
DRAFT
Roberto Bruni, Ugo Montanari

Models of Computation

– Monograph –

March 1, 2016

Springer

DRAFTMathematical reasoning may be regarded
rather schematically as the exercise of a
combination of two facilities, which we may
call intuition and ingenuity.

Alan Turing1

1 The purpose of ordinal logics (from Systems of Logic Based on Ordinals), Proceedings of the
London Mathematical Society, series 2, vol. 45, 1939.

DRAFT
Contents

Part I Preliminaries

1 Introduction . 3
1.1 Structure and Meaning . 3

1.1.1 Syntax and Types . 4
1.1.2 Semantics . 4
1.1.3 Mathematical Models of Computation 6
1.1.4 Operational Semantics . 7
1.1.5 Denotational Semantics . 8
1.1.6 Axiomatic Semantics . 8

1.2 A Taste of Semantics Methods: Numerical Expressions 9
1.2.1 An Informal Semantics . 10
1.2.2 A Small-Step Operational Semantics . 11
1.2.3 A Big-Step Operational Semantics (or Natural Semantics) . . 13
1.2.4 A Denotational Semantics . 15
1.2.5 Semantic Equivalence . 16
1.2.6 Expressions with Variables . 17

1.3 Applications of Semantics . 18
1.3.1 Language Design . 18
1.3.2 Implementation . 18
1.3.3 Analysis and Verification . 19
1.3.4 Synergy Between Different Semantics Approaches 19

1.4 Content Overview . 20
1.4.1 Induction and Recursion . 22
1.4.2 Semantic Domains . 24
1.4.3 Bisimulation . 26
1.4.4 Temporal and Modal Logics . 26
1.4.5 Probabilistic Systems . 27

1.5 Chapters Contents and Reading Guide . 27

xv

DRAFT

xvi Contents

2 Preliminaries . 31
2.1 Notation . 31

2.1.1 Basic Notation . 31
2.1.2 Signatures and Terms . 32
2.1.3 Substitutions . 33
2.1.4 Unification Problem . 33

2.2 Inference Rules and Logical Systems . 35
2.3 Logic Programming . 43
Problems . 45

Part II IMP: a simple imperative language

3 Operational Semantics of IMP . 51
3.1 Syntax of IMP . 51

3.1.1 Arithmetic Expressions . 52
3.1.2 Boolean Expressions . 52
3.1.3 Commands . 52
3.1.4 Abstract Syntax . 53

3.2 Operational Semantics of IMP . 54
3.2.1 Memory State . 54
3.2.2 Inference Rules . 55
3.2.3 Examples . 59

3.3 Abstract Semantics: Equivalence of Expressions and Commands . . . 64
3.3.1 Examples: Simple Equivalence Proofs 65
3.3.2 Examples: Parametric Equivalence Proofs 66
3.3.3 Examples: Inequality Proofs . 68
3.3.4 Examples: Diverging Computations . 70

Problems . 73

4 Induction and Recursion . 75
4.1 Noether Principle of Well-founded Induction 75

4.1.1 Well-founded Relations . 75
4.1.2 Noether Induction . 81
4.1.3 Weak Mathematical Induction . 82
4.1.4 Strong Mathematical Induction . 83
4.1.5 Structural Induction . 83
4.1.6 Induction on Derivations . 86
4.1.7 Rule Induction . 87

4.2 Well-founded Recursion . 90
Problems . 95

5 Partial Orders and Fixpoints . 99
5.1 Orders and Continuous Functions . 99

5.1.1 Orders . 100
5.1.2 Hasse Diagrams . 101
5.1.3 Chains . 105

DRAFT

Contents xvii

5.1.4 Complete Partial Orders . 105
5.2 Continuity and Fixpoints . 108

5.2.1 Monotone and Continuous Functions . 108
5.2.2 Fixpoints . 110

5.3 Immediate Consequence Operator . 113
5.3.1 The Operator bR . 113
5.3.2 Fixpoint of bR . 114

Problems . 117

6 Denotational Semantics of IMP . 121
6.1 l -Notation . 121

6.1.1 l -Notation: Main Ideas . 122
6.1.2 Alpha-Conversion, Beta-Rule and Capture-Avoiding

Substitution . 125
6.2 Denotational Semantics of IMP . 127

6.2.1 Denotational Semantics of Arithmetic Expressions: The
Function A . 128

6.2.2 Denotational Semantics of Boolean Expressions: The
Function B . 129

6.2.3 Denotational Semantics of Commands: The Function C 130
6.3 Equivalence Between Operational and Denotational Semantics 135

6.3.1 Equivalence Proofs For Expressions . 135
6.3.2 Equivalence Proof for Commands . 136

6.4 Computational Induction . 143
Problems . 145

Part III HOFL: a higher-order functional language

7 Operational Semantics of HOFL . 151
7.1 Syntax of HOFL . 151

7.1.1 Typed Terms . 152
7.1.2 Typability and Typechecking . 156

7.2 Operational Semantics of HOFL . 159
Problems . 164

8 Domain Theory . 167
8.1 The Flat Domain of Integer Numbers Z? . 167
8.2 Cartesian Product of Two Domains . 167
8.3 Functional Domains . 169
8.4 Lifting . 172
8.5 Function’s Continuity Theorems . 174
8.6 Useful Functions . 177
Problems . 181

DRAFT

xviii Contents

9 HOFL Denotational Semantics . 183
9.1 HOFL Semantic Domains . 183
9.2 HOFL Evaluation Function . 184

9.2.1 Constants . 184
9.2.2 Variables . 184
9.2.3 Binary Operators . 185
9.2.4 Conditional . 185
9.2.5 Pairing . 186
9.2.6 Projections . 186
9.2.7 Lambda Abstraction . 187
9.2.8 Function Application . 187
9.2.9 Recursion . 187

9.3 Continuity of Meta-language’s Functions . 189
9.4 Substitution Lemma . 191
Problems . 192

10 Equivalence between HOFL denotational and operational semantics . 195
10.1 Completeness . 196
10.2 Equivalence (on Convergence) . 199
10.3 Operational and Denotational Equivalences of Terms 201
10.4 A Simpler Denotational Semantics . 202
Problems . 203

Part IV Concurrent Systems

11 CCS, the Calculus for Communicating Systems . 209
11.1 Syntax of CCS . 214
11.2 Operational Semantics of CCS . 215

11.2.1 Action Prefix . 216
11.2.2 Restriction . 216
11.2.3 Relabelling . 216
11.2.4 Choice . 217
11.2.5 Parallel Composition . 217
11.2.6 Recursion . 218
11.2.7 CCS with Value Passing . 221
11.2.8 Recursive Declarations and the Recursion Operator 222

11.3 Abstract Semantics of CCS . 224
11.3.1 Graph Isomorphism . 224
11.3.2 Trace Equivalence . 226
11.3.3 Bisimilarity . 227

11.4 Compositionality . 233
11.4.1 Bisimilarity is Preserved by Choice . 234

11.5 A Logical View to Bisimilarity: Hennessy-Milner Logic 235
11.6 Axioms for Strong Bisimilarity . 238
11.7 Weak Semantics of CCS . 240

DRAFT

Contents xix

11.7.1 Weak Bisimilarity . 240
11.7.2 Weak Observational Congruence . 242
11.7.3 Dynamic Bisimilarity . 243

Problems . 244

12 Temporal Logic and µ-Calculus . 249
12.1 Temporal Logic . 249

12.1.1 Linear Temporal Logic . 250
12.1.2 Computation Tree Logic . 252

12.2 µ-Calculus . 254
12.3 Model Checking . 257
Problems . 258

13 p-Calculus . 261
13.1 Name Mobility . 261
13.2 Syntax of the p-calculus . 264
13.3 Operational Semantics of the p-calculus . 266

13.3.1 Action Prefix . 267
13.3.2 Choice . 268
13.3.3 Name Matching . 268
13.3.4 Parallel Composition . 268
13.3.5 Restriction . 269
13.3.6 Scope Extrusion . 269
13.3.7 Replication . 269
13.3.8 A Sample Derivation . 270

13.4 Structural Equivalence of p-calculus . 271
13.4.1 Reduction semantics . 271

13.5 Abstract Semantics of the p-calculus . 272
13.5.1 Strong Early Ground Bisimulations . 273
13.5.2 Strong Late Ground Bisimulations . 274
13.5.3 Strong Full Bisimilarities . 275
13.5.4 Weak Early and Late Ground Bisimulations 276

Problems . 277

Part V Probabilistic Systems

14 Measure Theory and Markov Chains . 281
14.1 Probabilistic and Stochastic Systems . 281
14.2 Measure Theory . 282

14.2.1 s -field . 282
14.2.2 Constructing a s -field . 283
14.2.3 Continuous Random Variables . 285
14.2.4 Stochastic Processes . 289

14.3 Markov Chains . 289
14.3.1 Discrete and Continuous Time Markov Chain 290
14.3.2 DTMC as LTS . 291

DRAFT

xx Contents

14.3.3 DTMC Steady State Distribution . 293
14.3.4 CTMC as LTS . 295
14.3.5 Embedded DTMC of a CTMC . 296
14.3.6 CTMC Bisimilarity . 296
14.3.7 DTMC Bisimilarity . 298

Problems . 299

15 Markov Chains with Actions and Non-determinism 303
15.1 Discrete Markov Chains With Actions . 303

15.1.1 Reactive DTMC . 304
15.1.2 DTMC With Non-determinism . 306

Problems . 309

16 PEPA - Performance Evaluation Process Algebra 311
16.1 From Qualitative to Quantitative Analysis . 311
16.2 CSP . 312

16.2.1 Syntax of CSP . 312
16.2.2 Operational Semantics of CSP . 313

16.3 PEPA. 314
16.3.1 Syntax of PEPA . 314
16.3.2 Operational Semantics of PEPA . 316

Problems . 321

Glossary . 325

Solutions . 327

DRAFT
Acronyms

⇠ operational equivalence in IMP (see Definition 3.3)
⌘den denotational equivalence in HOFL (see Definition 10.4)
⌘op operational equivalence in HOFL (see Definition 10.3)
' CCS strong bisimilarity (see Definition 11.5)
⇡ CCS weak bisimilarity (see Definition 11.16)
⇠= CCS weak observational congruence (see Section 11.7.2)
⇡d CCS dynamic bisimilarity (see Definition 11.17)
�⇠E p-calculus early bisimilarity (see Definition 13.3)
�⇠L p-calculus late bisimilarity (see Definition 13.4)
⇠E p-calculus strong early full bisimilarity (see Section 13.5.3)
⇠L p-calculus strong late full bisimilarity (see Section 13.5.3)
•tE p-calculus weak early bisimilarity (see Section 13.5.4)
•tL p-calculus weak late bisimilarity (see Section 13.5.4)
A interpretation function for the denotational semantics of IMP arithmetic

expressions (see Section 6.2.1)
ack Ackermann function (see Example 4.18)
Aexp set of IMP arithmetic expressions (see Chapter 3)
B interpretation function for the denotational semantics of IMP boolean

expressions (see Section 6.2.2)
Bexp set of IMP boolean expressions (see Chapter 3)
B set of booleans
C interpretation function for the denotational semantics of IMP com-

mands (see Section 6.2.3)
CCS Calculus of Communicating Systems (see Chapter 11)
Com set of IMP commands (see Chapter 3)
CPO Complete Partial Order (see Definition 5.11)
CPO? Complete Partial Order with bottom (see Definition 5.12)
CSP Communicating Sequential Processes (see Section 16.2)
CTL Computation Tree Logic (see Section 12.1.2)
CTMC Continuous Time Markov Chain (see Definition 14.15)

xxi

DRAFT

xxii Acronyms

DTMC Discrete Time Markov Chain (see Definition ??)
Env set of HOFL environments (see Chapter 9)
fix (least) fixpoint (see Definition 5.2.2)
FIX (greatest) fixpoint
gcd greatest common divisor
HML Hennessy-Milner modal Logic (see Section 11.5)
HM-Logic Hennessy-Milner modal Logic (see Section 11.5)
HOFL A Higher-Order Functional Language (see Chapter 7)
IMP A simple IMPerative language (see Chapter 3)
int integer type in HOFL (see Definition 7.2)
Loc set of locations (see Chapter 3)
LTL Linear Temporal Logic (see Section 12.1.1)
LTS Labelled Transition System (see Definition 11.2)
lub least upper bound (see Definition 5.7)
N set of natural numbers
P set of closed CCS processes (see Definition 11.1)
PEPA Performance Evaluation Process Algebra (see Chapter 16)
Pf set of partial functions on natural numbers (see Example 5.10)
PI set of partial injective functions on natural numbers (see Problem 5.11)
PO Partial Order (see Definition 5.1)
PTS Probabilistic Transition System (see Section 14.3.2)
R set of real numbers
T set of HOFL types (see Definition 7.2)
Tf set of total functions from N to N? (see Example 5.11)
Var set of HOFL variables (see Chapter 7)
Z set of integers

DRAFT
Part I

Preliminaries

DRAFT
This part introduces the basic terminology, notation and mathematical tools used

in the rest of the book.

DRAFT
Chapter 1
Introduction

It is not necessary for the semantics to determine an
implementation, but it should provide criteria for showing that an
implementation is correct. (Dana Scott)

Abstract This chapter overviews the motivation, guiding principles and main con-
cepts used in the book. It starts by explaining the role of formal semantics and
different approaches to its definition, then briefly exposes some important subjects
covered in the book, like domain theory and induction principles and it is concluded
by an explanation of the content of each chapter, together with a list of references to
the literature for studying some topics in more depth or for using some companion
textbooks in conjunction with the current text.

1.1 Structure and Meaning

Any programming language is fully defined in terms of three essential features:

Syntax: refers to the appearance of the programs of the language;
Types: restrict the syntax to enforce suitable properties on programs;
Semantics: refers to the meanings of (well-typed) programs.

Example 1.1. For example, the alphabet of roman numerals, the numeric system
used in ancient Rome, consists of seven letters from the Latin alphabet. A value is
assigned to each letter (see Table 1.1) and a number n is expressed by juxtaposing
the letters such that the sum of their values is n. Not all sequences are valid. Symbols
are usually placed from left to right, starting with the largest value and ending with
the smallest value. However, to avoid four repetitions in a row of the same letter, like
IIII, subtractive notation is used: by placing a symbol with smaller value u to the left
of a symbol with higher value v we indicate the number v�u. So the symbol I can be
placed before V or X; the symbol X before L or C and the symbol C before D or M,
and 4 is written IV instead of IIII. Thus IX and XI are both correct sequences, with
values 9 and 11, respectively, while IXI is not correct and has no corresponding value.
The rules that prescribe the correct sequences of symbols define the (well-typed)
syntax of roman numerals. The rules that define how to evaluate a roman numeral to
a positive natural number give the semantics of roman numerals.

3

DRAFT

4 1 Introduction

Table 1.1: Alphabet of roman numerals

Symbol I V X L C D M

Value 1 5 10 50 100 500 1000

1.1.1 Syntax and Types

The syntax is concerned with the alphabet of symbols, and with the grammatical
structure of programs. The syntax of a formal language tells us which sequences of
symbols are valid statements and which ones make no sense and should be discarded.

Mathematical tools such as regular expressions, context-free grammars, and
Backus-Naur Form (BNF), are studied in every computer science degree and are now
widely applied tools for defining the syntax of formal languages. Such a formalisation
can be found in the appendix of most language manuals.

Types can be used to limit the occurrence of errors or to allow compiler opti-
misations or to reduce the risk of introducing bugs or just to discourage certain
programming malpractices. Different types can be defined over the same language.
Types are often presented as set of logic rules, called type systems that are used to
assign a type unambiguously to each program and computed value.

However, grammars and types do not explain what a correctly written program
means. Thus, every language manual also contains natural language descriptions
of the meaning of the various constructs, how they should be used and styled, and
example code fragments. This attitude falls under the pragmatics of a language,
describing, e.g., how the various features should be used, which auxiliary tools
are available (syntax checkers, debuggers, etc.). Unfortunately this leaves space to
different interpretations that can ultimately lead to discordant implementations of the
same language or to compilers that rely on wrong code optimisation strategies.

If a language’s semantics would be formalised as well, it could appear in the
language manual, too and solve any ambiguity. This is not yet the case because
effective techniques for specifying the run-time behaviour of programs in a rigorous
manner have proved much harder to develop than parsers for grammars.

1.1.2 Semantics

It seems the word ‘semantics’ was introduced in a book by French philologist Michel
Bréal (1832–1915), published in 1900, where it referred to

the study of how words change their meanings.

Subsequently, the word ‘semantics’ has also changed its meaning, and it is now
generally defined as

the study of the meanings of words and phrases in language.

DRAFT

1.1 Structure and Meaning 5

In Computer Science, the semantics is concerned with

the study of the meaning of (well-typed) programs.

The studies in formal semantics are not always easily accessible to a student of
computer science or mathematics, without a good background in mathematical logic
and, as a consequence, they are often regarded as an exoteric subject from people not
familiar enough with the mathematical tools involved.

Since programmers can write programs that “work as expected”, once they have
been thoroughfully tested,

what do we gain by formalising the semantics of a programming language?

An easy answer is that today, in the era of the Internet of Things, our lives, the
machines and devices we use, and the entire world run on software: It is not enough
to require that medical implants, planes and nuclear reactors seem “to work as
expected”! To give a more circumstantiated answer, we can start from the related
question

What was gained when language syntax was formalised?

It is generally understood that the formalisation of syntax leads, e.g., to the
following benefits:

1. it standardises the language; this is crucial

• to users, as a guide to write syntactically correct programs, and
• to implementors, who must write a correct parser for the language’s compiler.

2. it permits a formal analysis of many properties, like finding and resolving parsing
ambiguities.

3. it can be used as input to a compiler front-end generating tool, such as Yacc,
Bison, Xtext. In this way, from the syntax definition one can automatically derive
an implementation of the front-end of the language’s compiler.

Providing a formal semantics definition of a programming language can then lead
to similar benefits:

1. it standardises a machine-independent specification of the language; this is crucial:

• to users, for understanding and improving the programs they write, and
• to implementors, who must write a correct and efficient code generator for the

language’s compiler.

2. it permits a formal analysis of program properties, such as type preservation,
termination, specification compliance or program equivalence.

3. it can be used as input to a compiler back-end generating tool. In this way, the
semantics definition gives also the (prototypal and possibly inefficient) implemen-
tation of the back end of the language’s compiler.

DRAFT

6 1 Introduction

What is then the semantics of a programming language?
A crude view is that the semantics of a programming language is defined by

(the back-end of) its compiler or interpreter: from the source program to the target
code executed by the computer. This view is clearly not acceptable because, e.g., it
refers to a specific piece of commercial hardware, the specification is not good for
portability, it is not at the right level of abstraction to be understood by a programmer,
it is not at the right level of abstraction to state and prove interesting properties of
programs, two programs written for the same purpose by different programmers are
likely different, even if they (should) have the same meaning, finally, if different
implementations are given, how do we know that they are correct and compatible?

To give a semantics for a programming language means to define the behaviour
of any program written in this language. As there are infinitely many programs,
one would like to have a finitary description of the semantics that can take into
account any of them. Only when the semantics is given one can prove such important
properties like termination of program execution, determinism of the computed result,
program equivalence, or program correctness.

Example 1.2. We can hardly claim to know that two programs mean the same if we
cannot tell what a program means. For example, consider the Java expressions:

x + (y + z) (x + y) + z

Are they equivalent? Can we replace the former with the latter (and viceversa) in
a program, without changing its meaning? Under which circumstances?1

1.1.3 Mathematical Models of Computation

In giving a formal semantics to a programming language we are concerned with
building a mathematical model: Its purpose is to serve as a basis for understanding
and reasoning about how programs behave. Not only is a mathematical model useful
for various kinds of analysis and verification, but also, at a more fundamental level,
because simply the activity of trying to define the meaning of program constructions
precisely can reveal all kinds of subtleties of which it is important to be aware.

Unlike the acceptance of BNF as a standard definition method for syntax, it
appears unlikely that a single definition method will take hold for semantics. This is
because semantics

• is harder to formalise than syntax,
• has a wider variety of applications,
• is dependent on the properties we want to tackle, i.e., different models are best

suited for tackling different issues.

1 Remind that the ‘+’ is overloaded in Java: it sums integers, floating points and concatenates strings.

DRAFT

1.1 Structure and Meaning 7

Different semantic styles and models have been developed for different purposes,
depending on the main task to be addressed. The overall aim of the book is to study
the main semantic styles, compare their expressiveness, and apply them to study
program properties. To this aim it is fundamental to gain acquaintance with the
principles and theories on which such semantic models are based.

Classically, semantics definition methods fall roughly into three groups: Opera-
tional, denotational and axiomatic. In this book we will focus mainly on the first two
kinds of semantics, which find wider applicability.

1.1.4 Operational Semantics

In the operational semantics it is of interest how the effect of a computation is
achieved. Some kind of abstract machine2 is first defined, then the operational
semantics describes the meaning of a program in terms of the steps/actions that this
machine executes. The focus of operational semantics is thus on states and state
transformations.

An early notable example of operational semantics was concerned with the se-
mantics of LISP (LISt Processor) by John McCarthy (1927–2011).3 A later example
was the definition of the semantics of Algol 68 in terms of a hypothetical computer
over which program actions are executed.

In 1981, Gordon Plotkin (1946–) introduced the structural operational semantics
style (SOS-style) in a technical report,4 which by now is one of the most cited tech-
nical reports in computer science, only recently revised and reprinted in a journal.5

Gilles Kahn (1946-2006) introduced another form of operational semantics, called
natural semantics, or big-step semantics, in 1987, where possibly many steps of
execution are incorporated into a single logical derivation.

It is relatively easy to write the operational semantics in the form of Horn clauses,
a particular form of logical implications. In this way, they could in principle be
interpreted by a logic programming system, such as Prolog.6

Because of the strong connection with the syntactic structure and the fact that the
mathematics involved is usually not very complicated, operational semantics can lead

2 The term machine ordinarily refers to a physical device that performs mechanical functions. The
term abstract distinguishes a physically existent device from one that exists in the imagination of
its inventor or user: it is a convenient conceptual abstraction that leaves out many implementation
details. The archetypical abstract machine is the Turing machine.
3 McCarthy, J.: Recursive functions of symbolic expressions and their computation by machine.
Communications of the ACM 3(4):184-195, 1960.
4 Plotkin, G.D.: A Structural Approach to Operational Semantics. Tech. Rep. DAIMI FN-19,
Computer Science Department, Aarhus University, Aarhus, Denmark, 1981.
5 Plotkin, G.D.: A Structural Approach to Operational Semantics. J. Log. Algebr. Program. 60–
61:17–139, 2004.
6 Apart from issues about performance and the fact that Prolog is not complete, because it exploits
a depth-first exploration strategy: backtracking out of wrong attempted transition sequences is only
possible if they are finite.

DRAFT

8 1 Introduction

to descriptions that are understandable even for non-specialists: SOS-style operational
semantics can provide the programmer with a concise and accurate description of
what the language constructs do, because it is syntax-oriented, inductive and easy to
grasp.

1.1.5 Denotational Semantics

In denotational semantics, the meaning of a well-formed program is some mathemati-
cal object (e.g., a function from input data to output data). The steps taken to calculate
the output and the abstract machine where they are executed are unimportant: Only
the effect is of interest, not how it is obtained.

The essence of denotational semantics lies in the principle of compositionality: the
semantics takes the form of a function that assigns an element of some mathematical
domain to each individual construct, in such a way that

the meaning of a composite construct does not depend on the particular form of the constituent
constructs, but only on their meanings.

Denotational semantics originated in the pioneering work7 of Christopher Strachey
(1916–1975) and Dana Scott (1932–) in the late 1960s and in fact it is sometimes
called Scott-Strachey semantics.

Denotational semantics descriptions can also be used to derive implementations.
Still there is a problem with performance: operations that can be efficiently performed
on computer hardware, such as reading or changing the contents of storage cells,
are first mapped to relatively complicated mathematical notions which must then be
mapped back again to a concrete computer architecture.

1.1.6 Axiomatic Semantics

Instead of directly assigning a meaning to a program, axiomatic semantics gives a
description of the constructs in a programming language by providing axioms that are
satisfied by these constructs. Axiomatic semantics poses the focus on valid assertions
for proving program correctness: there may be aspects of the computation and of the
effect that are deliberately ignored.

The axiomatic semantics has been put forward by the work of Robert W.Floyd
(1936–2001) on flowchart languages8 and Tony Hoare (1934–) on structured imper-

7 Scott, D.S.: Outline of a mathematical theory of computation. Technical Monograph PRG-2,
Oxford University Computing Laboratory, Oxford, England, November 1970. Scott D.S., Strachey,
C.: Toward a mathematical semantics for computer languages. Oxford Programming Research
Group Technical Monograph. PRG-6. 1971.
8 Floyd, R.W.: Assigning meanings to programs. Proceedings of the American Mathematical Society
Symposia on Applied Mathematics. Vol. 19, pp. 19–31, 1967.

DRAFT

1.2 A Taste of Semantics Methods: Numerical Expressions 9

ative programs9, and in fact it is sometimes referred to as Floyd-Hoare logic. The
basic idea is that programs and program statements are described by two logical
assertions: a pre-condition, prescribing the state of the system before executing the
program, and a post-condition, satisfied by the state after the execution, when the
preconditions are valid. Using such an axiomatic description it is possible, at least in
principle, to prove the correctness of a program with respect to a specification:

Partial correctness: a program is partially correct w.r.t. a pre-condition and a post-
condition if whenever the initial state fulfils the pre-condition
and the program terminates, the final state is guaranteed to
fulfil the post-condition. (The partial correctness property does
not ensure that the program will terminate.)

Total correctness: a program is totally correct w.r.t. a pre-condition and a post-
condition if whenever the initial state fulfils the pre-condition,
then the program terminates, and the final state is guaranteed
to fulfil the post-condition.

One limitation of axiomatic semantics is that it is scarcely applicable to the
case of concurrent, interactive systems, whose correct behaviour often involves
non-terminating computations (for which post-conditions cannot be used).

1.2 A Taste of Semantics Methods: Numerical Expressions

We can give a first, informal overview of the different flavours of semantics styles we
will consider in this book by taking a simple example of numerical expressions.10

Let us consider two syntactic categories Nums and Exp, respectively, for numerals
n 2 Nums and expressions E 2 Exp, defined by the grammar:

n ::= 0 | 1 | 2 | ...

e ::= n | e� e | e⌦ e

The above language of numerical expressions uses the auxiliary set of numerals,
Nums, which are syntactic representations of the more abstract set of natural numbers.
To differentiate between numerals (like 5) and numbers (like 5) we use different
fonts.

Remark 1.1 (Numbers vs numerals). The natural numbers 0,1,2, ... are mathemat-
ical objects which exist in some abstract world of concepts. They find concrete
representations in different languages. For example, the number 5 is represented by:

• the string “five” in English,

9 Hoare, C. A. R.: An axiomatic basis for computer programming. Communications of the ACM 12
(10): 576–580,1969.
10 The example has been inspired from some course notes on the “Semantics of programming
languages”, by Matthew Hennessy.

DRAFT

10 1 Introduction

• the string “101” in binary notation,
• the string “V” in roman numerals.

From the grammar it is evident that there are three ways to build expressions:

• any numeral n is also an expression;
• if we have already constructed two expressions e0 and e1, then e0 � e1 is also an

expression;
• if we have already constructed two expressions e0 and e1, then e0 ⌦ e1 is also an

expression.

In the book we will always use abstract syntax representations, as if all concrete
terms were parsed before we start to work with them.

Remark 1.2 (Concrete and abstract syntax). While the concrete syntax of a language
is concerned with the precise linear sequences of symbols which are valid terms of
the language, we are interested in the abstract syntax, which describes expressions
purely in terms of their structure. We will never be worried about where the brackets
are in expressions like

1�2⌦3

because we will never deal with such unparsed terms.
In other words we are considering only (valid) abstract syntax trees, like

⌦

� 3

1 2

Since it would be tedious to draw trees every time, we use linear syntax and brackets,
like (1�2)⌦3 to save space while avoiding ambiguities.

1.2.1 An Informal Semantics

Since in the expressions we deliberately used some non-standard symbols � and ⌦,
we must define what is their meaning. Programmers primarily learn the semantics
of a language through examples, their intuitions about the underlying computa-
tional model, and some natural language description. An informal description of the
meaning of the expressions we are considering could be the following:

• a numeral n is evaluated to the corresponding natural number n;
• to find the value associated with an expression of the form e0 �e1 we evaluate the

expressions e0 and e1 and take the sum of the results;
• to find the value associated with an expression of the form e0 ⌦e1 we evaluate the

expressions e0 and e1 and take the product of the results.

DRAFT

1.2 A Taste of Semantics Methods: Numerical Expressions 11

We hope the reader agrees that the above guidelines are sufficient to determine
the value of any well-formed expression, no matter how large.11

To accompany the description with examples, we can add that:

• 2 is evaluated to 2
• (1�2)⌦3 is evaluated to 9
• (1�2)⌦ (3�4) is evaluated to 21

Since the natural language is notoriously prone to mis-interpretations and misun-
derstandings, in the following we try to make the above description more accurate.

We show next how the operational semantics can describe the steps needed
to evaluate an expression over some abstract computational device and how the
denotational semantics can be used to associate meaning to numerical expressions
(their valuation).

1.2.2 A Small-Step Operational Semantics

There are several versions of operational semantics for the above language of expres-
sions. The first one we present is likely familiar to you: it simplifies expressions until
a value is met. This is achieved by defining judgements of the form

e0 ! e1

to be read as: after performing one step of evaluation of e0, the expression e1 remains
to be evaluated.

Small-step semantics formally describes how individual steps of a computation
take place on an abstract device. Small-step semantics provides an abstraction of
how the program is executed on a machine: we ignore details like the use of registers
and addresses for variables. This makes the description independent of machine
architectures and implementation strategies.

The logic inference rules are written in the general form (see Section 2.2):

premises
conclusion

side-condition (rule name)

meaning that if the premises and the side-condition hold true then the conclusion
can be drawn, where the premises consist of one, none or more judgements and the
condition is a single judgement. The rule-name is just a convenient label that can be
used to refer the rule. Rules with no premises are called axioms and their conclusion
is postulated to be always valid.

The rules for the expressions are given in Figure 1.1. For example, the rule sum
says that � applied to two numerals evaluates to the numeral representing the sum of

11 Note that we are not telling the order in which e0 and e1 must be evaluated: is it important?

DRAFT

12 1 Introduction

n0 �n1 ! n
n = n0 +n1 (sum)

e0 ! e0
0

e0 � e1 ! e0
0 � e1

(sumL)
e1 ! e0

1

e0 � e1 ! e0 � e0
1

(sumR)

n1 ⌦n2 ! n
n = n1 ⇥n2 (prod)

e0 ! e0
0

e0 ⌦ e1 ! e0
0 ⌦ e1

(prodL)
e1 ! e0

1

e0 ⌦ e1 ! e0 ⌦ e0
1

(prodR)

Fig. 1.1: Small-step semantics rules for numerical expressions

the two arguments, while the rule sumL (respectively, sumR) says that we are allowed
to simplify the left (resp., right) argument. Analogously for product.

For example, we can derive both the judgements

(1�2)⌦ (3�4) ! 3⌦ (3�4) (1�2)⌦ (3�4) ! (1�2)⌦7

as witnessed by the formal derivations

1�2 ! 3
3 = 1+2 (sum)

(1�2)⌦ (3�4) ! 3⌦ (3�4)
(prodL)

3�4 ! 7
7 = 3+4 (sum)

(1�2)⌦ (3�4) ! (1�2)⌦7
(prodR)

A derivation is represented as an (inverted) tree, with the goal to be verified at the
root. The tree is generated by applications of the defining rules, with the terminating
leaves being generated by axioms. As derivations tend to grow large, we will intro-
duce a convenient alternative notation for them in Chapter 2 (see Example 2.5 and
Section 2.3) and will use it extensively in the subsequent chapters.

Note that even for a deterministic program, there can be many different computa-
tion sequences leading to the same final result, since the semantics may not specify a
totally ordered sequence of evaluation steps.

If we want to enforce a specific evaluation strategy, then we can change the rules
so to guarantee, e.g., that the left-most occurrence of an operator �/⌦ which has
both its operands already evaluated is always executed first, while the evaluation
of the second-operand is conducted only after the left-operand has been evaluated.
We show only the two rules that need to be changed (changes are highlighted with
boxes):

e1 ! e0
1

n0 � e1 ! n0 � e0
1

(sumR)
e1 ! e0

1

n0 ⌦ e1 ! n0 ⌦ e0
1

(prodR)

Now the step judgement

(1�2)⌦ (3�4) ! (1�2)⌦7

is no longer derivable.
Instead, it is not difficult to derive the judgements:

DRAFT

1.2 A Taste of Semantics Methods: Numerical Expressions 13

(1�2)⌦ (3�4) ! 3⌦ (3�4) 3⌦ (3�4) ! 3⌦7 3⌦7 ! 21

The steps can be composed: let us write

e0 !k ek

if e0 can be reduced to ek in k-steps: that is there exists e1,e2, ...,ek�1 such that we
can derive the judgements

e0 ! e1 e1 ! e2 ... ek�1 ! ek

This includes the case when k = 0: then ek must be the same as e0, i.e., in 0 steps any
expression can reduce to itself.

In our example, by composing the above steps, we have

(1�2)⌦ (3�4) !3 21

We also write
e 6!

when no expression e0 can be found such that e ! e0.
It is immediate to see that for any numeral n, we have n 6!, as no conclusion of

the inference rules has a numeral as source of the transition.
To fully evaluate an expression, we need to indefinitely compute successive

derivations until eventually a final numeral is obtained, that cannot be evaluated
further. We write

e !⇤ n

to mean that there is some natural number k such that e !k n, i.e., e can be evaluated
to n in k steps. The relation !⇤ is called the reflexive and transitive closure of !.
Note that we have, e.g., n !⇤ n for any numeral n.

In our example we can derive the judgement

(1�2)⌦ (3�4) !⇤ 21

Small-step operational semantics will be especially useful in Parts IV and V to
assign different semantics to non-terminating systems.

1.2.3 A Big-Step Operational Semantics (or Natural Semantics)

Like small-step semantics, a natural semantics is a set of inference rules, but a
complete computation in natural semantics is a single, large derivation. For this
reason, a natural semantics is sometimes called a big-step operational semantics.

Big-step semantics formally describes how the overall results of the executions are
obtained. It hides even more details than the small-step operational semantics. Like

DRAFT

14 1 Introduction

n # n (num)
e0 # n1 e1 # n2

e0 � e1 # n n = n1 +n2 (sum)
e0 # n1 e1 # n2

e0 ⌦ e1 # n n = n1 ⇥n2 (prod)

Fig. 1.2: Natural semantics for numerical expressions

small-step operational semantics, natural semantics shows the context in which a com-
putation step occurs, and like denotational semantics, natural semantics emphasises
that the computation of a phrase is built from the computations of its sub-phrases.

Natural semantics have the advantage of often being simpler (needing fewer
inference rules) and often directly correspond to an efficient implementation of an
interpreter for the language. In our running example, we might want to disregard the
individual steps that led to the result and be interested only in the final outcome, i.e.,
in the predicate E !⇤ n.

Using natural semantics we can formalise derivations of such longer computations
by exploiting inference rules. To avoid confusion, here we denote the judgements
using the notation

e # n

to be read as: the expression e is (eventually) evaluated to n.
The rules are reported in Figure 1.2. This time only three rules are needed, which

immediately correspond to the informal semantics we gave for numerical expressions.
We can now verify that the judgement

(1�2)⌦ (3�4) # 21

can be derived as follows:

1 # 1 (num)
2 # 2 (num)

1�2 # 3 3 = 1+2 (sum)
3 # 3 (num)

4 # 4 (num)

3�4 # 7 7 = 3+4 (sum)

(1�2)⌦ (3�4) # 21
21 = 3⇥7 (prod)

Small-step operational semantics gives more control of the details and order
of evaluation. These properties make small-step semantics more convenient when
proving type soundness of a type system against an operational semantics. Natural
semantics can lead to simpler proofs, e.g., when proving the preservation of correct-
ness under some program transformation. Natural semantics is also very useful to
define reduction to canonical forms.

An interesting drawback of natural semantics is that semantics derivations can be
drawn only for terminating programs. The main disadvantage of natural semantics is
thus that non-terminating (diverging) computations do not have an inference tree.

We will exploit natural semantics mainly in Parts II and III of the book.

DRAFT

1.2 A Taste of Semantics Methods: Numerical Expressions 15

1.2.4 A Denotational Semantics

Differently from operational semantics, denotational semantics is concerned with
manipulating mathematical objects and not with executing programs.

In the case of expressions, the intuition is that a term represents a number (ex-
pressed in form of a calculation). So we can choose as a semantic domain the set
of natural numbers N, and the interpretation function will then map expressions to
natural numbers.

To avoid ambiguities between pieces of syntax and mathematical objects, we
usually enclose syntactic terms within a special kind of brackets J·K that serve as a
separation. It is also common, when different interpretation functions are considered,
to use calligraphic letters to distinguish the kind of terms they apply to (one for each
syntax category).

In our running example, we can define two semantics functions:

N J·K : Nums ! N
E J·K : Exp ! N

Notice that our choice of semantic domain has certain immediate consequences
for the semantics of our language: it implies that every expression will mean exactly
one number!

Remark 1.3. When we will study more complex languages, we will find that we
need more complex (and less familiar) domains than N. For example, as originally
developed by Strachey and Scott, denotational semantics provides the meaning of a
computer program as a function that mapped input into output. To give denotations
to recursively defined programs, Scott proposed working with continuous functions
between domains, specifically complete partial orders.

Without having defined yet the interpretation functions, and contrary to the opera-
tional semantics definitions, anyone looking at the semantics already knows that the
language is:

deterministic: each expression has at most one answer;
normalising: every expression has an answer.

Giving a meaning to numerals is immediate

N JnK = n

For composite expressions, the meaning will be determined by composing the
meaning of the arguments

E JnK = N JnK
E Je0 � e1K = E Je0K+E Je1K
E Je0 ⌦ e1K = E Je0K⇥E Je1K

DRAFT

16 1 Introduction

We have thus defined the interpretation function by induction on the structure of
the expressions and it is

compositional: the meaning of complex expressions is defined in terms of the
meaning of the constituents.

As an example, we can interpret our running expression:

E J(1�2)⌦ (3�4)K = E J1�2K⇥E J3�4K
= (E J1K+E J2K)⇥ (E J3K+E J4K)
= (N J1K+N J2K)⇥ (N J3K+N J4K)
= (1+2)⇥ (3+4) = 21

Denotational semantics is best suited for sequential systems and thus exploited in
Parts II and III.

1.2.5 Semantic Equivalence

We have now available three different semantics for numerical expressions:

e !⇤ n e # n E JeK

and we are faced with several questions:

1. Is it true that for every expression e there exists some numeral n such that e !⇤ n?
The same property, often referred to as normalisation can be asked also for e # n,
while is trivially satisfied by E JeK.

2. Is it true that if e !⇤ n and e !⇤ m we have n = m?
The same property, often referred to as determinacy can be asked also for E # n,
while is trivially satisfied by E JeK.

3. Is it true that e !⇤ n iff e # n?
This has to do with the consistency of the semantics and the question can be posed
between any two of the three semantics we have defined.

We can also derive some intuitive relations of equivalence between expressions:

• Two expressions e0 and e1 are equivalent if for any numeral n, e0 !⇤ n iff e1 !⇤ n.
• Two expressions e0 and e1 are equivalent if for any numeral n, e0 # n iff e1 # n.
• Two expressions e0 and e1 are equivalent if E Je0K = E Je1K.

Of course, if we prove the consistency of the three semantics, then we can conclude
that the three notions of equivalence coincide.

We can also exploit the formal definitions to prove or disprove that two expressions
are equivalent.

DRAFT

1.2 A Taste of Semantics Methods: Numerical Expressions 17

1.2.6 Expressions with Variables

Suppose now we want to extend numerical expressions with the possibility to include
formal paramters in them, drawn from an infinite set X .

n ::= 0 | 1 | 2 | ...

e ::= x | n | e� e | e⌦ e

How can we evaluate an expression like (x�4)⌦ y? We cannot, unless the value
assigned to x and y are known: in general, the result will depend on them.

Operationally, we must provide such an information to the machine, e.g., in
form of some memory s : X ! N that is part of the machine state. We use the
notation he,si to denote the state where e is to be evaluated in the memory s . The
corresponding small-/big-step rules for variable would then look like:

hx,si ! n
n = s(x) (var)

hx,si # n
n = s(x) (var)

Exercise 1.1. The reader may complete the missing rules as an exercise.

Denotationally, the interpretation function needs to receive a memory as an addi-
tional argument:

E J·K : Exp ! ((X ! N) ! N)

Note that this is quite different from the operational approach, where the memory
is part of the state.

The corresponding defining equations would then look like:

E JnKs = N JnK
E JxKs = s(x)

E Je0 � e1Ks = E Je0Ks +E Je1Ks
E Je0 ⌦ e1Ks = E Je0Ks ⇥E Je1Ks

Semantics equivalences must then take into account all the possible memories
where expressions are evaluated. For example, denotationally, to say that e0 is
equivalent to e1 we must require that for any memory s : X ! N we have E Je0Ks =
E Je0Ks .

Exercise 1.2. The reader is invited to restate the consistency between the various
semantics and the operational notions of equivalences between expressions by taking
memories into account.

DRAFT

18 1 Introduction

1.3 Applications of Semantics

Whatever care is taken to make a natural language description of programming
languages precise and unambiguous, there always remain some points that are open
for several different interpretations. Formal semantics can provide a useful basis
for the language design, its implementation, and the analysis and verification of
programs. In the following we explain some possible benefits for each of the above
categories.

1.3.1 Language Design

The effort spent in fixing a formal semantics for a language is the best way of
detecting weak points in the language design itself. Starting from the natural language
descriptions of the various features, subtle ambiguities, inconsistencies, complexities
and anomalies will emerge, and better ways of presenting each feature can be
discovered.

The worst form of design errors are unintentional ones, where the language
behaves in a way that is not expected and even less desired by its designers (for
example, a supposedly safe static type-checking mechanism that is not such).

While the presence of problems can be demonstrated by exhibiting example
programs, their absence can only be proved by exploiting a formal semantics.

Operational semantics, denotational semantics and axiomatic semantics, in this
order, are increasingly sensitive instruments for detecting problems in language
design.

1.3.2 Implementation

Semantics can be used to validate prototype implementations of programming lan-
guages, to verify the correctness of code analysis techniques exploited in the im-
plementation, like type checking, and to certify many useful properties, like the
correctness of compilers optimisations.

A common phenomenon is the presence of underspecified behaviour in certain
circumstances. In practice, such underspecified behaviours can mine programs porta-
bility from one implementation to another.

Perhaps the most significant application of operational semantics definitions is
the straightforward generation of prototypal implementations, where the behaviour
of programs can be simulated and tested, even if the underlying interpreter can be
inefficient. Denotational semantics can also provide itself a good starting point for
automatic language implementation. Automatic generation of implementations is not
the only way in which formal semantics can help implementors. If a formal model is

DRAFT

1.3 Applications of Semantics 19

available, then hand-crafted implementations can be related to the formal semantics,
e.g., to guarantee their correctness.

1.3.3 Analysis and Verification

Semantics offers the main support for reasoning about programs, specifications,
implementations and their properties, both mechanically and by hand. It is the
unique mean to state that an implementation conforms to a specification, or that two
programs are equivalent, or that a model satisfies some property.

For example, let us consider the following functions

let rec fib n = match n with

0 -> 0

| 1 -> 1

| x -> fib (x-1) + fib (x-2)

let fib n = let rec fibaux a b cnt = match cnt with

0 -> b

| x -> fibaux (a+b) a (x-1)

in fibiter 1 0 n

The second program offers a much more efficient version of the Fibonacci numbers
calculation (the number of recursive calls is linear in n, as opposed to the first program
where the number of recursive calls is exponential in n). If the two versions can be
proved equivalent from the functional point of view, then we can safely replace the
first version with the better performing one.

1.3.4 Synergy Between Different Semantics Approaches

It would be wrong to view different semantics styles as in opposition to each other.
They each have their uses and their combined use is more than the sum of parts.
Roughly:

• A clear operational semantics is very helpful in implementation and in proving
program and language properties.

• Denotational semantics provides the deepest insights to the language designer, is
sustained by a rich mathematical theory.

• Axiomatic semantics can lead to strikingly elegant proof systems, useful in devel-
oping as well as verifying programs.12

12 Axiomatic semantics is mostly directed towards the programmer, but its wide application is
complicated by the fact that it is often difficult (more than denotational semantics) to give a clear
axiomatic semantics to languages that were not designed with this in mind.

DRAFT

20 1 Introduction

Programs

deployment
,,

interpretation
function &&

Models of
Computation

observation
(abstraction)wwSemantic

Domain
(abstract)

Fig. 1.3: Programs, models and domains

A longstanding research topic is the relationship between the different forms of
semantic definitions. For example, while the denotational approach can be convenient
when reasoning about programs, the operational approach can drive the implementa-
tion. It is therefore of interest whether a denotational definition is equivalent to an
operational one.

In mathematical logic, one uses the concepts of soundness and completeness to
relate a logic’s proof system to its interpretation, and in semantics there are similar
notions of soundness and adequacy to relate one semantics to another.

In the book we show how to relate different kinds of semantics and program
equivalences, reconciling whenever possible the operational, denotational and logic
views.

1.4 Content Overview

As discussed above, the objective of the book is to present different models of
computation, their programming paradigms, their mathematical descriptions, and
some formal analysis techniques for reasoning on program properties.

In this book we focus on the operational and denotational semantics, present the
fundamental ideas and methods behind these approaches and stress their relationship,
by formulating and proving some relevant correspondence theorems. Figure 1.3
sketches the general scenario, where we have programs that can be deployed /
executed over suitable operational models and that can be assigned some abstract
semantics (e.g., interpreted in some mathematical domain). The scenario is possibly
completed by the definition of a suitable abstraction of the operational models (of
deployed programs) that can be related to the direct interpretation of programs (e.g.,
showing that the induced notion of program equivalence is the same in both cases).

The operational semantics fixes an abstract and concise operational model for the
execution of a program (in a given environment). We define the execution as a proof

DRAFT

1.4 Content Overview 21

in some logical system and once we are at this formal level, it will be easier to prove
properties of the program.

The denotational semantics describes an explicit interpretation function over a
mathematical domain. We call an interpretation function the mapping from program
syntax to program semantics and we address questions that arise naturally, like
establishing if two programs are equivalent, i.e., if they have the same semantics
or not. Like a numerical expression can be evaluated to a value, the interpretation
function for a typical imperative language is a mapping that, given a program, returns
a function from its initial states to its final states. Here the situation is a bit more
complicated by the fact that programs may not terminate. We cover mostly basic
cases, without delving into the variety of options and features that are available to
the language designer.

If we want to prove non-trivial properties of a program or of a class of programs,
we usually have to use induction mechanisms which allow us to prove properties of
elements of an infinite set (like the steps of a run, or the programs in a class). The
most general notion of induction is the so called well-founded induction (or Noether
induction) and we derive from it all the other inductions principles.

Defining a program by structural recursion means to specify its meaning in terms
of the meanings of its components. We will see that induction and recursion are very
similar: for both induction and recursion we will need well-founded models.

If we take a program which is cyclic or recursive, then we have to express these
notions at the level of the meanings, which presents some technical difficulties. A
recursive program p contains a call to itself:

p = f (p). (1.1)

We are looking for the meanings of p which satisfy this equation, which in general can
have one, none or multiple solutions. In order to solve this problem and guarantee
existence and uniqueness of a best solution, we resort to the fixpoint theory of
complete partial orders with bottom and of continuous functions.

We use these two paradigms for: a simple IMPerative language called IMP, and a
Higher-Order Functional Language called HOFL.

For both of them we define what are the programs and in the case of HOFL we
also define what are the infinitely many types we can handle. Then, we define their
operational semantics, their denotational semantics and finally, to some extent, we
prove the correspondence between the two. The fixpoint theory for HOFL is more
complex because we are working on a more general situation where functions are
first class citizens.

The models we use for IMP and HOFL are not appropriate for concurrent and
interactive systems, like the very common network based applications: on the one
hand we want their behaviour not to depend as much as possible on the speed of
processes, on the other hand we want to permit infinite computations. So we do not
consider time explicitly, but we have to introduce nondeterminism to account for
races between concurrent processes.

DRAFT

22 1 Introduction

The typical models for nondeterminism and infinite computations are (labelled)
transition systems.

p
µ // q

In the figure above, we have a transition (system) with two states p and q and a
transition from p to q labelled with a suitable action µ . However, from the outside we
can just observe the action µ associated to the transition and not the identity of states.
Equivalent programs are represented by (initial) states which have correspondent
observable transitions. The language that we employ in this setting is a process
algebra called CCS (Calculus for Communicating Systems), and its most used notion
of observational equivalence is called bisimilarity. Interestingly, we can draw some
analogies between the fixpoint theory and bisimilarity. We investigate also temporal
and modal logics designed to conveniently express properties of such systems. For
example, we show that bisimilarity can be characterised in terms of a modal logic,
called Hennessy-Milner logic.

Then, we study systems whose communication structure can change during ex-
ecution. These systems are called open-ended. As our case study, we present the
p-calculus, which extends CCS. The p-calculus is quite expressive, due to its ability
to create and to transmit new names, which can represent ports, links, and also session
names, passwords and so on in security applications.

Finally, in the last part of the book we focus on probabilistic models, where we
trade nondeterminism for probability distributions, which we associate to choice
points. We also present stochastic models, where actions take place in a continuous
time setting, with an exponential distribution. We extend the notion of bisimilarity to
handle these systems and extend Hennessy-Milner logic to Larsen-Skou logic. To
specify systems in a compositional way, we link process algebras to probability by
presenting a tool supported formalism called PEPA. Probabilistic/stochastic models
find applications in many fields, e.g., in performance evaluation, decision support
systems and system biology.

1.4.1 Induction and Recursion

Proving existential statements can be done by exhibiting a specific witness, but
proving universally quantified statements is more difficult, because all the elements
must be considered (for disproving it, we can again exhibit a single counterexample).

The situation is improved when the elements are generated in some finitary way.
For example:

• any natural number n can be obtained by taking the successor of 0 for n times;
• any well-formed program is obtained by repeated applications of the productions

of some grammar;
• any theorem derived in some logic system is obtained by applying some axioms

and inference rules to form a (finite) derivation tree;

DRAFT

1.4 Content Overview 23

• any computation is obtained by composing single steps.

In such cases (arbitrarily large but finitely generated elements) we can exploit the
induction principle to prove a universally quantified statement by showing that

base case: the statement holds in all possible elementary cases (e.g., 0, the sen-
tences of the grammar obtained by applying productions involving
non-terminal symbols only, the basic derivations of a proof system
obtained by applying the axioms, the initial step of a computation);

inductive case: and that the statement holds in the composite cases (e.g. succ(n),
the terms of the grammar obtained by applying productions in-
volving non-terminal symbols, the derivations of a proof system
obtained by applying an inference rule to smaller derivations, a
computation of n+1 steps, etc.), under the assumption that it holds
in any simpler case (e.g., for any k n, for any sub-terms, for any
smaller derivation, for any computation whose length is smaller or
equal than n).

Exercise 1.3. Induction can be deceptive. Let us consider the following argument for
proving that all cats are the same colour.

Let P(n) be the proposition that: In a group of n cats, all cats are the same colour
The statement is trivially true for n = 1 (base case).
For the inductive case, suppose that the statement is true for n k. Take a group

of k +1 cats: we want to prove that they are the same colour.
Align the cats along a line. Form two groups of k cats each: the first k cats in the

line and the last k cats of the line. By inductive hypothesis, the cats in the two groups
are the same colours. Since the cat in the middle of the line belongs to both groups,
by transitivity all cats in the line are the same colour. Hence P(k +1) is true.

k k

k + 1

By induction, P(n) is true for all n 2 w .
Hence, all cats are the same colour.
We know that this cannot be the case: What’s wrong with the above reasoning?

The usual proof technique for proving properties of a natural semantics definition
is induction on the height of the derivation trees that are generated from the semantics,
or in the special case of rule induction.

base cases: P holds for the conclusion of each axioms, and

DRAFT

24 1 Introduction

inductive cases: for each inference rule, if P holds for the premises, then it holds
for the conclusion.

For proving properties of a denotational semantics, induction on the structure of
the terms is often a convenient proof strategy.

Defining the denotational semantics of a program by structural recursion means
to specify its meaning in terms of the meanings of its components. We will see that
induction and recursion are very similar: for both induction and recursion we will
need well-founded models.

1.4.2 Semantic Domains

The choice of a suitable semantic domain is not always as easy as in the example of
numerical expressions.

For example, the semantics of programs is often formulated in a functional space,
from the domain of states to itself (i.e., a program is seen as a state-transformation).
The functions we need to consider can be partial ones, if the programs can diverge.
Note that the domain of states can also be a complex structure, e.g., a state can be an
assignment of values to variables.

If we take a program which is cyclic or recursive, then we have to express these
notions at the level of the meanings, which presents some technical difficulties.

A recursive program p contains a call to itself, therefore to assign a meaning JpK
to the program p we need to solve a recursive equation like:

JpK = f (JpK). (1.2)

In general, it can happen than such equations have none, one or many solutions.
Solutions to recursive equations are called fixpoints.

Example 1.3. Let us consider the domain of natural numbers

n = 2⇥n has only one solution: n = 0
n = n+1 has no solution
n = 1⇥n has many solutions: any n

Example 1.4. Let us consider the domain of sets of integers

X = X \{1} has two solutions: X = ? or X = {1}
X = N\X has no solution
X = X [{1} has many solutions: any M ◆ {1}

In order to provide a general solution to this kind of problems, we resort to the
theory of complete partial orders with bottom and of continuous functions.

DRAFT

1.4 Content Overview 25

In the functional programming paradigm, a higher-order functional language can
use functions as arguments to other functions, i.e., spaces of functions must also be
considered as forming data types. This makes the language’s domains more complex.
Denotational semantics can be used to understand these complexities; an applied
branch of mathematics called domain theory is used to formalise the domains with
algebraic equations.

Let us consider a domain D where we interpret the elements of some data type.
The idea is that two elements x,y 2 D are not necessarily separated, but one, say y
can be a better version of what x is trying to approximate, written

x v y

with the intuition that y is consistent with x and is (possibly) more accurate than x.
Concretely, a special interesting case is when one can take two partial functions

f ,g and say that g is a better approximation than f if whenever f (x) is defined then
also g(x) is defined and g(x) = f (x). But g can be defined on elements over which f
is not.

Note that if we see (partial) functions as relations (sets of pairs (x, f (x))), then
the above concept boils down to set inclusion.

For example, we can progressively approximate the factorial function by taking
the sequence of partial functions

? ✓ {(1,1)}{(1,1) , (2,2)} ✓ {(1,1) , (2,2) , (3,6)} ✓ {(1,1) , (2,2) , (3,6) , (4,24)} ✓ · · ·

Now, it is quite natural to require that our notion of approximation v is reflexive,
transitive and antisymmetric: this means that our domain D is a partial order.

Often there is an element, called bottom and denoted by ?, which is less defined
than any other element: in our example about partial function, the bottom element is
the partial function ?.

When we apply a function f (determined by some program) to elements of D it is
also quite natural to require that the more accurate the input, the more accurate the
result:

x v y) f (x) v f (y)

this means that our functions of interest are monotonic.
Now suppose we are given an infinite sequence of approximations

x0 v x1 v x2 v ... v xn v ...

it seems reasonable to suppose that the sequence tends to some limit that we denote
as
F

n xn and moreover that mappings between data types are well-behaving w.r.t.
limits, i.e., that data transformations are continuous:

f

G

n
xn

!
=
G

n
f (xn)

DRAFT

26 1 Introduction

Interestingly, one can prove that for a function to be continuous in several variables
jointly, it is sufficient that it be continuous in each of its variables separately.

The fixpoint theorem ensures that when continuous functions are considered over
complete partial orders (with bottom), then a suitable least fixpoint exists and tells
us how to compute it.

1.4.3 Bisimulation

In the case of interactive, concurrent systems, as represented by labelled transition
systems, the classic notion of language equivalence from finite automata theory is
not best suited as a criterion for program equivalence, because it does not account
properly for non-terminating computations and non-deterministic behaviour. To see
this, consider the two labelled transition systems below, which can be thought to
model the behaviour of two different coffee machines:

p0

coin

✏✏
p1

coffee

22

tea

ll q0

coin

pp
coin

..q1

coffee //

q2

teaoo

It is evident that any sequence of actions that is executable by the first machine
can be also executed on the second machine, and vice versa. However, from the point
of view of the interaction with the user, the two machines behave very differently:
after the introduction of the coin, the machine on the left still allows the user to
choose between a coffee and a tea; while the machine on right leaves no choice to
the user.

We show that a suitable notion of equivalence between concurrent, interactive
systems can be defined as an observational equivalence called bisimulation: it takes
into account the branching structure of labelled transition systems as well as infinite
computations. Interestingly, there is a nice connection between fixpoint theory and
the definition of the coarsest bisimulation equivalence, called bisimilarity. Moreover,
bisimilarity finds a logical counterparts in Hennessy-Milner logic, in the sense that
two systems are bisimilar if and only if they satisfy the same Hennessy-Milner logic
formulas. Beside using bisimilarity to compare different realisations of the same
system, weaker forms of bisimilarity can be used to study the compliance between
an abstract specification and a concrete implementation.

1.4.4 Temporal and Modal Logics

Modal logics were conceived in Philosophy to study different modes of truth, like an
assertion being false in the current world but possibly true in some alternate world, or

DRAFT

1.5 Chapters Contents and Reading Guide 27

another to always hold true in all worlds. Temporal logics are an instance of modal
logics to reason about the truth of assertions over time. Typical temporal operators
includes the possibility to assert that a property is true sometimes in the future, or
that is always true, in all the future moments. The most popular temporal logics are
LTL (Linear Temporal Logic) and CTL (Computation Tree Logic). They have been
extensively studied and used for applying formal methods to industrial case studies
and for the specification and verification of program correctness.

We introduce the basics of LTL and CTL and then present a modal logic with
recursion, called the µ-calculus, that encompasses LTL and CTL. The definition
of the semantics of µ-calculus exploits again the principles of domain theory and
fixpoint computation.

1.4.5 Probabilistic Systems

Probability theory is playing a big role in modern computer science. It focuses on the
study of random events, which are central in areas such as artificial intelligence and
network theory, e.g., to model variability in the arrival of requests and predict load
distribution on servers. Probabilistic models of computation assign weight to choices
and refine non-deterministic choices with probability distributions. In interactive
systems, when many actions are enabled at the same time, the probability distribution
models the frequency with which each alternative can be executed. Probabilistic
models can also be used in conjunction with sources of non-determinism and we
present several ways in which this can be achieved.

A compelling case of probabilistic systems is given by Markov chains, which
represents random processes over time. We study two kinds of Markov chains, which
differ for the way in which time is represented (discrete vs continuous) and focus
on homogeneous chains only, where the distribution depends on the current state of
the system, but not by the current time. For example, in some special cases, Markov
chain can be used to estimate the probability to find the system in a given state on
the long run or the probability that the system will not its change state in some time.

By analogy with labelled transition systems we are also able to define suitable
notions of bisimulation and the analogous of Hennessy-Milner logic, called Larsen-
Skou logic. Finally, by analogy with CCS, we present a high-level language for
the description of continuous time Markov chains, which can be used to define
stochastic systems in a structured and compositional way as well as by refinement
from specifications.

1.5 Chapters Contents and Reading Guide

After Chapter 2 where some notation is fixed and useful preliminaries about logi-
cal systems, goal-oriented derivations and proof strategies are explained, the book

DRAFT

28 1 Introduction

comprises four main parts: the first two parts exemplify deterministic systems; the
other two models non-deterministic ones. The difference will emerge clear during
the reading.

• Computational models for imperative languages, exemplified over IMP:

– In Chapter 3 the simple imperative language IMP is introduced, its natural
semantics is defined and studied together with the induced notion of program
equivalence.

– In Chapter 4 the general principle of well-founded induction is stated and
declined to other widely used induction principles, like weak and strong math-
ematical induction, structural induction and rule induction.

– In Chapter 5 the mathematical basis for denotational semantics are presented,
including the concepts and properties of complete partial orders, of least
upper bounds, and of monotone and continuous functions. In particular this
chapter contains Kleene fixpoint theorem that is used extensively in the rest
of the monograph and the definition of the immediate consequence operator
associated with a logical system and exploited in Chapter 6.

– In Chapter 6 the foundations introduced in Chapter 5 are exploited to define the
denotational semantics of IMP and derive a corresponding notion of program
equivalence. The induction principles studied in Chapter 4 are then exploited to
prove the correspondence between the operational and denotational semantics
of IMP and consequently of their two induced equivalences over processes. The
chapter is concluded by presenting Scott principle of computational induction
for proving inclusive properties.

• Computational models for functional languages, exemplified over HOFL

– In Chapter 7 we shift from the imperative style of programming to the declara-
tive one. After presenting the l -notation, useful for representing anonymous
functions, the higher-order functional language HOFL is introduced, where in-
finitely many data-types can be constructed by pairing and function abstraction.
Church type theory and Curry type theory are discussed and the unification
algorithm from Chapter 2 is used for type inference. Typed terms are given a
natural semantics called lazy, because it evaluates a parameter of a function
only if needed. The alternative eager semantics, where actual argument are
always evaluated is also discussed.

– In Chapter 8 we extend the theory presented in Chapter 5 to allow the construc-
tion of more complex domains, as needed by the type-constructors available in
HOFL.

– In Chapter 9 the foundations introduced in Chapter 8 are exploited to define
the (lazy) denotational semantics of HOFL.

– In Chapter 10 the operational and denotational semantics of HOFL are com-
pared, by showing that notion of program equivalence induced by the former
is generally stricter than the one induced by the latter and that they coincide
only over terms of type integer. However, it is shown that the two semantics
are equivalent w.r.t. the notion of convergence.

DRAFT

1.5 Chapters Contents and Reading Guide 29

• Computational models for concurrent / non-deterministic / interactive languages,
exemplified over CCS and pi-calculus

– In Chapter 11 we shift the focus from sequential systems to concurrent and
interactive ones. The process algebra CCS is introduced which allows to
describe concurrent communicating systems. Such systems communicates by
message passing over named channels. Their operational semantics is defined in
the small-step style, because infinite computations must be accounted for. Each
communicating process is assigned a labelled transition system by inference
rules in the SOS-style and several equivalences over such transition systems are
discussed. In particular the notion of observational equivalence is put forward,
in the form of bisimulation equivalence. Notably, the coarsest bisimulation,
called bisimilarity, exists, it can be characterised as a fixpoint, it is a congruence
w.r.t. the operators of CCS and it can be axiomatised. Its logical counterpart,
called Hennessy-Milner logic, is also presented. Finally coarser equivalences
are discussed, which can be exploited to relate system specifications with more
concrete implementations by abstracting away from internal moves.

– In Chapter 12 some logics are considered that increase the expressiveness
of Hennessy-Milner logic by expressing properties about finite and infinite
computations. First the temporal logics LTL and CTL are presented, and then
the more expressive µ-calculus is studied. The notion of satisfaction for µ-
calculus formulas is defined by exploiting fixpoint theory.

– In Chapter 13 the theory of concurrent systems is extended with the possibility
to communicate channel names and create new channels. Correspondingly, we
move from CCS to the p-calculus, define its small-step operational semantics
and introduce several notions of bisimulation equivalence.

• Computational models for probabilistic and stochastic process calculi

– In Chapter 14 we shift the focus from non-deterministic systems to probabilistic
ones. After introducing the basics of measure theory and the notions of random
process and Markow property, two classes of random processes are studied,
which differ for the way in which time is represented: DTMC (discrete time)
and CTMC (continuous time). In both cases, it is studied how to compute
stationary probability distribution over the possible states and suitable notion
of bisimulation equivalence.

– In Chapter 15, the various possibilities for defining probabilistic models of
computation with observable actions and sources of non-determinism are
overviewed, emphasising the difference between reactive models and genera-
tive ones. Finally a probabilistic version of Hennessy-Milner logic is presented,
called Larsen-Skou logic.

– In Chapter 16 a well-known high-level language for the specification and anal-
ysis of stochastic interactive systems, called PEPA (Performance Evaluation
Process Algebra), is presented. The small-step operational semantics of PEPA
is first defined and then it is shown how to associate a CTMC to each PEPA
process.

	Part I Preliminaries
	Introduction
	Structure and Meaning
	Syntax and Types
	Semantics
	Mathematical Models of Computation
	Operational Semantics
	Denotational Semantics
	Axiomatic Semantics

	A Taste of Semantics Methods: Numerical Expressions
	An Informal Semantics
	A Small-Step Operational Semantics
	A Big-Step Operational Semantics (or Natural Semantics)
	A Denotational Semantics
	Semantic Equivalence
	Expressions with Variables

	Applications of Semantics
	Language Design
	Implementation
	Analysis and Verification
	Synergy Between Different Semantics Approaches

	Content Overview
	Induction and Recursion
	Semantic Domains
	Bisimulation
	Temporal and Modal Logics
	Probabilistic Systems

	Chapters Contents and Reading Guide

	Preliminaries
	Notation
	Basic Notation
	Signatures and Terms
	Substitutions
	Unification Problem

	Inference Rules and Logical Systems
	Logic Programming
	Problems

	Part II IMP: a simple imperative language
	Operational Semantics of IMP
	Syntax of IMP
	Arithmetic Expressions
	Boolean Expressions
	Commands
	Abstract Syntax

	Operational Semantics of IMP
	Memory State
	Inference Rules
	Examples

	Abstract Semantics: Equivalence of Expressions and Commands
	Examples: Simple Equivalence Proofs
	Examples: Parametric Equivalence Proofs
	Examples: Inequality Proofs
	Examples: Diverging Computations

	Problems

	Induction and Recursion
	Noether Principle of Well-founded Induction
	Well-founded Relations
	Noether Induction
	Weak Mathematical Induction
	Strong Mathematical Induction
	Structural Induction
	Induction on Derivations
	Rule Induction

	Well-founded Recursion
	Problems

	Partial Orders and Fixpoints
	Orders and Continuous Functions
	Orders
	Hasse Diagrams
	Chains
	Complete Partial Orders

	Continuity and Fixpoints
	Monotone and Continuous Functions
	Fixpoints

	Immediate Consequence Operator
	The Operator R"0362R
	Fixpoint of R"0362R

	Problems

	Denotational Semantics of IMP
	-Notation
	-Notation: Main Ideas
	Alpha-Conversion, Beta-Rule and Capture-Avoiding Substitution

	Denotational Semantics of IMP
	Denotational Semantics of Arithmetic Expressions: The Function A
	Denotational Semantics of Boolean Expressions: The Function B
	Denotational Semantics of Commands: The Function C

	Equivalence Between Operational and Denotational Semantics
	Equivalence Proofs For Expressions
	Equivalence Proof for Commands

	Computational Induction
	Problems

	Part III HOFL: a higher-order functional language
	Operational Semantics of HOFL
	Syntax of HOFL
	Typed Terms
	Typability and Typechecking

	Operational Semantics of HOFL
	Problems

	Domain Theory
	The Flat Domain of Integer Numbers Z
	Cartesian Product of Two Domains
	Functional Domains
	Lifting
	Function's Continuity Theorems
	Useful Functions
	Problems

	HOFL Denotational Semantics
	HOFL Semantic Domains
	HOFL Evaluation Function
	Constants
	Variables
	Binary Operators
	Conditional
	Pairing
	Projections
	Lambda Abstraction
	Function Application
	Recursion

	Continuity of Meta-language's Functions
	Substitution Lemma
	Problems

	Equivalence between HOFL denotational and operational semantics
	Completeness
	Equivalence (on Convergence)
	Operational and Denotational Equivalences of Terms
	A Simpler Denotational Semantics
	Problems

	Part IV Concurrent Systems
	CCS, the Calculus for Communicating Systems
	Syntax of CCS
	Operational Semantics of CCS
	Action Prefix
	Restriction
	Relabelling
	Choice
	Parallel Composition
	Recursion
	CCS with Value Passing
	Recursive Declarations and the Recursion Operator

	Abstract Semantics of CCS
	Graph Isomorphism
	Trace Equivalence
	Bisimilarity

	Compositionality
	Bisimilarity is Preserved by Choice

	A Logical View to Bisimilarity: Hennessy-Milner Logic
	Axioms for Strong Bisimilarity
	Weak Semantics of CCS
	Weak Bisimilarity
	Weak Observational Congruence
	Dynamic Bisimilarity

	Problems

	Temporal Logic and -Calculus
	Temporal Logic
	Linear Temporal Logic
	Computation Tree Logic

	-Calculus
	Model Checking
	Problems

	 -Calculus
	Name Mobility
	Syntax of the -calculus
	Operational Semantics of the -calculus
	Action Prefix
	Choice
	Name Matching
	Parallel Composition
	Restriction
	Scope Extrusion
	Replication
	A Sample Derivation

	Structural Equivalence of -calculus
	Reduction semantics

	Abstract Semantics of the -calculus
	Strong Early Ground Bisimulations
	Strong Late Ground Bisimulations
	Strong Full Bisimilarities
	Weak Early and Late Ground Bisimulations

	Problems

	Part V Probabilistic Systems
	Measure Theory and Markov Chains
	Probabilistic and Stochastic Systems
	Measure Theory
	-field
	Constructing a -field
	Continuous Random Variables
	Stochastic Processes

	Markov Chains
	Discrete and Continuous Time Markov Chain
	DTMC as LTS
	DTMC Steady State Distribution
	CTMC as LTS
	Embedded DTMC of a CTMC
	CTMC Bisimilarity
	DTMC Bisimilarity

	Problems

	Markov Chains with Actions and Non-determinism
	Discrete Markov Chains With Actions
	Reactive DTMC
	DTMC With Non-determinism

	Problems

	PEPA - Performance Evaluation Process Algebra
	From Qualitative to Quantitative Analysis
	CSP
	Syntax of CSP
	Operational Semantics of CSP

	PEPA
	Syntax of PEPA
	Operational Semantics of PEPA

	Problems

	Glossary
	Solutions

