \frac{e_i(1-e_i)}{n}$

Comparing Performance of 2 Models

- □ To test if performance difference is statistically significant: $d = e_1 e_2$
 - d ~ $N(d_t, \sigma_t)$ where d_t is the true difference
 - Since D1 and D2 are independent, their variance adds up:

$$S_t^2 = S_1^2 + S_2^2 @ \hat{S}_1^2 + \hat{S}_2^2$$
$$= \frac{e!(1 - e!)}{n!} + \frac{e!(1 - e!)}{n!} + \frac{e!(1 - e!)}{n!}$$

- It can be shown at $(1-\alpha)$ confidence level,

$$d_{t} = d \pm Z_{\alpha/2} \hat{\sigma}_{t}$$

An Illustrative Example

 \Box d = |e2 - e1| = 0.1 (2-sided test to check: dt = 0 or dt <> 0)

$$\hat{s}_d^2 = \frac{0.15(1 - 0.15)}{30} + \frac{0.25(1 - 0.25)}{5000} = 0.0043$$

□ At 95% confidence level, $Z_{\alpha/2}$ =1.96

 $d_{t} = 0.100 \pm 1.96 \times \sqrt{0.0043} = 0.100 \pm 0.128$

=> Interval contains 0 => difference may not be statistically significant