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Mathematical reasoning may be regarded
rather schematically as the exercise of a
combination of two facilities, which we may
call intuition and ingenuity.

Alan Turing'

! The purpose of ordinal logics (from Systems of Logic Based on Ordinals), Proceedings of the
London Mathematical Society, series 2, vol. 45, 1939.
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Chapter 2
Preliminaries

A mathematician is a device for turning coffee into theorems.
(Paul Erdos)

Abstract In this chapter we fix some basic mathematical notation used in the rest
of the book and introduce the important concepts of signature, logical system and
goal-oriented derivation.

2.1 Notation

2.1.1 Basic Notation

As a general rule, we use capital letters, like D or X, to denote sets of elements

and small letters, like d or x, for their elements, with membership relation €. The

set of natural numbers is denoted by N def {0,1,2,...}, the set of integer numbers is

denoted by Z def {...,—2,—1,0,1,2,...} and the set of boolean by B def {true,false}.

We write [m,n] = {k | m < k <n} for the interval of numbers from m to n, extremes
included. If a set A is finite, we denote by |A| its cardinality, i.e., the number of its
elements. The emptyset is written &, with |&| = 0. We use the standard notation for
set-union, intersection, difference, cartesian product and disjoint union, which are
denoted respectively by U, N, \, X and W. We write A C B if all elements in A belong
to B. We denote by (A) the powerset of A, i.e., the set of all subsets of A.

An indexed set of elements is written {e; };c; and a family of sets is written {S; } ;.
Set operations are extended to families of sets by writing, e.g., (J;c; Si and (;¢; Si. If
I is the interval set [m,n], then we write also |Ji_,, S; and (i, S;.

Given a set A, and a natural number k we denote by A the set of sequences of k
(not necessarily distinct) elements in A. Such sequences are called strings and their
concatenation is represented by juxtaposition. We denote by A* = [y A* the set of
all finite (possibly empty) sequences over A. Given a string w € A* we denote by |w|
its length, i.e., the number of its elements (including repetitions). The empty string is
denoted &, and we have |¢| = 0 and A® = {&} for any A.

31



32 2 Preliminaries

A relation R between two sets A and B is a subset of A x B. For (a,b) € R we write
also aRb. A relation f C A x B can be regarded as a function if both the following
properties are satisfied:

function: Va € A,¥by,by €B. (a,b)) € fA(a,by) € f = b1 =by
total: Va€A,3be€B. (a,b) € f

For such a function f, we write f : A — B and say that the set A is the domain of
f, and B is its codomain. We write f(a) for the unique element b € B such that
(a,b) € f,i.e., f can be regarded as the relation {(a, f(a)) | a € A} CA x B. The
composition of two functions f: A — Band g: B — C is written go f : A—C, it is
such that for any element a € A it holds (go f)(a) = g(f(a)). A relation that satisfies
the “function” property, but not necessarily the “total” property, is called partial. A
partial function f from A to B is written f : A — B.

2.1.2 Signatures and Terms

A one-sorted (or unsorted) signature is a set of function symbols X = {¢c, f,g,... }
such that each symbol in X is assigned an arity, that is the number of arguments it
takes. A symbol with arity zero is called a constant; a symbol with arity one is called
unary; a symbol with arity two is called binary; a symbol with arity three is called
ternary. For n € N, we let X, C X be the set of function symbols whose arity is 7.

Given an infinite set of variables X = {x,y,z,... }, the set T x is the set of terms
over X and X, i.e., the set of all and only terms generated according to the following
rules:

e cach variable x € X'is a term (i.e., x € Ty x),

e each constant ¢ € Xy is a term (i.e., ¢ € Tx x),

o if feX, and#,...,1, are terms (i.e., #1,...,1;, € Tx x), then also f(t1,....,t,,) is a
term (i.e., f(t1,...,tn) € Tx x)-

For aterm ¢ € Ty x, we denote by vars(z) the set of variables occurring in 7, and let

. . ) def
Ts C Ts x be the set of terms with no variables, i.e., Tx = {t e Tx x | vars(t) = o}.

Example 2.1. For example, take X = {0, succ,plus } with 0 a constant, succ unary
and plus binary. Then all of the following are terms:

0eTx

xeTxx

succ(0) € T

succ(x) € Ty x

plus(succ(x),0) € Tx x
plus(plus(x,succ(y)),plus(0,succ(x))) € Tx x

The set of variables of the above terms are respectively:

e vars(0) = vars(succ(0)) = @
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o vars(x) = vars(succ(x)) = vars(plus(succ(x),0)) = {x}
o vars(plus(plus(x,succ(y)),plus(0,succ(x)))) = {x,y }

Instead succ(plus(0),x) is not a term: can you see why?

2.1.3 Substitutions

A substitution p : X — Ty x is a function assigning terms to variables.

Since the set of variables is infinite while we are interested only in terms with a
finite number of variables, we consider only substitutions that are defined as identity
everywhere except on a finite number of variables. Such substitutions are written

p:['x’.l:tl)"'axn:tﬂ}

meaning that

p(x){ti if x =x;

x otherwise

We denote by ¢p, or sometimes by p (), the term obtained from ¢ by simultane-
ously replacing each variable x with p(x) in r.

Example 2.2. For example, consider the signature from Example 2.1, the term ¢ &
plus(succ(x),succ(y)) and the substitution p & [x = succ(y), y=0]. We get:

tp = plus(succ(x),succ(y))[x = succ(y),y = 0] = plus(succ(succ(y)),succ(0))

We say that the term  is more general than the term ¢’ if there exists a substitution
p such that tp = #/. The “more general than” relation is reflexive and transitive, i.e.,
it defines a pre-order. Note that there are terms ¢ and ¢/, with ¢ # ¢, such that ¢ is
more general than ¢’ and ' is more general than ¢.

We say that the substitution p is more general than the substitution p’ if there
exists a substitution p” such that for any variable x we have that p”(p(x)) = p’(x)
(i.e., p(x) is more general than p’(x) as witnessed by p”).

2.1.4 Unification Problem

The unification problem, in its simplest formulation (syntactic, first-order unification),
consists of finding a substitution p that identifies some terms pairwise.
Formally, given a set of potential equalities

? ?
G={lLi=r,..lh=r}

where [;,r; € Tx x, we say that a substitution p is a solution of G if
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Vie [l,n] lip=rip.

The unification problem, consists in finding a most general substitution p.

We say that two sets of potential equalities G and G’ are equivalent if they have
the same set of solutions.

We denote by vars(G) the set of variables occurring in G, i.e.:

n
vars({li = ri,., by = rn} U vars(l;) Uvars(r;))

Note that the solution does not necessarily exists, and when it exists itis not neces-
sarily unique.

The unification algorithm takes as input a set of potential equalities G as the one
above and applies some transformations until:

e cither it terminates (no transformation can be applied any more) after having
transformed the set G to an equivalent set of equalities

? ?
G = {x1 =11, Xk Zl‘k}

where x1, ..., x; are all distinct variables and ¢y, ..., #; are terms with no occurrences
of x1,...,x, i.e., such that {xy,...,x} NS, vars(r;) = @: the set G directly
defines a most general solution

[)C1 =1, X = tk]

to the unification problem G;
e or it fails, meaning that the potential equalities cannot be unified.

In the following we denote by Gp the set of potential equalities obtained by
applying the substitution p to all terms in G. Formally:

{4 % Flyins Ly = mip={Lp 2 F1P,y s lnp 2z P}

The unification algorithm tries.to apply the following steps (the order is not
important for the result, but it may affect complexity), to transform an initial set of
potential equalities until no more steps can be applied or the algorithm fails:

delete: GU{t L t } is transformed to G

decompose:  GU{ f(t1,...,tm) ;f(ul,...,um) } is transformed to GU {11 2z U,y isliy =
U }

swap: GU{f(t1,..,tm) ;x} is transformed to GU { x 2 ft,.tm) }

eliminate: © GU{x < t } is transformed to G[x = 7] U {x < t}ifx € vars(G) Ax &
vars(t)

conflict: GU{ f(t1,..,tm) 2 g(uy,...,up) } leads to failure if f £ gVm#h

occur chek:  GU{x L f(t1,...,tm) } leads to failure if x € vars( f(t1,...,tm) )

9
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Example 2.3. For example, if we start from
G = {plus(succ(x),x) < plus(y,0) }

by applying rule decompose we obtain

{succ(x) ;y,x; 0}
by applying rule eliminate we obtain

{succ(0) ;y,x; 0}
finally, by applying rule swap we obtain

{y L succ(0)7x; 0}
Since no further transformation is possible, we conclude that

p = [y = succ(0),x=0]

is the most general unifier for G.

2.2 Inference Rules and Logical Systems

Inference rules are a key tool for defining syntax (e.g., which programs respect the
syntax, which programs are well-typed) and semantics (e.g., to derive the operational
semantics by induction on the syntax structure of the programs).

Definition 2.1 (Inference rule). Let x1,x7,...,x,,y be (well-formed) formulas. An
inference rule is written, using inline notation, as

ro = {xi,x,....xn} /Y
—— ~—~
premises conclusion

Letting X = {x1,x2,...,%, },'equivalent notations are

X Xl .. Xp
y y

The meaning of such a rule r is that if we can prove all the formulas x1,x3,...,x,
in our logical system, then by exploiting the inference rule » we can also derive the
validity of the formula y.

Definition 2.2 (Axiom). An axiom is an inference rule with empty premise:

r=a/y.
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Equivalent notations are:

In other words, there are no preconditions for applying an axiom r, hence there is
nothing to prove in order to apply the rule: in this case we can assume y to hold.

Definition 2.3 (Logical system). A logical system is a set of inference rules R =

{Vi}iel-

Given a logical system, we can start by deriving obvious facts using axioms and
then derive new valid formulas applying the inference rules to the formulas that we
know to hold (used as premises). In turn, the newly derived formulas can be used to
prove the validity of other formulas.

Example 2.4 (Some inference rules). The inference rule

xeE xeE xdy=z

z€E

means that, if x and y are two elements that belongs to the set £ and the result of
applying the operator & to x and y gives z as a result, then z must also belong to the
set E.

The rule

2€E
is an axiom, so we know that 2 belongs to the set E.

By composing inference rules, we build derivations, which explain how a logical
deduction is achieved.

Definition 2.4 (Derivation). Given a logical system R, a derivation is written
dlFry

where

o citherd = @ /yis an axiom of R, i.e., (&/y) €R;
e orthere are some derivations d; kg x1,...,d, IFg x, such thatd = ({d,,...,d,} /y)
and ({x1,...,x,} /y) €R.

The notion of derivation is obtained putting together different steps of reasoning
according to the rules in R. We can see d I-g y as a proof that, in the formal system
R, we can derive y.

Let us look more closely at the two cases in Definition 2.4. The first case tells us
that if we know that:

(%) er
y
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i.e., if we have an axiom for deriving y in our inference system R, then

%)
(2) ay
y
is a derivation of y in R.
The second case tells us that if we have already proved x; with derivation d, x,
with derivation d, and so on, i.e.,

d] |FR)C1, dz‘Fsz, ceey dn |FRX,,

and, in the logical system R, we have a rule for deriving y using x1, ..., X, as premises,
ie.,

(x1 s ey Xn
y
then we can build a derivation for y as follows:

({dlw)-)-,dn}) ”_Ry

) en

Summarising all the above:

o (O/y)lFgry if (&/y) € R (axiom)
o ({di,....dn}/y)lFry if ({x1,...; %2} /y) € Rand d; IFg x1,...5d, IFg x, (infer-
ence)

A derivation can roughly be seen as a tree whose root is the formula y we derive
and whose leaves are the axioms we need. Correspondingly, we can define the height
of a derivation tree as follows:

e [ itd = (2/y)
height(d) & { 1+ max{height(dy ), .., height(d,)}  ifd = ({dly,. cdn} /)

Definition 2.5 (Theorem). A theorem in a logical system R is a well-formed formula
y for which there exists a proof, and we write IFg y.

In other words, y is a theorem in R if 3d.d IFg y.

Definition 2.6 (Set of theorems in R). We let I = {y | IFg y} be the set of all
theorems that can be proved in R.

We mention two main approaches to prove theorems:

e top-down or direct: we start from theorems descending from the axioms and then
prove more and more theorems by applying the inference rules to already proved
theorems;

e bottom-up or goal-oriented: we fix a goal, i.e., a theorem we want to prove, and
we try to deduce a derivation for it by applying the inference rules backward, until
each needed premise is also proved.
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In the following we will mostly follow the bottom-up approach, because we will
be given a specific goal to prove.

Example 2.5 (Grammars as sets of inference rules). Every grammar can be presented
equivalently as a set of inference rules. Let us consider the well-known grammar for
strings of balanced parentheses. Recalling that € denotes the empty string, we write:

S = SS | (8 | e

We let Lg denote the set of strings generated by the grammar for the symbol S. The
translation from production to inference rules is straightforward. The first production

S =SS

says that given any two strings s; and s, of balanced parentheses, their juxtaposition
is also a string of balanced parentheses. In other words:
s1 €Ls s> E€Lg
s187 € Lg
Similarly, the second production
S =_(9
says that we can surround with brackets any string s of balanced parentheses and get

again a string of balanced parentheses. In other words:

s€Lg

(2)

Finally, the last production says that the empty string € is just a particular string
of balanced parentheses. In other words we have an axiom:

(s) €Lg

3
ee€lLg ( )

Note the difference between the placeholders s, 51,52 and the symbol € appearing
in the rules above: the former can be replaced by any string to obtain a specific
instance of rules (1) and (2), while the latter denotes a given string (i.e., rules (1) and
(2) define rule schemes with many instances, while there is a unique instance of rule
(3)).

For example, the rule

) (€Ls ((€Ls
) (((€Lg

is an instance of rule (1): it is obtained by replacing s; with ) ( and s, with ( (.
Of course the string ) ( ( ( appearing in the conclusion does not belong to Lg, but
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the rule instance is perfectly valid, because it says that ““) ( ( ( € Lg if ) ( € Lg and
( ( € Lg”: since the premises are false, the implication is valid even if we cannot
draw the conclusion ) ( ( ( € Lg.

Let us see an example of valid derivation that uses some valid instances of rules
(1) and (2).

3
SELS( )
— () (3)
() = () €Lg ecly
— — ()
(()) €Ls (8):()€LS(1)
() () eLs

Reading the proof (from the leaves to the root): Since € € Lg by axiom (3), then we
know that (&) = () € Lg by (2); if we apply again rule (2) we derive also ( () ) € Lg
and hence ( ()) () € Lg by (1). In other words ( () ) () € Lg is a theorem.

Let us introduce a second formalisation of the same language (balanced parenthe-
ses) without using inference rules. To get an intuition, suppose we want to write an
algorithm to check if the parentheses in a string are balanced. We can parse the string
from left to right and count the number of unmatched, open parentheses in the prefix
we have parsed. So, we sum 1 to the counter whenever we find an open parenthesis
and subtract 1 whenever we find a closed parenthesis. If the counter is never negative,
and it holds O when we have parsed the whole string, then the parentheses in the
string are balanced.

In the following we let a; denote the ith symbol of the string a. Let

_ 1 “ifa; =
flai) = { 1 ifa; =)
A string of n parentheses a = aja;...a, is balanced if and only if both the following
properties hold:

Property 1:  Vm € [0,n] we have Y f(a;) > 0
Property 2: Y7 | f(a;) =0

In fact, Y7 | f(a;) counts the difference between the number of open parentheses
and closed parentheses that are present in the first m symbols of the string a. Therefore,
the first property requires that in any prefix of the string a the number of open
parentheses exceeds, or equals the number of closed ones; the second property
requires that the string a has as many open parentheses than closed ones.

An example is shown below for the stringa= (()) ():

12 3
am=( ()
() 11 -1
fla)=121
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Properties 1 and 2 are easy to check for any string and therefore define an useful
procedure to decide if a string belongs to our language or not.

Next, we show that the two different characterisations of the language (by infer-
ence rules and by the counting procedure) of balanced parentheses are equivalent.

Theorem 2.1. For any string of parentheses a of length n

m >0 m=0,1...n
a€Lg < i1 f(ai) 2 ’
g { " fla) =0

Proof. The proof is composed of two implications that we show separately:

=) all the strings produced by the grammar satisfy the two properties;
<) any string that satisfy the two properties can be generated by the grammar.

Proof of =) To show the first implication, we proceed by induction over the rules:
we assume that the implication is valid for the premises and we show
that it holds for the conclusion. This proof technique is very powerful
and will be explained in detail in Chapter 4.

The two properties can be represented graphically over the cartesian
plane by taking m over the x-axis and the quantity Y/ | f(a;) over the
y-axis. Intuitively, the graph start at the origin; it should never cross
below the x-axis and it should end in (n,0).

Let us check that by applying any inference rule the properties 1 and
2 still hold.

Rule (1):  The first inference rule corresponds to the juxtaposition
of the two graphs and therefore the result still satisfies
both properties (when the original graphs do).

A
cc)y )

BEEREEEEE
A |:I'>
()

012345678

0012345678

Rule (2): The second rule corresponds to translate the graph up-
ward (by 1 unit) and therefore the result still satisfies both
properties (when the original graph does).

0123456 012345678
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Proof of <)

Rule (3):  The third rule is just concerned with the empty string that

trivially satisfies the two properties.

Since we have inspected all the inference rules, the proof of the first
implication is concluded.

We need to find a derivation for any string that satisfies the two prop-
erties. Let a be such a generic string. (We only sketch this direction
of the proof, that goes by induction over the length of the string a.)
We proceed by case analysis, considering three cases:

1.

If n =0, a = €. Then, by rule (3) we conclude that a € Lg.

The second case is when the graph associated with a never
touches the x-axis (except for its start and end points). An exam-
ple is shown below:

012345678

In this case we can apply rule (2), because we know that the
parentheses opened at the beginning of a is only matched by the
parenthesis at the very end of a.

The third and last case is when the graph touches the x-axis (at
least) once in a point (k,0) different from its start and its end. An
example is shown below:

0123456 78

In this case the substrings a;...a; and ay.|...a, are also balanced
and we can apply the rule (1) to their derivations to prove that
acLs. (|

The last part of the proof outlines a goal-oriented strategy to build a derivation for
a given string: We start by looking for a rule whose conclusion can match the goal
we are after. If there are no alternatives, then we fail. If we have only one alternative
we need to build a derivation for its premises. If there are more alternatives than one
we can either explore all of them in parallel (breadth-first approach) or try one of
them and back-track in case we fail (depth-first).

Suppose we want to find a proof for ( () ) () € Ls. We use the notation

(O) () eELs N
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(0) O €Ly N\ e€Ls, () €L
(O) O €Ly N (€Ls, ())() €L
() O elsy N ((€Ls, ))()€Ls
(0) 0O eLs N\ ((O)eLs, )() eLs
(0) 0O eLls . (0)eLs, ()elLs
(O)0O€eLs N\ (0)(eLs, )elLs
(0) 0O eLls . (0)(0) €Ly, €€l

Fig. 2.1: Tentative derivations for the goal ( ()) () € Lg

to mean that we look for a goal-oriented derivation.

Rule (1) can be applied in many different ways, by splitting the string ( () ) () in
all possible ways. We use the notation

() O eLls N\ €€Ls, ()0 €Ls
to mean that we reduce the proof of (()) () € Lg to those of € € Lg and
(()) () € Ls. Then we have all the alternatives in Figure 2.1 to inspect. Note

that some alternatives are identical except for the order in which they list subgoals
(1 and 7) and may require to prove the same goal from which we started (1 and 7).
For example, if option 1 is selected applying depth-first strategy without any addi-
tional check, the derivation procedure might diverge. Moreover, some alternatives
lead to goals we won’t be able to prove (2, 3, 4, 6).

Rule (2) can be applied in only one way:

(0) () €Ly X () (€Ls

Rule (3) cannot be applied.

We show below a successful derivation, where the empty goal is written [.

() €Ly

()) € Ls,
()) €Ls;
()) €Ls

() €Ls
gelg

by applying (1)
by applying (2) to the second goal
by applying (3) to the second goal
by applying (2)
by applying (2)
by applying (3)

We remark that in general the problem to check if a certain formula is a theorem is
only semidecidable (not necessarily decidable). In this case the breadth-first strategy
for goal-oriented derivation offers a semidecision procedure: if a derivation exists,
then it will be found; if no derivation exists, the strategy may not terminate.
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2.3 Logic Programming

We end this chapter by mentioning a particularly relevant paradigm based on goal-
oriented derivation: logic programming and its Prolog incarnation. Prolog exploits
depth-first goal-oriented derivations with backtracking.

Let X = {x,y,... } be a set of variables, X = { f,g,... } a signature of function
symbols (with given arities), IT = {p,q, ... } a signature of predicate symbols (with
given arities). As usual, we denote by X, (respectively IT,) the subset of function
symbols (respectively predicate symbols) with arity 7.

Definition 2.7 (Atomic formula). An atromic formula consists of a predicate symbol
p of arity n applied to n terms with variables.

For example, if p € IT, f € X, and g € Xy, then p( f(g(x),x), g(y)) is an atomic
formula.

Definition 2.8 (Formula). A formula is a (possibly empty) conjunction of atomic
formulas.

Definition 2.9 (Horn clause). A Horn clause is written [: —r where [ is an atomic
formula, called the head of the clause, and r is a formula called the body of the
clause.

Definition 2.10 (Logic program). A logic program is a set of Horn clauses.

The variables appearing in each clause can be instantiated with any term. A goal
g is a formula whose validity we want to prove. The goal g can contain variables,
which are implicitly existentially quantified.

Unification is used to “match” the head of a clause to an atomic formula of the
goal we want to prove in the most general way (i.e., by instantiating the variables
as little as possible). Before performing unification, the variables of the clause are
renamed with fresh identifiers to avoid any clash with the variables already present
in the goal.

Suppose we are given a logic program L and a goal g = ay,...,a,, where ay, ..., a,
are atomic formulas. A derivation step g\ s ¢’ is obtained by selecting a sub-goal
aj; aclause [: —r € L and a renaming p such that:

e [p: —rp is a variant of the clause /: —r € L whose variables are fresh;
e the unification problem { a; =y p } a most general solution o;

el )
® 0O = G\vars(a,-)v
def
!/
® g =4daj,...,qi<1,rPO,Ait1,...,dn.

If we can find a sequence of derivation steps
g\, 81 \c, 82 8n-1\g, U

. . N f
then we can conclude that the goal g is satisfiable and that the substitution & &
O] - - Oy is a least substitutions for the variables in g such that go is a valid theorem.
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Example 2.6 (Sum in Prolog). Let us consider the logic program:

sum(0,y,y) : —.
sum(s(x),y,s(z)) : — sum(x,y,z).
where sum € I3, s € 21,0 € Xy and x,y,z € X.
Let us consider the goal sum(s(s(0)), s(s(0)),v) with v € X.
There is no match against the head of the first clause, because 0 does not unify
with s(s(0)).
We rename x,y,z in the second clause to x’,y’,z and compute the unification

of sum(s(s(0)), s(s(0)), v) and sum(s(x'),y, s(z')). The result is the substitution
(i.e., the most general unifier)

We then apply the substitution to the body of the clause, which will be added to
the goal:

sum(x’,y", 2')[x' = 5(0), )" = 5(s(0)), v =s(z') ] = sum(s(0) , 5(s(0)) , ')

If other subgoals were initially present, which may share variables with sum(s(s(0)), s(s(0)), v)
then the substitution should have been applied to them too.
We write the derivation described above using the notation

sum(s(s(0)), s(s(0),v)  Nims(e) - sum(s(0), s(s(0)), ')

where we have recorded (as a subscript of the derivation step) the substitution applied
to the variables originally present in the goal (just v in the example), to record the
least condition under which the derivation is possible.

The derivation can then be completed as follows:

sum(s(s(0)), s(s(0)),v)  Ni=sy  sum(s(0),s(s(0)),2")
Ny sum(0,5(5(0)), )
Ner=ss0)) D

By composing the computed substitutions we get

7= S(Z”) = s(s(s(0)))
v =s(2') = s(s(s(s(0))))

This gives us a proof of the theorem

sum(s(s(0)), s(s(0)), s(s(s(s(0)))))
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Problems

2.1. Consider the alphabet {a,b} and the grammar

A == aA | aB
B == b | bB

. Describe the form of the strings in the languages L4 and Lp.

. Define the languages L4 and Lp formally.

. Write the inference rules that correspond to the productions of the grammar.

. Write the derivation for the string a a a b b both as a proof-tree and as a goal-
oriented derivation.

5. Prove that the set of theorems associated with the inference rules coincide with

the formal definitions you gave.

RS NELOS I N R

2.2. Consider the alphabet {0,1}.

1. Give a context free grammar for the set of strings that contain an even number of
0 and 1.

2. Write the inference rules that correspond to the productions of the grammar.

3. Write the derivation for the string 0 1 1 0 0 0 both as a proof-tree and as a
goal-oriented derivation.

4. Prove that your logical systems characterises exactly the set of strings that contain
an even number of 0 and 1.

2.3. Consider the signature X such that Xy = {0}, Xy = {s} and X, = & for any
n>?2.

1. Let even € IT;. What are the theorems of the logical system below?

even(x)
n
even(0) even(s(s(x)))
2. Let odd € IT;.What are the theorems of the logical system below?
odd(x)
odd(s(s(x)))
3. Let leqg € I,. What are the theorems of the logical system below?
1 leg(x,y)
teq(0,x) leq(s(x), (7))

2.4. Consider the signature X such that Xy = N, X, = {node} and X, = @ otherwise.
Let sum,eq € Il,. What are the theorems of the logical system below?

neN (1) sum(x,n)  sum(y,m) k= ntm () sum(x,n) sum(y,n)
sum(node(x,y),k) eq(x,y)

sum(n,n)
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2.5. Consider the signature X such that Xy = {0}, X; = {s} and X, = & for any
n > 2. Give two terms ¢ and ', with z # ¢/, such that ¢ is more general than ¢’ and ¢’ is
also more general than 7.

2.6. Consider the signature X such that Xy = {a}, X1 = {f,g}, Z» = {h,{} and
X, = @ for any n > 3. Solve the unification problems below:

def

1. Go = {x= f(y),h(z,x) = h(y,2),8(») = g(I(a,a))}

2.G1 & {x = £(3),h(z.%) = h(x,g(2))}

3. Gy & {x £ f(3),h(z.x) = h(y, £(2)),(3,a) = 1(a,2)}

4. Gy = {(x £ £(3),h(3,x) = h(g(a), f(3(2))), 1 (z,a) = 1(a,2)}

2.7. Extend the logic program for computing the sum with the definition of:

1. a predicate prod for computing the product of two numbers;
2. a predicate pow for computing the power of a base to an exponent;
3. a predicate div that tells if a number can be divided by another number.

2.8. Extend the logic program for computing the sum with the definition of a binary
predicate fib(N, F) that is true if F is the Nth Fibonacci number.

2.9. Suppose that a set of facts of the form parent(x,y) are given, meaning that x is a
parent of y.

1. Define a predicate brother(X,Y) which holds true iff X and ¥ have a parent in
common.

2. Define a predicate cousin(X,Y) which holds true iff X and Y are cousins.

3. Define a predicate ancestor(X,Y) which holds true iff X is an ancestor of Y.

4. If the set of basic facts is:

:— parent (alice,bob)
:— parent (alice,carl)
:— parent (bob,diana)
:— parent (bob,ella)

(

:= parent (carl, francisco)

which of the following goals can be derived?

?— brother(ella, francisco).
?— brother(ella,diana).

?— cousin(ella, francisco).
?— cousin(ella,diana) .

?— ancestor (alice,ella).

?— ancestor (carl,ella).

2.10. Suppose that a set of facts of the form arc(x,y) are given to represent a directed,
acyclic graph, meaning that there is an arc from x to y.

1. Define a predicate path(X,Y) which holds true iff there is a path from X to Y.



2.3 Logic Programming 47

2. Suppose the acyclic requirement is violated, like in the graph

Does a goal-oriented derivation for a query, like the one below, necessarily lead to
the empty goal? Why?

?— path(a, f).
2.11. Consider the Horn clauses that correspond to the following statements:

1. All jumping creatures are green.

2. All small jumping creatures are martians.
3. All green martians are intelligent.

4. Ngtrks is small and green.

5. Pgvdrk is a jumping martian.

Who is intelligent?!

! Taken from http://www.slideshare.net/SergeiWinitzki/prolog-talk.
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