
Gradient-based optimization
Exploiting gradient

The computational graph
We can generalize several gradient-based optimization to computational graphs,
objects which compute a generic function . Functional form: . Note: is
simply a linear combination of .

A computational graph: nodes indicate objects involved in the computation, and edges indicate their flow in the graph.

1

The forward pass: computing
To compute , we navigate the graph
bottom-up:

Nodes are either
data: stores some data

functions: computes a function
the sum of incoming edges

Edges are weights in a weight space
, weighting the node traversing

them

A forward pass in : is weighted by , then is
computed on their sum. Opacity of edges scaled with value
of .

2

The forward pass: computing
In a computational graph, we have

Parameters given the weights on
the nodes

Structure given by the graph's
architecture and functions

A computational graph computing . The structure
is given by the operations (), while the parameters (

).

3

Parameters and structure
The parameters-structure dichotomy is not unique to computational graphs, and we can
find this also on other models. Note that pure algorithms with no learning involved, e.g.,
Naive Bayes, do not have this distinction, and everything is structure.

A generic parameter space (left), one for -NN (center), and a subset of one for Decision Trees (right).

4

The backward pass: improving
Given a loss computed with a
differentiable loss function , as we have
done for Gradient Boosting Machines, we
can find directions in the model space
where the decreases.

Note: in computational graphs, we
optimize over the parameter space, i.e.,
over .

A backward pass in : change parameters indicated by the
gradient indicates the direction towards which move
parameters to minimize .

5

Scaling up: layering graphs
The backward pass is made possible by the
differentiability of the loss... but this can be applied
also to the functions within : if a function
within is differentiable, then I can recursively
compute gradients on it!

Chain rule of calculus
The derivative of a composite function

 is

A backward pass in : change parameters
indicated by the gradient indicates the
direction towards which move parameters to
minimize .

6

Scaling up: layering graphs
Applying the chain rule recursively, and going down the computational graph, we can
compute optimization directions for all parameters! The algorithm chaining back the
loss gradient is called backpropagation.

A multi-layered computational graph, and its forward (left) and backward (right) pass. The chain rule enables propagation of
updates back and over the entire network.

7

Neural networks
Neural networks implement computational graphs.

A visualization of a neural network.

Some nomenclature:

Layer: set of all adjacent nodes

Block: collection of consecutive
layers

Activation function: functions found
in nodes

Hidden layer: a layer, except the first
or last one

Output layer/nodes: layer/nodes
yielding the computed

8

Neural networks: the training loop
Fitting a neural network consists in, at a very high level, repeatedly computing forward
and backward passes, each pair improving on the current loss.

Consecutive foreward and backward passes on a network, each backward pass leverages gradients of the loss to find local
directions of loss minimization, which are then used to fit the model.

9

Learning in neural networks

10

Stochastic learning
Backpropagation takes care of defining optimal directions for the parameters, but how
do we estimate and leverage these directions?

Estimating directions: Through stochastic
gradient, by computing gradient on a
batch of data, rather than the whole
dataset.

Provides a good approximation and a
much faster computation.

The gradient estimated on the some data , and
gradients estimated on subsets of of

.

11

Stochastic learning
Backpropagation takes care of defining optimal directions for the parameters, but how
do we estimate and leverage these directions?

Batches can be aggregated, the directions
they yield combined: a training-specific
approach to combat overfit.

The gradient estimated on the some data , and
gradients estimated on subsets of of

.

12

Momentum
Backpropagation takes care of defining optimal directions for the parameters, but how
do we estimate and leverage these directions?

Estimating weight update: Update
directions are weighted by a possibly
decaying learning rate , and possibly
weighted by past updates (Adam,
RMSProp, Nesterov momentum).

Momentum controls the weight of the parameter updates:
the lower, the lesser the impact of the direction, and vice
versa.

13

Regularization
Regularization of neural networks can take many forms.

Weight regularization

The loss includes a term to
penalize large weights in the network, as
higher weights tend to increase the
network capacity.

Dropout

Random deletion of network connections,
aims to create networks less reliant on a
small number of neurons.

14

Early stopping
As fitting goes on, we adapt the capacity of the network. How do we prevent the model to
overfit? Early stopping!

We keep two rolling statistics:

1. The gap between train and
validation error

2. Train error

We stop when 1. grows larger (to avoid
overfit), or 2. does not lower (to avoid
unnecessary training).

Model error on training (blue) and validation (red) data: as
iterations go by, the model lowers its loss, possibly
incurring in overfit.

15

Structure

16

Activation functions
Activation functions impact the flow of data throughout the network, and their outputs
are called activations. Different activations define different representations of the data,
which, unlike in PCA, are dependent on learned parameters.

Formulation Heads

Identity

Logistic

ReLU

Softmax

... Logistic (top) and ReLU (bottom) activation functions.

Remember, is the sum of the incoming edges in the node. 17

Activation functions
As the last operation in the network, activation functions play different roles.

Formulation Heads Task

Identity Regression

Logistic Classification*

ReLU Regression*

Softmax Classification*

*Indirectly: classification is often rendered as a continuous value (to turn into discrete), while regression may be bounded, e.g., to
be positive by ReLU. 18

Architectures

19

To �t or not to �t, this is the question
Given their high capacity, and innate ability to encode data, networks are often not fit
from scratch. Rather, a network is fit on a task, then adapted to other tasks.

Fine-tuning

A network is first trained on a general task
and a large dataset, then some more
training is performed on the smaller,
specialized task.

Adapters

Small networks are fit to "steer" the
parameters of a larger network to solve a
specific task. They are then included in
the desired architecture.

20

Network architectures: ResNet
Architectures have proven to be extremely important, and in several cases, the
application dictates the network architecture. On tabular dataset, residual networks
(ResNets) are a particularly strong baseline. They have a functional form

.

A residual block: a node is forwarded to the next layer, and to the one after it as well. Residual (also called skip) connections
allow a more effective backpropagation. Weights on the skip connection are set to to preserve data.

21

Network architectures: FeatureTransformer
Blocks constructs circuits of similarity,
computing degrees of "attention" between
features, and representations. Similarity
then weighs on skip connections.
Functional form:

.

An attention block: similarities between representations
are computed through a (scaled) multiplication. Addition
through a residual connection allows representations to
explicitly influence each other

22

References
Reference

Neural Networks
Deep Learning. I. Goodfellow, Y. Bengio, A. Courville. Sections 6.1-
6.5, 7.1, 7.8

Feature
Transformer

On Embeddings for Numerical Features in Tabular Deep
Learning

ResNet Deep Residual Learning for Image Recognition

23

http://arxiv.org/abs/2203.05556
http://arxiv.org/abs/2203.05556
https://arxiv.org/abs/1512.03385

