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Abstract—The rise of sophisticated machine learning models has brought accurate but

obscure decision systems, which hide their logic, thus undermining transparency, trust,

and the adoption of artificial intelligence (AI) in socially sensitive and safety-critical

contexts. We introduce a local rule-based explanation method, providing faithful

explanations of the decisionmade by a black box classifier on a specific instance. The

proposedmethod first learns an interpretable, local classifier on a synthetic neighborhood

of the instance under investigation, generated by a genetic algorithm. Then, it derives

from the interpretable classifier an explanation consisting of a decision rule, explaining

the factual reasons of the decision, and a set of counterfactuals, suggesting the changes

in the instance features that would lead to a different outcome. Experimental results show

that the proposedmethod outperforms existing approaches in terms of the quality of the

explanations and of the accuracy in mimicking the black box.

& NEWSPAPERS ARE FULL of commentaries about

algorithms taking critical decisions that heavily

impact on our life and society, from loan conces-

sion in bank systems to pedestrian detection in

self-driving cars. The worry is not only due to

the increasing automation of decision making,

but mostly to the fact that the algorithms are

opaque and their logic unexplained. The main

cause of this lack of transparency is that
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decision-making algorithms are generated often

from data through machine learning (ML). ML

allows building predictive models that map user

features into a decision, obtained by generaliz-

ing from a dataset of examples. The process of

inferring a classification model from examples

cannot be easily controlled because the size of

training data and the complexity of the learned

model are too big for humans. The inability to

obtain an explanation for a decision is a pro-

found drawback of learning from data, limiting

social acceptance, and trust in its adoption in

many sensitive contexts.

In this article, we address the problem of

explaining the decision outcome taken by an

algorithm providing “meaningful explanations of

the logic involved” when automated decision

making takes place, as prescribed by the “right

to explanation” of the European General Data

Protection Regulation. We perform our research

under some specific assumptions. First, we

assume that an explanation is interesting if it

clarifies why a specific decision has been made,

i.e., we aim for local explanations, not general,

global, descriptions of how the overall system

works.1,2 Second, we assume that the explana-

tions should be as close as possible to the lan-

guage of reasoning, which is formal logic. Thus,

we assume the user can understand elementary

logic rules, but it should also be considered that

from logic rules it is easy to construct narratives

that are understood by users with diverse exper-

tise. Finally, we assume that the black box deci-

sion system can be queried as many times as

necessary, to probe its decision behavior to the

scope of reconstructing its logic; this is certainly

the case in a legal argumentation in court, or in

an industrial setting. On the other hand, we

make no assumptions on the algorithms used in

the obscure classifier: we aim at an agnostic

explanation method analyzing the input–output

behavior of the black box, disregarding its

internals.3

We propose LORE, a LOcal Rule-based Explana-

tion method for tabular data. Given a black box

binary predictor b and a specific instance x

labeled with outcome y by b, we build a simple,

interpretable predictor by first generating a bal-

anced set of neighbor instances of the given x

through an ad-hoc genetic algorithm, and then

extracting from such a set labeled with b a deci-

sion tree classifier. A local explanation is then

extracted from the obtained decision tree. The

local explanation is a pair composed by 1)

a—factual—logic rule, corresponding to the path

in the tree that explains why x has been labeled

as y by b, and 2) a set of counterfactual rules,

explaining which changes in x would invert the

class y assigned by b. For example, from the

compas dataset, we may have the following

explanation: the rule fage�39; race¼African–

American; recidivist¼Trueg!HighRisk and the

counterfactuals fage> 40g and frace¼White–

Americang. Here, the factual explanation is that

the high risk of recidivism is predicted for a

black person younger than 40 with prior recidi-

vism; the counterfactuals explain that a lower

risk would be predicted if the person were either

older than 40 or white. The usefulness of the

explanation depends on the stakeholder: it may

make sense to a judge that wants to understand

and evaluate the suggestion by the decision sup-

port system and possibly discover that it is

biased against black people.

The intuition behind our method, common

to other local approaches, such as LIME
3 and

ANCHOR,4 is that the decision boundary for the

black box can be arbitrarily complex over the

whole data space, but in the neighborhood of

a data point there is a high chance that the

decision boundary is clear and simple, hence

amenable to be captured by an interpretable

model. These methods are named local

because they focus on the behavior of the

black box in the neighborhood of the specific

instance x, without providing a single descrip-

tion of the logic of the black box for all possi-

ble instances. On the other hand, global

methods such as by Grover et al.,2 aims at

retrieving explanations for the whole logic of

the model. The novelty of our method is

twofold. First, the high expressiveness of the

proposed explanation surpasses state-of-the-

art methods providing not only succinct evi-

dence why an instance has been assigned a

specific label, but also counterfactuals suggest-

ing what should be different in the vicinity of

the instance to reverse the predicted outcome.

In other words, our inferred explanations are

both factual and counterfactual, in line with
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the cognitive psychology literature maintaining

that counterfactuals help people to reason on

explanations that identify cause-effect or rea-

son-action relations between events.5,6 Simi-

larly, Grover et al.2 produces “balanced”

explanations supporting and opposing to a

fact. Second, the local decision boundary in

the neighborhood of the instance to explain is

explored through a focused genetic algorithm,

which produces high-quality training data to

learn the local decision tree.

We propose extensive experiments to assess

the goodness of our explanation method

with respect to existing linear, rule-based, and

counter-factual-based explanation approaches.

LOCAL RULE-BASED EXPLANATION
METHOD

Given the black box b, and an instance x in

the feature space XðmÞ, we aim to solve the black

box outcome explanation problem which consists

in providing an explanation e for the decision

bðxÞ ¼ y. We assume that some knowledge is

available about the feature space XðmÞ, i.e., the
empirical distribution of the m features. Nothing

is assumed about the process of constructing

the black box b.

As a solution to the black box outcome expla-

nation problem, we propose a LORE method. LORE

learns an interpretable predictor c that reprodu-

ces and accurately mimes the local behavior of b

in the neighborhood Z of x. The neighborhood Z

is generated by LORE as part of the explanation

process through a genetic algorithm in order to

accurately explore the local decision boundary

of b. The synthetic instances in Z are then

labeled using b, and this set is used to train an

interpretable local predictor c. LORE adopts a

decision tree as interpretable predictor c. Finally,

a factual and counter-factual explanation e for the

decision bðxÞ ¼ y is derived from the structure of

c. The explanation consists of a decision rule r

and a set of counterfactual rules F. Details are

discussed in the rest of this section.

Factual and Counter-Factual Explanation

Wedefine an explanation e as a pair of objects:

e ¼ hr;Fi, where r ¼ p ! y is a factual decision

rule describing the reason for the decision value

y ¼ bðxÞ, whereasF is a set of counterfactual rules,

namely rules describing the minimal number of

changes in the feature values of x that would

change the decision of the predictor to y0 6¼ y.

Given the instance x ¼ fðage¼22Þ; ðjob¼clerkÞ;
ðincome¼800Þ; ðcar¼noÞg, we consider the follow-

ing explanation for a loan request:

e ¼ hr ¼ fage�25; job¼clerk; income�900g!deny

F ¼ fðfincome> 900g!grantÞ
ðfjob¼employerg!grantÞgi

In a factual decision rule r of the form p ! y,

the decision y is the consequence of the rule,

while the premise p is a boolean condition on fea-

ture values. We assume that p is a conjunction of

split conditions of the form ai2½vðlÞi ; v
ðuÞ
i �, where ai

is a feature and v
ðlÞ
i ; v

ðuÞ
i are lower and upper

bound values in the domain of ai extended with

�1. An instance x satisfies r, or r covers x, if the

boolean condition p evaluates to true for x, i.e., if

the split conditions scðxÞ is true for every condi-

tion in p. The rule r in the example above is

satisfied by x ¼ fðage¼22Þ; ðjob¼clerkÞ; ðincome¼
800Þ; ðcar¼noÞg. When the instance x for which

we have to explain the decision satisfies p, the

rule p ! y represents a motivation for taking

the decision, i.e., p explains the fact why b

returned y.

Consider now a set d of split conditions. We

denote the update of p by d as p½d�¼ d[fða 2
½vðlÞi ; v

ðuÞ
i �Þ 2 pj @wðlÞ

i ; w
ðuÞ
i :ða2½wðlÞ

i ; w
ðuÞ
i �Þ2dg. Intui-

tively, p½d� is the logical condition p with ranges

for attributes overwritten as stated in d, e.g.,

fage�25; job¼clerkg½age> 25� is fage> 25; job¼clerkg.
A counterfactual rule for p is a rule of the form

p½d� ! y0, for y0 6¼y. We call d a counterfactual.

A counterfactual d describes what features

to change and how to change them to get an out-

come different from y. Continuing the example,

changing the income feature of x to any value

> 900 it will change the predicted outcome from

deny to grant. An expected property of a con-

sistent counterfactual rule p½d� ! y0 is that it

should be minimal with respect to x. Minimality

is measured with respect to the number of

split conditions sc in p½d� not satisfied by x.

We define nfðp½d�; xÞ¼jfsc2p½d�j:scðxÞgj, where

nfð�; �Þ stands for number of falsified split condi-

tions. For example, fincome> 900g!grant is a
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minimal counterfactual with one condition falsi-

fied by x. In summary, a counterfactual d is a

(minimal) motivation for reversing the decision

outcome.

Neighborhood Generation

The first step of LORE to extract an explanation

e is the neighborhood generation aiming to iden-

tify a set of instances Z, with feature characteris-

tics close to the ones of x, that is able to

reproduce the local decision behavior of the

black box b. Since the objective is to learn a pre-

dictor, the neighborhood should be flexible

enough to include instances with both decision

values, namely Z ¼ Z¼ [ Z6¼ where instances

z 2 Z¼ are such that bðzÞ ¼ bðxÞ, and instances

z 2 Z6¼ are such that bðzÞ 6¼ bðxÞ. We extract bal-

anced subsets Z¼ and Z6¼, and then put

Z ¼ Z¼ [ Z6¼. This task differs from approaches

to instance selection based on genetic algo-

rithms.7 In our case, we cannot assume the avail-

ability of the training set of b, or not even that b

is a supervised ML predictor for which a training

set exists. Our task is instead similar to instance

generation in the field of active learning, includ-

ing evolutionary approaches.8 We adopt an

approach based on a genetic algorithm, which

generates z 2 Z¼ [ Z6¼ by maximizing the follow-

ing fitness functions:

fitnessx¼ðzÞ ¼ IbðxÞ¼bðzÞ þ ð1� dðx; zÞÞ � Ix¼z

fitnessx6¼ðzÞ ¼ IbðxÞ6¼bðzÞ þ ð1� dðx; zÞÞ � Ix¼z

where d : XðmÞ ! ½0; 1� is a distance function,

Itrue¼1, and Ifalse¼0. The first fitness function

looks for instances z similar to x (term

1�dðx; zÞ), but not equal to x (term Ix¼z) for

which b produces the same outcome as x (term

IbðxÞ¼bðzÞ). Thus, the maximization of fitnessx¼
occurs for instances different from x and

whose prediction is equal to bðxÞ. The second

fitness function leads to the generation of instan-

ces z similar to x, but not equal to it, for which b

returns a different decision.

LORE generates Z by instantiating the evolu-

tionary approach of B€ack et al.9 Using the termi-

nology of Derrac et al.,8 it is an instance of

generational genetic algorithms for evolutionary

prototype generation. However, prototypes are

a condensed subset of a training set that enable

optimization in predictor learning. We aim

instead to generate new instances that separate

well the decision boundary of the black box b.

The neighborhood generation function first initial-

izes the population P0 with N copies of the

instance x to explain. Then, it enters the evolu-

tion loop that begins with the selection A of the

Pi population having the highest fitness score.

After that, the crossover operator is applied to a

proportion of A according to the pc probability.

The resulting and the untouched individuals

are placed in B. We use a two-point crossover

which selects two parents and two crossover

features at random, and then swap the crossover

feature values of the parents (see Figure 1).

Thereafter, a proportion of B, determined by

pm, is mutated and placed in C. The unmutated

individuals are also added to C. Mutation con-

sists of replacing features values at random

according to the empirical distribution of a fea-

ture (see Figure 2). In experiments, we derive

such distribution from the test set of instances

to explain. Individuals in C ¼ Piþ1 are evaluated

according to the fitness function, and the evolu-

tion loop continues until G generations are com-

pleted. The best individuals, according to the

fitness function, are returned. The neighborhood

generation function is run twice, once using

fitnessx¼ to derive Z¼, and once using fitnessx6¼ to

derive Z6¼.
Figure 3 shows an example of neighborhood

generation for a black box consisting of a ran-

dom forest (RF) and a bidimensional feature

space. The figure contrasts uniform random gen-

eration around a specific instance x (starred) to

our genetic approach. The latter yields a neigh-

borhood that is considerably denser than the

former one in the boundary region of the predic-

tor. The density of the generated instances will

Figure 1. Crossover.

Figure 2.Mutation.
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be a key factor in extracting a good local inter-

pretable predictors.

Local Classifier and Explanation Extraction

Given the neighborhood Z of x, the second

step of LORE is to build an interpretable predic-

tor c trained on the instances z 2 Z labeled

with the black box decision bðzÞ to locally

mimic the behavior of b in Z. Since c must be

interpretable and able to provide a factual

and counter-factual explanation e, LORE consid-

ers decision tree classifiers as interpretable

predictor: 1) decision rules can naturally be

derived from a root-leaf path in a decision

tree; and 2) counterfactuals can be extracted

by symbolic reasoning over the tree.

Once the decision tree c has been trained

on Z labeled with b, LORE derives the explana-

tion e ¼ hr;Fi as follows. The decision rule

r ¼ p ! y is formed by including in p the split

conditions on the path from the root to the

leaf node that is satisfied by x, and setting

y ¼ cðxÞ. By construction, r is consistent with

c and satisfied by x. Consider now the coun-

terfactual rules in F. LORE looks for all paths in

the decision tree c leading to a decision y0 6¼ y.

Fix one of such paths, and let q be the con-

junction of split conditions in it. Again by con-

struction, q ! y0 is a counterfactual rule

consistent with c. Notice that, since we are

using a decision tree, the counterfactual d for

which q ¼ p½d� has not to be explicitly com-

puted—this is a benefit of using decision

trees. Among all such q’s, only those with the

minimum number of split conditions sc not

satisfied by x are kept in F.

As an example, consider the decision tree

in Figure 4, and the instance x ¼ fðage¼22Þ;
ðjob¼clerkÞ; ðincome¼800Þ; ðcar¼noÞg for which

the decision deny (e.g., of a loan) has to be

explained. The path followed by x is the leftmost

one in the tree. The factual decision rule

extracted from the path is fage � 25; job ¼ clerk;

income � 900g ! deny. There are four paths

leading to the opposite decision: q1 ¼ fage � 25;

job ¼ clerk; income > 900g, q2 ¼ f17 < age � 25;

job ¼ employerg, q3 ¼ fage > 25; income � 1500;

car ¼ yesg, and q4 ¼ fage > 25; income > 1500g.
It turns out: nfðq1; xÞ ¼ 1, nfðq2; xÞ ¼ 1, nfðq3; xÞ ¼ 2,

nfðq4; xÞ ¼ 2, and F ¼ fq1 ! grant; q2 ! grantg.
A counterfactual instance can also be gener-

ated from x and from counterfactual rule q ! y0.
Among all instances that satisfy q, we choose the

one that minimally changes attributes from x

according to q.

EXPERIMENTS
In this section, we evaluate LORE against state-

of-the-art competitors. (The source code and the

datasets for reproducing the experiments are

publicly available at https://github.com/riccotti/

LOREExperiments were performed on Ubuntu

16.04 LTS, 32 GB RAM, 3.30 GHz Intel Core i7.).

LORE has been developed in Python, using the

deap (https://github.com/DEAP/deap) library for

the genetic neighborhood generation, and the

YaDT system (http://pages.di.unipi.it/ruggieri/

YaDT/) for the decision tree induction.

Figure 3. Black box decision: purple versus green. Starred instance x. Uniformly random (1st) and genetic

generation (2nd). Density of random (3rd) and genetic generation (4th). The color bar in the last two plots

indicates the density level (best view in color).

Figure 4. Decision tree mimicking the local

behavior of a black box.
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Experimental Setup

We ran experiments on three tabular real-

world open source datasets: adult (https://

archive.ics.uci.edu/ml/datasets/adult), compas
(https://github.com/propublica/compas-

analysis), and german (https://archive.ics.uci.

edu/ml/datasets/statlog+(german+credit+data)).

Each dataset was randomly split into two parts:

70% was used to train the black box classifiers,

30%, denoted by X, was used as instances to be

explained. We denote by Ŷ the decisions pro-

vided by the black box b and by Y the set of deci-

sions provided by the interpretable predictor c.

We trained and explained away the following

black box classifiers: RF, support vector machine

(SVM), and multilayer perceptron (NN) as imple-

mented by the scikit-learn Python library. Default

parameters were used for both the black boxes

and the libraries of LORE (the parameters of the

genetic procedure, namely probabilities of

crossover and mutation, number of generations,

and population size are set with the default val-

ues9 of 0.7, 0.2, 10, and 1000, respectively). We

consider the following performance indicators

to evaluate the quality of the explanations:

� The fidelityðY; Ŷ Þ 2 ½0; 1� compares the pre-

dictions of c and b on Z measuring how good

is c at mimicking b.
� The l� fidelityðY; Ŷ Þ 2 ½0; 1� compares the

predictions of c and b on the local (hence “l-”)

instances of Z covered by r measuring how

good is r at mimicking b.
� The hitðy; ŷÞ 2 f0; 1g compares the predic-

tions of c and b on the instance x under analy-

sis. It returns 1 if cðxÞ is equal to bðxÞ, and 0

otherwise.

We adopt the F1-measure for the first two.

Aggregated values are reported by averaging

performance indicators overX.

Rules Versus Linear Regression

We present a qualitative and quantitative

comparison with the linear explanations of LIME

(https://github.com/marcotcr/lime).3 A first cru-

cial difference is that in LIME, the number of fea-

tures composing an explanation is an input

parameter that must be specified by the user.

LORE, instead, automatically provides the user

with an explanation including only the features

useful to justify the black box decision. This is a

clear improvement over LIME. In experiments,

unless otherwise stated, we vary the number of

features of LIME explanations from two to ten,

and we consider the performance with the high-

est hit score.

Table 1 reports the mean and standard devia-

tion of hit, while Figure 5 details the box plots of

fidelity (top) and l-fidelity (bottom). The results

show that LORE definitely outperforms LIME under

various viewpoints. Regarding the hit score, LORE

is clearly better than LIME in six out of nine cases,

is very close to it in two cases, and performs

clearly worse in 1 case. LORE has better fidelity

scores and is more robust than LIME, which,

instead, exhibits very high variability in the

neighborhood (i.e., l-fidelity). This result can be

attributed to the genetic approach of LORE.

Figure 6 reports a multidimensional scaling of

the neighborhoods of an instance x generated

by the two approaches. LORE computes a dense

and compact neighborhood. The instances gen-

erated by LIME, instead, can be very distant from

each other and with low density around x.

We claim that the explanations provided by

LORE are more abstract and comprehensible than

the ones of LIME. Consider the example in Figure 7.

The top part reports a LORE local explanation for an

instance x from german. The central part is a LIME

explanation. Weights in w are associated with the

categorical values in the instance x to explain, and

Table 1. Lore versus lime: hit scores.

Dataset german compas adult

Black Box LORE LIME LORE LIME LORE LIME

RF .925 �. 2 . 880 �. 3 .941�. 2 . 826 �. 4 .901 �. 3 . 824 �. 4

NN . 980 �. 1 1.00 �. 0 .987�. 1 . 902 �. 3 . 918 �. 3 .998 �. 1

SVM 1.00 �. 0 . 966 �. 1 .997�. 1 . 900 �. 3 . 985 �. 1 .987 �. 1
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to continuous upper/lower bounds where the

bounding values are taken from x. Each weight

tells the user how much the decision would have

changed for different values of a specific feature.

In the example, the weight 0.11 has the following

meaning3: “if the duration in months had been

higher than the value it is for x, the prediction

would have been, on average, 0.11 less 0 (or 0.11

more 1)” (See https://marcotcr.github.io/lime/

tutorials/Tutorial%20-%20continuous%20and%

20categorical%20features.html) lime-tutorial for

more details about LIME explanations. A not very

easy logic to followwhen compared to a single deci-

sion rule which characterizes the contextual condi-

tions for the decision of the black box. Another

advantage of LORE explanation consists in the set of

counterfactual rules. LIME provides a rough indica-

tion of where to look for a different decision: differ-

ent categorical values or lower/higher continuous

values of some feature. LORE’s counterfactual rules

provide high-level andminimal-change contexts for

reversing the outcomeprediction.

Rules Versus Anchors

ANCHOR
4 is a rule-based local explainer

inspired to LIME, which provides decision rules,

called anchors (https://github.com/marcotcr/

anchor), as explanations. Anchors are computed

by incrementally adding equality conditions in

the premise, while an estimate of the anchor pre-

cision is above a minimum threshold (set to

95%). Such an estimation relies on neighborhood

generation through pure-exploration multiarmed

bandit. On a qualitative level of comparison,

ANCHOR requires the a priori discretization of con-

tinuous features, while LORE benefits of the capa-

bilities of decision trees to split continuous

features (see Figure 7).

On a quantitative level of comparison, since

Anchor produces a single rule model starting

from the instance to explain, hit is 100% by con-

struction. Moreover, l-fidelity boils down to rule

precision, namely the fraction of instances in the

neighborhood set that is correctly classified by

the rule, i.e., that have the same black box pre-

diction as the instance to explain. Figure 8

reports the average precision of the decision

rules for both ANCHOR and LORE. By construction,

Figure 6. Neighborhoods multidimensional scaling

of an instance x. LORE (left) computes a dense and

compact neighborhood. LIME (right) generates

instances that can be very distant from each other

and with low density around x.

Figure 5. LORE versus LIME: box plots of fidelity and l-fidelity. Top numbers are mean values.

Figure 7. Examples of explanations from LORE, LIME,

and ANCHOR.
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rule precision in ANCHOR is very high, since an

estimator of such precision is constrained to be

at least 95%. We also evaluate the rule coverage,

namely the fraction of instances to explain cov-

ered by the rule: large values of coverage means

better rule generalization.4 Figure 8 also shows

the average coverage of the decision rules, with

LORE showing a consistently better coverage than

ANCHOR. We also measure the possible overspe-

cialization of the decision rules by evaluating

their stability with respect to randomness in the

neighborhood generation. We measure stability

using Jaccard coefficient of feature sets used in

the 10 decision rules computed for the same

instances in 10 runs of the system. Table 2

reports mean and standard deviation of Jaccard

coefficient. LORE has a better stability than ANCHOR

for all datasets and black boxes. In summary,

ANCHOR shows better precision than LORE at the

expenses of generality and stability of the pro-

duced explanations. Such two properties are,

however, essential for a general acceptance of

an explanation methodology.

Rule-Based Versus Stochastic Counterfactuals

We compare LORE with the stochastic optimiza-

tion counterfactual (SOC) approach10 returning an

instance x0 as close as possible to a given x, but

for which the black box outputs a different predic-

tion. To make a fair comparison, we have imple-

mented the SOC as an alternative fitness function

of the genetic neighborhood generation. Table 3

shows the performances of the two methods on

nf (number of falsified conditions in counterfac-

tual rules), c-hit (rate of agreement of black box

and counterfactual decision for counterfactual

instance), and cl-fidelity (F1-score of agreement

of black box and counterfactual decision). Results

show that LORE returns shorter explanations, i.e.,

simpler explanations, and provides counterfac-

tual rules with an higher fidelity than SOC.

FUTURE WORKS
Future research directions include multival-

ued classification, going beyond relation data

towards image and text, going beyond decision

Figure 8. LORE versus ANCHOR: box plots of precision and coverage. Top numbers are mean values.

Table 2. Lore versus anchor: Jaccard measure of stability.

Dataset german compas adult

Black box LORE ANCHOR LORE ANCHOR LORE ANCHOR

RF .76 �. 15 . 61 �. 15 .75 �. 12 . 73 �. 14 .70 �. 15 . 69 �. 15

NN .69 �. 18 . 53 �. 21 .83 �. 13 . 79 �. 16 .81 �. 12 . 65 �. 16

SVM .82 �. 16 . 32 �. 16 .71 �. 16 . 70 �. 20 .87 �. 14 . 67 �. 13

Table 3. LORE versus SOC: performance of counterfactual rules.

dataset method nf c-hit cl-fidelity

german
LORE 1.52 � 1.18 .7765�. 38 .6355 �. 43

SOC 14.80 � 1.59 . 3118 �. 47 . 2297 �. 36

compas
LORE 1.84 � 0.78 .8694�. 37 .8611 �. 41

SOC 6.24 � 1.45 . 8036 �. 38 . 7555 �. 34
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trees, and considering alternativemodels such as

rule sets and rule lists. Moreover, even though

LORE should be able to deal with high dimensional

datasets via the genetic process, we plan to

develop further experiments to verify its robust-

ness. We are fully aware that the quest towards

meaningful explanations of black box systems is

at an embryonic stage. How to turn our proposed

factual and counterfactual rules into substantive

narratives, which can empower human stake-

holders with diverse expertise by boosting their

causal andwhat-if reasoning, is a fascinating chal-

lenge of great practical relevance for the success-

ful adoption of many AI innovations.
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