Roberto Bruni, Ugo Montanari

Models of Computation

— Monograph —

March 1, 2016

Springer

Mathematical reasoning may be regarded
rather schematically as the exercise of a
combination of two facilities, which we may
call intuition and ingenuity.

Alan Turing'

! The purpose of ordinal logics (from Systems of Logic Based on Ordinals), Proceedings of the
London Mathematical Society, series 2, vol. 45, 1939.

Contents

Part I Preliminaries

1

Introduction i 3
1.1 Structure and Meaning0..ee oo, 3
1.1.1 Syntaxand Types oin tiiiin .. 4
112 Semanticsoouuneeeiie et 4
1.1.3 Mathematical Models of Computation................... 6
1.1.4 Operational SemanticSouiiiunvaineon... 7
1.1.5 Denotational Semantics oo eieeiinneeeenn... 8
1.1.6 Axiomatic Semanticsvvune i, 8
1.2 A Taste of Semantics Methods: Numerical Expressions 9
1.2.1 AnInformal Semantics ..<.........¢..iinna.. 10
1.2.2 A Small-Step Operational Semantics 11
1.2.3 A Big-Step Operational Semantics (or Natural Semantics) .. 13
1.2.4° A Denotational Semantics 15
1.2.5° Semantic Equivalence 16
1.2.6 Expressions with Variables 17
1.3 Applications of Semanticso, 18
1.3.1 Language Designooiiiiineiinniiinennnnn. 18
1.3.2° Implementation.c.oviiuniinneinnnennn.n. 18
1.3.3 Analysis and Verification.............................. 19
1.3.4 Synergy Between Different Semantics Approaches 19
14 Content OVEIVIEWoiiiiiiiiiiiiiii .. 20
1.4.1 Induction and Recursion oo.. 22
1.4.2 ~SemanticDomains i, 24
1.43 Bisimulation i 26
1.4.4 Temporal and Modal Logics 26
1.4.5 Probabilistic Systems, 27
1.5 Chapters Contents and Reading Guide 27

XV

XVi Contents

2 Preliminaries 31

2.1 NOtAtION ..\ttt e e e e e 31

2.1.1 Basic NOtationuieiiieeiinenineninnennnnn 31

2.1.2 Signaturesand Termso, 32

2.1.3 SubStitutionscouuuntt i 33

2.1.4 Unification Problem, 33

2.2 Inference Rules and Logical Systems 35

2.3 Logic Programminguuiiieiiiiiineeeennnnn... 43

Problemso e 45
Part II IMP: a simple imperative language

3 Operational Semanticsof IMP0.... 51

3.1 Syntax of IMPo 51

3.1.1 Arithmetic Expressionso il 52

3.1.2 Boolean Expressions 52

3.1.3 Commandsooiiiiini e 52

3.1.4 ADStract Syntaxfeeiiiiiin b 53

3.2 Operational Semantics of IMP.....0... oo, 54

32,1 Memory Stateovtt i e 54

322 InferenceRules........ i, 55

323 Examples.ot 59

3.3 Abstract Semantics: Equivalence of Expressions and Commands ... 64

3.3.1 Examples: Simple Equivalence Proofs......c............ 65

3.3.2 Examples: Parametric Equivalence Proofs 66

3.3.3 Examples: Inequality Proofs0.............. ... 68

3.3.4 Examples: Diverging Computations 70

Problems ... oo e 73

4 Inductionand Recursion 75

4.1 Noether Principle of Well-founded Induction 75

4.1.1 Well-founded Relations 75

4.1.2 Noether Induction.o i ... 81

4.1.3 Weak Mathematical Induction 82

4.1.4 Strong Mathematical Induction......................... 83

4.1.5 Structural Induction i 83

4.1.6 Induction on Derivationsc.ciivinnn.... 86

417 RuleInduction i 87

4.2 Well-founded Recursion oo, 90

Problems 95

5 Partial Orders and Fixpoints 99

5.1 Orders and Continuous Functions 99

SAL Orders ..o 100

5.1.2 HasseDiagrams i 101

5.1.3 Chains ..ottt 105

Contents
5.1.4 Complete Partial Ordersc..oiiviinn ..
5.2 Continuity and Fixpoints
5.2.1 Monotone and Continuous Functions....................
5.2.2 FIXPOINtS ..o vv ittt
5.3 Immediate Consequence Operator.oouuveunneenn..
5.3.1 The Operator R oo
532 FiXpoint Of R.........oooueie i
Problems
6 Denotational Semanticsof IMP
6.1 A-NOtationc.uriiieeiiii i
6.1.1 A-Notation: MainIdeascicevn.....
6.1.2 Alpha-Conversion, Beta-Rule and Capture-Avoiding
Substitution e
6.2 Denotational Semantics of IMPo .o .
6.2.1 Denotational Semantics of Arithmetic Expressions: The
Function @ol
6.2.2 Denotational Semantics of Boolean Expressions: The
Function Z

6.2.3 Denotational Semantics of Commands: The Function ¢

6.3 Equivalence Between Operational and Denotational Semantics
6.3.1 Equivalence Proofs For Expressionsc.......
6.3.2 Equivalence Proof for Commands

6.4 Computational Induction e i

Problems

Part III HOFL: a higher-order functional language

7 Operational Semanticsof HOFL
7.1 Syntax of HOFL 0
711 Typed Terms . .. cuiveuus et

7.1.2 Typability and Typechecking

7.2 Operational Semantics of HOFL
Problems

8 DomainTheory i,
8.1 The Flat Domain of Integer Numbers Z |

8.2 Cartesian Product of TwoDomains............................

8.3 Functional Domains

84 Lifting. oo

8.5 Function’s Continuity Theorems

8.6 Useful Functions,
Problems e

Xviii Contents

9 HOFL Denotational Semantics 183
9.1 HOFL Semantic Domainsuiiiniiiininenan.. 183
9.2 HOFL Evaluation Function 184

9.2.1 ConStantS.c..uiriiei e 184
922 Variables 184
9.2.3 Binary Operatorsoeuuveiuneinneennnennnnnn 185
924 Conditional 185
9.2.5 Pailingottt 186
9.2.6 Projections.uiiiiiiiiin i 186
9.2.7 Lambda Abstraction.................c.couuiinirneinannn 187
9.2.8 Function Applicationcoivviineiiienn... 187
9.2.9 RECUISION ...\ttt e e ie e e 187
9.3 Continuity of Meta-language’s Functions..........< 189
9.4 SubstitutionLemma 191
Problems e 192

10 Equivalence between HOFL denotational and operational semantics . 195
10.1 COomPIELeNeSsS . .« ..ottt et et e e e e e e 196
10.2 Equivalence (on COnvergence).ooieuonneeeennnnn .. 199
10.3 Operational and Denotational Equivalences of Terms............. 201
10.4 A Simpler Denotational Semantics 202
Problems e 203

Part IV Concurrent Systems

11 CCS, the Calculus for Communicating Systems 209
11.1 Syntax of CCSo ..o 214
11.2 Operational Semantics of CCS i, 215

11.2.1 Action Prefix it 216
11.2.2 ReSIICHOM .+« .o v ettt e e et et et 216
11.2.3 Relabellingoiieeeat i 216
11.24 ChOICE 217
11.2.5 Parallel Compositionoouineiinninnennn... 217
11.2.6 RecurSiono....oouuuiiiiiin i, 218
11.2.7 CCS with Value Passing 221
11.2.8 Recursive Declarations and the Recursion Operator. 222
11.3 Abstract Semantics of CCS 224
11.3.1 Graph Isomorphism, 224
11.3.2 Trace Equivalencecoiiiiiniiinnennnnn. 226
11.3.3 Bisimilarityt 227
11.4 Compositionality, 233
11.4.1 Bisimilarity is Preserved by Choice 234
11.5 A Logical View to Bisimilarity: Hennessy-Milner Logic 235
11.6 Axioms for Strong Bisimilarity 238

11.7 Weak Semantics of CCS i 240

Contents XiX

11.7.1 Weak Bisimilarity............., 240
11.7.2 Weak Observational Congruence 242
11.7.3 Dynamic Bisimilarity................. 243
Problems 244
12 Temporal Logicand yu-Calculus 249
12.1 Temporal LOZICot 249
12.1.1 Linear Temporal Logic, 250
12.1.2 Computation Tree Logic, 252

122 p-Calculus . .ooe e 254
12.3 Model Checkingo it 257
Problems e 258
13 7m-Calculus 261
13.1 Name Mobility i 261
13.2 Syntax of the m-calculus 264
13.3 Operational Semantics of the w-calculus 266
13.3.1 ActionPrefix...... ... il 267
13.32 Choice ...t 268
13.3.3 Name Matching 268
13.3.4 Parallel Compositioncceiuineeeenn... 268
13.3.5 ReStrCONo v i e e 269
13.3.6 Scope EXtrusioniieeueeineineinneeenneenn.. 269
13.3.7 Replicationttt 269
13.3.8 A Sample Derivationooooiiiii ... 270

13.4 Structural Equivalence of z-caleulus 271
13.4.1 Reduction semanticscccuuuuneeeennn.. 271

13.5 Abstract Semantics of the w-calculus 272
13.5.1 Strong Early Ground Bisimulations 273
13.5.2 Strong Late Ground Bisimulations 274
13.5.3 Strong Full Bisimilarities.coiuuunna.. 275
13.5.4 Weak Early and Late Ground Bisimulations 276
Problems 277

Part V Probabilistic Systems

14 Measure Theory and Markov Chains............................. 281
14.1 Probabilistic and Stochastic Systems 281

142 Measure Theory......... i 282
1421 o-field 282

14.2.2 Constructingao-field, 283

14.2.3 Continuous Random Variables 285

14.2.4 Stochastic Processes., 289

14.3 Markov Chainscinininin i 289
14.3.1 Discrete and Continuous Time Markov Chain 290

1432 DTMCasLTS. ... 291

XX Contents

14.3.3 DTMC Steady State Distribution 293

1434 CTMC as LTS e 295

14.3.5 Embedded DTMC of aCTMCcoivnn... 296

14.3.6 CTMC Bisimilarity 296

14.3.7 DTMC Bisimilarityc.coviiuieiinenneenn.. 298

Problems 299

15 Markov Chains with Actions and Non-determinism 303
15.1 Discrete Markov Chains With Actions 303
15.1.1 Reactive DTMC it 304

15.1.2 DTMC With Non-determinismcocu.... 306

Problems e 309

16 PEPA - Performance Evaluation Process Algebra 311
16.1 From Qualitative to Quantitative Analysisc... ... it 311

16,2 CSP .. 312
16.2.1 Syntax of CSP. i 312

16.2.2 Operational Semanticsof CSP 313

163 PEPA . ..o 314
16.3.1 Syntax of PEPA 314

16.3.2 Operational Semantics of PEPA 316

Problems e i 321
GloSSarY e e e 325

Solutions 327

Acronyms

2

|
U
Q
S

d
<

oy X

020 IR X IR

2 22
NN

Lo Ne
try

!
&

]

ack
Aexp

Bexp

CCS
Com
CPO
CPO
CSP
CTL
CTMC

operational equivalence in IMP (see Definition 3.3)
denotational equivalence in HOFL (see Definition 10.4)
operational equivalence in HOFL (see Definition 10.3)
CCS strong bisimilarity (see Definition 11.5)

CCS weak bisimilarity (see Definition 11.16)

CCS weak observational congruence (see Section 11.7.2)
CCS dynamic bisimilarity (see Definition 11.17)
m-calculus early bisimilarity (see Definition 13.3)
m-calculus late bisimilarity (see Definition 13.4)
m-calculus strong early full bisimilarity (see Section 13.5.3)
m-calculus strong late full bisimilarity (see Section 13.5.3)

n-calculus weak early bisimilarity (see Section 13.5.4)

n-calculus weak late bisimilarity (see Section 13.5.4)

interpretation function for the denotational semantics of IMP arithmetic
expressions (see Section 6.2.1)

Ackermann function (see Example 4.18)

set of IMP arithmetic expressions (see Chapter 3)

interpretation function for the denotational semantics of IMP boolean
expressions (see Section 6.2.2)

set of IMP boolean expressions (see Chapter 3)

set of booleans

interpretation function for the denotational semantics of IMP com-
mands (see Section 6.2.3)

Calculus of Communicating Systems (see Chapter 11)

set of IMP commands (see Chapter 3)

Complete Partial Order (see Definition 5.11)

Complete Partial Order with bottom (see Definition 5.12)
Communicating Sequential Processes (see Section 16.2)
Computation Tree Logic (see Section 12.1.2)

Continuous Time Markov Chain (see Definition 14.15)

XXi

xxii

DTMC
Env

fix

FIX
gcd
HML
HM-Logic
HOFL
IMP
int
Loc
LTL
LTS
lub

PEPA
Pf

PI
PO
PTS

Tf
Var

Acronyms

Discrete Time Markov Chain (see Definition ??)

set of HOFL environments (see Chapter 9)

(least) fixpoint (see Definition 5.2.2)

(greatest) fixpoint

greatest common divisor

Hennessy-Milner modal Logic (see Section 11.5)
Hennessy-Milner modal Logic (see Section 11.5)

A Higher-Order Functional Language (see Chapter 7)

A simple IMPerative language (see Chapter 3)

integer type in HOFL (see Definition 7.2)

set of locations (see Chapter 3)

Linear Temporal Logic (see Section 12.1.1)

Labelled Transition System (see Definition 11.2)

least upper bound (see Definition 5.7)

set of natural numbers

set of closed CCS processes (see Definition 11.1)
Performance Evaluation Process Algebra (see Chapter 16)
set of partial functions on natural numbers (see Example 5.10)
set of partial injective functions on natural numbers (see Problem 5.11)
Partial Order (see Definition 5.1)

Probabilistic Transition System (see Section 14.3.2)

set of real numbers

set of HOFL types (see Definition 7.2)

set of total functions from N to N; (see Example 5.11)
set of HOFL variables (see Chapter 7)

set of integers

Part 11
IMP: a simple imperative language

This part focuses on models for sequential computations that are associated to IMP, a
simple imperative language. The syntax and natural semantics of IMP are studied
in Chapter 3, while its denotational semantics is presented in Chapter 6, where it is
also reconciled with the operational semantics. Chapter 4 explains several induction
principles exploited to prove properties of programs and semantics. Chapter 5 fixes
the mathematical basis of denotational semantics. The concepts in Chapters 4 and 5
are extensively used in Chapter 6 and in the rest of the monograph.

Chapter 3
Operational Semantics of IMP

Programs must be written for people to read, and only
incidentally for machines to execute. (H. Abelson and G.
Sussman)

Abstract This chapter introduces the formal syntax and operational semantics of a
simple, structured imperative language called IMP, with static variable allocation and
no sophisticated declaration constructs for data types, functions, classes, methods
and the like. The operational semantics is defined in the natural style and it assumes
an abstract machine with a vary basic form of memory to associate integer value to
variables. The operational semantics is used to derive a notion of program equivalence
and several example of (in)equivalence proofs are shown.

3.1 Syntax of IMP
The IMP programming language is a simple imperative language (e.g., it can be seen
as a bare bone version of the C language) with only three data types:

int: the set of integer numbers, ranged over by metavariables m,n, ...
Z={0,+£1,4+2,...}

bool: the set of boolean values, ranged over by metavariables u, v, ...
B = { true, false }

locations: the (denumerable) set of memory locations (we consider programs
that use a finite number of locations and we assume there are enough
locations available for any program), ranged over by metavariables

X, Y, ...
Loc locations

The grammar for IMP comprises three syntactic categories:

Aexp: Arithmetic expressions, ranged over by a,d’, ...
Bexp: Boolean expressions, ranged over by b, b, ...

51

52 3 Operational Semantics of IMP

Com: Commands, ranged over by c,c, ...

Definition 3.1 (IMP: syntax). The following productions define the syntax of IMP:

a€Aexp = n|x|ayta | ap—ar | apxa
b€ Bexp = v|a0:a1 |a0§a1 |ﬁb‘b0\/b1 ‘bo/\bl
ce€Com == skip | x:=a | cp;c | if b then ¢ else ¢; | while b do ¢

where we recall that n is an integer number, v a boolean value and x a location.

IMP is a very simple imperative language and there are several constructs we
deliberately omit. For example we omit other common conditional statements, like
switch, and other cyclic constructs like repeat. Moreover IMP commands imposes
a structured flow of control, i.e., IMP has no labels, no goto statements, no break
statements, no continue statements. Other things which are missing and are difficult
to model are those concerned with modular programming. In particular, we have no
procedures, no modules, no classes, no types. Since IMP does not include variable
declarations, procedures and blocks, memory allocation is essentially static and finite.
Of course, IMP has no concurrent programming construct.

3.1.1 Arithmetic Expressions

An arithmetic expression can be an integer number, or a location, a sum, a difference
or a product. We notice that we do not have division, because it can be undefined (e.g.,
7/0) or give different values (e.g., 0/0) so that its use would introduce unnecessary
complexity.

3.1.2 Boolean Expressions

A boolean expression can be a logical value v, or the equality of an arithmetic
expression with another, an arithmetic expression less or equal than another one, a
negation, a logical conjunction or disjunction.

To keep the notation compact, in the following we will take the liberty of writing
boolean expressions such as x # 0, in place of —(x =0) and x > 0 in place of 1 < x
or (0<x)A—(x=0).

3.1.3 Commands

A command can be skip, i.e. a command which is not doing anything, or an as-
signment where we have that an arithmetic expression is evaluated and the value is

3.1 Syntax of IMP 53

assigned to a location; we can also have the sequential execution of two commands
(one after the other); an if-then-else with the obvious meaning: we evaluate a boolean
expression b, if it is true we execute cq and if it is false we execute c¢;. Finally we
have a while statement, which is a command that keeps executing ¢ until b becomes
false.

3.1.4 Abstract Syntax

The notation above gives the so-called abstract syntax in that it simply says how to
build up new expressions and commands but it is ambiguous for parsing a string. It
is the job of the concrete syntax to provide enough information through parentheses
or orders of precedence between operation symbols for a string to parse uniquely.
It is helpful to think of a term in the abstract syntax as a specific parse tree of the
language.

Example 3.1 (Valid expressions).

(while b do ¢) ; ¢, is a valid command;
while b do (c; ; ¢3) is a valid command;
while b do ¢; ; ¢ is not a valid command, because it is ambiguous.

In the following we will assume that enough parentheses have been added to
resolve any ambiguity in the syntax. Then, given any formula of the form a €
Aexp, b € Bexp, or ¢ € Com, the process to check if such formula is a “theorem” is
deterministic (no backtracking is needed).

Example 3.2 (Validity check). Let us consider the formula:
if (x = 0) then (skip) else (x:= (x— 1)) € Com

We can prove its validity by the following (deterministic) derivation, where we write
N to mean that several derivation steps are grouped into one for brevity:

if (x = 0) then (skip) else (x := (x— 1)) € Com N\ x =0 € Bexp, skip € Com,
x:=(x—1)€Com
N X € Aexp, 0 € Aexp, skip € Com,
x:=(x—1)€Com
NS x—1€Aexp
N X € Aexp,1 € Aexp
DN

54 3 Operational Semantics of IMP

3.2 Operational Semantics of IMP

3.2.1 Memory State

In order to define the evaluation of an expression or the execution of a command, we
need to handle the state of the machine which is going to execute the IMP statements.
Beside expressions to be evaluated and commands to be executed, we also need to
record in the state some additional elements like values and stores. To this aim, we
introduce the notion of memory:

o € X =(Loc—Z)

A memory 0 is an element of the set X which contains all the functions from locations
to integer numbers. A particular o is just a function from locations to integer numbers
so it is a function which associates to each location x the value o(x) that x stores.

Since Loc is an infinite set, things can be complicated: handling functions from
an infinite set is not a good idea for a model of computation. Although Loc is large
enough to store all the values that are manipulated by expressions and commands, the
functions we are interested in are functions which are almost everywhere 0, except
for a finite subset of memory locations.

If, for instance, we want to represent a memory such that the location x contains
the value 5 and the location y the value 10 and elsewhere is stored 0, we write:

o= (5/x,10/Y)

In this way we can represent any interesting memory by a finite set of pairs.
We let () denote the memory such that all locations are assigned the value 0.

Definition 3.2 (Memory update). Given a memory o, we denote by c["/,] the
memory where the value of x is updated to n,4.e. such that

ot /100 ={ 5y v s
Note that 6" /4|["/x] = o[™/,]. In fact:

S0 ={ oy = o(0) £ s

Moreover, when x # y, then the order of updates is not important, i.e., o[" /|["/,] =
o[/4][" /). For this reason, we often use the more compact notation ¢["/,,” /].

3.2 Operational Semantics of IMP 55

3.2.2 Inference Rules

Now we are going to give the operational semantics to IMP using a logical system.
It is called “big-step” semantics (see Section 1.2.3) because it leads to the result in
one single proof.

We are interested in three kinds of well formed formulas:

Arithmetic expressions: The evaluation of an element a € Aexp in a given memory
o results in an integer number.

(a,0) = n

Boolean expressions: The evaluation of an element b € Bexp.in a given memory
o results in either true or false.

(by,oy =v

Commands: The evaluation of an element ¢ € Com in a given memory
o leads to an updated final state ¢”.

{c,0) = 0

Next we show each inference rule and comment on it.

3.2.2.1 Inference Rules for Arithmetic Expressions

We start with the rules about arithmetic expressions.

——— (num) (3.D
(n,0) = n

The axiom 3.1 (num) is trivial: the evaluation of any numerical constant n (seen
as syntax) results in the corresponding integer value n (read as an element of the
semantic domain) no matter which o.

oot -

The axiom 3.2 (ide) is also quite intuitive: the evaluation of an identifier x in the
memory ¢ results in the value stored in x.

<a0,6> — no <a1,6> — n

a0 n=np+n; (sum) (3.3)
ap—rdai, n

56 3 Operational Semantics of IMP

The rule 3.3 (sum) has several premises: the evaluation of the syntactic expression
ap+ap in o returns a value n that corresponds to the arithmetic sum of the values ng
and n; obtained after evaluating, respectively, ap and a; in . Note that we exploit
the side condition n = ng + n; to indicate the relation between the target n of the
conclusion and the targets of the premises. We present an equivalent, but more
compact, version of the rule (sum), where the target of the conclusion is obtained as
the sum of the targets of the premises. In the following we shall adopt the second
format (3.4).

<(10,G> — no <(11,G> — N

(sum) (3.4)
<a0+a1,0'> — ng+ny

We remark the difference between the two occurrences of the symbol + in the
rule: in the source of the conclusion (i.e., ag + a;) it denotes a piece of syntax, in
the target of the conclusion (i.e., ng + n1) it denotes a semantic operation. To avoid
any ambiguity we could have introduced different symbols in the two cases, but we
have preferred to overload the symbol and keep the notation simpler. We hope the
reader is expert enough to assign the right meaning to each occurrence of overloaded
symbols by looking at the context in which they appear.

The way we read this rule is very interesting because, in general, if we want
to evaluate the lower part we have to go up, evaluate the uppermost part and then
compose the results and finally go down again to draw the conclusion:

(2) evaluate
\ (3) Godown

Goup (1)\

¥
(4) Find the result

In this case we suppose we want to evaluate, in the memory o, the arithmetic
expression ag + a;. We have to evaluate ag in the same memory ¢ and get ng, then
we have to evaluate a; within the same memory ¢ to get n and then the final result
will be ng + n;. Note that the same memory o is duplicated and distributed to the
two evaluations of @y and a, which may occur independently in any order.

This kind of mechanism is very powerful because we deal with more proofs at
once. First, we evaluate ag. Second, we evaluate a;. Then, we put all together. If we
need to evaluate several expressions on a sequential machine we have to deal with
the issue of fixing the order in which to proceed. On the other hand, in this case,
using a logical language we just model the fact that we want to evaluate a tree (an
expression) which is a tree of proofs in a very simple way and make explicit that the
order is not important.

3.2 Operational Semantics of IMP 57

The rules for the remaining arithmetic expressions are similar to the one for the
sum. We report them for completeness, but do not comment on them.

<aO7G> — o <Cl],G> —n

(dif) (3.5)

<a0—a1,6> — ng —ny

<a076> — o <a],0-> —rny

(prod) (3.6)
<a0 ><6117G> — ng X ny

3.2.2.2 Inference Rules for Boolean Expressions
The rules for boolean expressions are also similar to the previous ones and need no

particular comment, except for noting that the premises of rules (equ) and (leq) refer
the judgements of arithmetic expressions.

(v,o) = v (bool) 3-7)

(ap,0) = ng (ar,o) = n

e (3-8)
<a0 = a1,6> — (n() = nl) (qu)
<(10,0'> — o <ala O-> —ny (leq) (39)
(ag € a1,0) = (no <ny)
(byoy—=v
7 (not) (3.10)
(—=b,0) = v
<b0,6>—>\1() <b],6>—>V| ()r) (3-11)
<b0\/b1,6> — (V()\/vl)
b by,
(bo,0) = vo (b1,0) = v (and) .12

<b0/\b1,6> — (Vo/\vl)

58 3 Operational Semantics of IMP

3.2.2.3 Inference Rules for Commands

Next, we move to the inference rules for commands.

— (ski
<Skip’6>_>G(S p) (3.13)

The rule 3.13 (skip) is very simple: it leaves the memory ¢ unchanged.

(a,0) > m

a0 ol @14

The rule 3.14 (assign) exploits the assignment operation to update ¢: we remind
that ™ /,] is the same memory as & except for the value assigned to x (m instead of
6 (x)). Note that the premise refers to the judgements of arithmetic expressions.

{co,0) = 0" {c1,0"y— o

e o) 5 0 (seq) (3.15)
5C1,y

The rule 3.15 (seq) for the sequential composition (concatenation) of commands
is quite interesting. We start by evaluating the first command ¢ in the memory ©.
As a result we get an updated memory ¢” which we use for evaluating the second
command ci. In fact the order of evaluation of the two command is important and it
would not make sense to evaluate c; in the original memory o, because the effects of
executing ¢y would be lost. Finally, the memory ¢’ obtained by evaluating ¢ in ¢”
is returned as the result of evaluating cy; ¢ in .

The conditional statement requires two different rules, that depend on the evalua-
tion of the condition b (they are mutually exclusive).

(b,c) — true {cg,0) — o’

iftt (3.16)
(if b then ¢ else c|,0) — o’ (it

(b,0) — false (c|,0) — o’

ifff (3.17)
(if b then ¢ else ci,0) — o (i)

The rule 3.16 (iftt) checks that b evaluated to true and then returns as result
the memory ¢’ obtained by evaluating the command cg in . On the contrary, the
rule 3.17 (ifff) checks that b evaluated to false and then returns as result the memory
o’ obtained by evaluating the command ¢; in ©.

Also the while statement requires two different rules, that depends on the evalua-
tion of the guard b; they are mutually exclusive.

3.2 Operational Semantics of IMP 59

(b,0) — true (c,0) — c” (while b do c,c6") — o

whtt (3.18)
(while b do c,0) — o’ (wht)

(b,0) — false

(whff) (3.19)
(while b do ¢,0) > ©

The rule 3.18 (whtt) applies to the case where the guard evaluates to true: we need
to compute the memory 6" obtained by the evaluation of the body c in ¢ and then to
iterate the evaluation of the cycle over ¢”.

The rule 3.19 (whff) applies to the case where the guard evaluates to false: then
the cycle terminates and the memory ¢ is returned unchanged.

Remark 3.1. There is an important difference between the rule 3.18 and all the other
inference rules we have encountered so far. All the other rules take as premises
formulas that are “smaller in size” than their conclusions. This fact allows to decrease
the complexity of the atomic goals to be proved as the derivation proceeds further,
until having basic formulas to which axioms can be applied. The rule 3.18 is different
because it recursively uses as a premise a formula as complex as its conclusion. This
justifies the fact that a while command can cycle indefinitely, without terminating.

The set of all inference rules above defines the operational semantics of IMP.
Formally, they induce a relation that contains all the pairs input-result, where the
input is the expression / command together with the initial memory and the result is
the corresponding evaluation:

—C (Aexp X Z X Z) U (Bexp x Z xB)U (Com x £ x X)

We will see later that the computation is deterministic, in the sense that given any
expression / commands and any memory-as input there is at most one result (exactly
one in case of arithmetic and boolean expressions).

3.2.3 Examples

Example 3.3 (Semantic evaluation of a command). Let us consider the (extra-
bracketed) command

¢ (x:=0); (while (0<y) do ((x:=((x+(2xy)+1): (y:=(-1)))

To improve readability and without introducing too much ambiguity, we can write
it as follows:

¢S x:=0; while 0 <y do (x:=x+(2xy)+1:y=y—1)

60 3 Operational Semantics of IMP

or exploiting the usual convention for indented code, as:
c def x:=0;
while 0 <y do (
xi=x+2xy)+1;
yi=y—1
)

Without too much difficulties, the experienced reader can guess the relation
between the value of y at the beginning of the execution and that of x at the end
of the execution: The program computes the square of (the value initially stored
in) y plus 1 (when y > 0) and stores it in x. In fact, by exploiting the well-known
equalities 0 = 0 and (n+1)?> = n*> +2n+ 1, the value of (y+ 1)? is computed as
the sum of the first y+ 1 odd numbers):‘,IY:O(Zi +1). For example, for y = 3 we have
42=1+3+5+7=16.

We report below the proof of well-formedness of the command, as a witness that
c respects the syntax of IMP. (Of course the inference rules used in the derivation are
those associated to the productions of the grammar of IMP.)

2y
X (@xy)
o xeexy) 1 > 1
x o a® (@t @xy)+1) y 1)
07y aZ=(@t@x)+) o ri=r-1)
10 A0Sy e® (= (adxy)F):bi=y-1)

xi=0 % (while(0 < y)do((x:= ((x+(2xy))+1)):(y:=(y—1)))
¢ = ((x1= 0): (while(0 < y)do((x == ((x+ (2 %)) + 1)): (v := (y +1)))))

We can summarize the above proof as follows, introducing several shorthands for
referring to some subterms of ¢ that will be useful later.

a
1
aj

1
x:=0;while0 < ydo(x:=x+(2xy)+1;y:=y—1)

c3 C4
L 1
(%)
L 1
Cl
L 1

3.2 Operational Semantics of IMP 61

To find the semantics of ¢ in a given memory we proceed in the goal-oriented
fashion. For instance, we take the well-formed formula <c, (27 ey y)> — o, with
o unknown, and check if there exists a memory & such that the formula becomes
a theorem. This is equivalent to find an answer to the following question: “given
the initial memory (*’/,,?/,) and the command c to be executed, can we find a
derivation that leads to some memory ¢?” By answering in the affirmative, we would
have a proof of termination for ¢ and would establish the content of the memory at
the end of the computation.

To convince the reader that the notation for goal-oriented derivations introduced
in Section 2.3 is more effective than the tree-like notation, we first show the proof
in the tree-like notation: the goal to prove is the root (situated at the bottom) and
the “pieces” of derivation are added on top. As the tree grows rapidly large, we split
the derivation in smaller pieces that are proved separately. We use “?” to mark the
missing parts of the derivations.

num
<07 (27/x72/y)> —0 . R
assign

=0,/) = G112 1) U] = o {er,01) >0
(e, ()2) > o

Note that c; is a cycle, therefore we have two possible rules that can be applied,
depending on the evaluation of the guard. We only show the successful derivation,

recalling that o) = (27/)6,2 /)) [O/x] = (O/x,2 /y)

seq

— num —lde
(0,01) =0 <y761>—>61(Y):21 ? ?
€q
(0 <y,01) — (0 <2) = true (€2,01) = 02 (c1,02) > ©
whitt
<C],61> — O

Next we need to prove the goals (¢, (°/,% /,)) = 02 and {(c|,0,) — ©. Let us
focus on (¢, 01) — 0 first:

?

num

<a17(0/)€72/}’)>‘>ml <17(0/X72/}')>‘>1 ?
sum _—
<a,(0/x.,2/y)>—>m:m’+l) y—1,03) = m")
assign — assign
(e, L2 1)) = (/2)3) ")x] = 03 (ca,03) = 03 | /y| = 02
- seq

<c27 (0/X52/}'>> — 02

We show separately the details for the pending derivations of (ay, (°/y,2 /y)) — n!
and (y —1,03) > m":

62 3 Operational Semantics of IMP

num id
o 2L =2 0Ol N2
(x, (/2 /4)) =0 @xy, (/2w =2x2=4 "

(ar, (/2)y)) = m' =0+4=4

sum

Since m’ =4, then it means thatm = m'+ 1 =5 and hence o3 = (°/,,% /,) [’ /x| =

Cle?/y)-

ide num

o, (5/)6,2 /y)> —2 (1, (5 [/y)> —l
y—1, (S/X,Z/y)> am'=2-1=1

Since m" = 1 we know that 6, = (/2.2 /,) [[y| =€ /2 1y) ['] = (/"):
Next we prove (c1, (°/x,! /y)) — o, this time omitting some details (the derivation
is analogous to the one just seen).

?

: le : S
0 Gl) wtme e L= () = o) o

whitt
e, (1)) =0
Hence 04 = (3/,,% /) and next we prove (¢, (3/..,0 /3)) — o.
: ?
leq seq
<0§y7 (8/X70/)’)>_>tme <02:(8/x70/y)>_7 (9/)6’_1 /)’) :0-5 <C]’65>_>G htt

.12 h) =0

Hence 05 = (°/x,”' /). Finally:

(0<y, (9/):77] /y)) — false le
whif
(er, Ol N = Ol) =0

Summing up all the above, we have proved the theorem:

(e, T/ 1)) = Cle) -

3.2 Operational Semantics of IMP 63

It is evident that as the proof tree grows larger it gets harder to paste the different
pieces of the proof together. We now show the same proof as a goal-oriented deriva-
tion, which should be easier to follow. To this aim, we group several derivation steps
into a single one omitting trivial steps.

X _0 (27/):; /y)>_>0-17 <C170-1>_>G
07 (27/167 /y>>_>”7
Cl, (27/)672 /y) [n/x]> — 0

@@L e R
(
(

Scvor— () () o
(
(
(0,

Noi=(27/02/y) 1/

N (0<y,(°/2/y)) — true,
2, (°/s2/y)) = 02, (e1,00) = ©

(/Xaz/y)> —ny (), (0/x72/y)> —r ny,
ny <na, (e, (O/x,2 /y)) = G, (c1,00) > ©

C37(/X7 /))>_>o-37 <C470-3>_>G27
c1,02) =

(
(
Syt 0 Cx) Lo
(
(

N

\;1:0 l’lz:Z

C4, /x’ /))[/X]>_>62a <01702>_>0-

\;:0+(2x2)+ 1=5 03:(5/)“2/),)

(
c4,(Jx: /y) — 02, (c1,02) > O
(

O ARURARCR />)
=) B0ty (e Clel /o)) =
o= p=C i) er CleTti) = 0
No=(0/, 1) (0 ».(°/x 71 /y)) — false

’\D

There are commands ¢ and memories ¢ such that there is no ¢’ for which we can
find a proof of (c,) — o’. We use the notation below to denote such cases:

(c,0) /A iff =30'.(c,0) = 0o

The condition =30’.{c,0) — ¢’ can be written equivalently as Vo’.{c,c) / o’

Example 3.4 (Non termination). Let us consider the command

¢ while true do skip

Given o, the only possible derivation goes as follows:

64 3 Operational Semantics of IMP

" R (true,o) — true, (skip,c) — o1, (c,01) — &’

~. (skip,0) — o1, {c,01) — 0’

Noj=c (¢,0) =0

(c,0) > 0O

After a few steps of derivation we reach the same goal from which we started and
there are no alternatives to try!

In this case, we can prove that (¢,) /. We proceed by contradiction, assuming
there exists ¢’ for which we can find a (finite) derivation d for {c,0) — ¢’. Let d be
the derivation sketched below:

(c,0) — o' X (true,o) — true, (skip,o) — o1, {c,01) = 0’
() \ {c,0) = ¢’
NGO
We have marked by (x) the last occurrence of the goal (¢,0) — o’. But this leads
to a contradiction, because the next step of the derivation can only be obtained by

applying rule (whtt) and therefore it should lead to another instance of the original
goal.

3.3 Abstract Semantics: Equivalence of Expressions and
Commands

The same way as we can write different expressions denoting the same value, we
can write different programs for solving the same problem. For example we are used
not to distinguish between say 2 +2 and 2 x 2 because both evaluate to 4. Similarly,
would you distinguish between, say, x := 1;y:=0and y := 0;x := y+ 1? So a natural
question arise: when are two programs “equivalent”? The equivalence between two
commands is an important issue because it allows, e.g., to replace a program with an
equivalent but more efficient one. Informally, two programs are equivalent if they
behave in the same way. But can we make this idea more precise?

Since the evaluation of a command depends on the memory, two equivalent
programs must behave the same w.r.t. any initial memory. For example the two
commands x := 1 and x := y+ 1 assign the same value to x only when evaluated in
a memory o such that o(y) = 0, so that it wouldn’t be safe to replace one for the
other in any program. Moreover, we must take into account that commands may
diverge when evaluated with a certain memory, like while x > 0 do x:=x— 1 when
evaluated in a store ¢ such that o (x) < 0. We will call abstract semantics the notion
of behaviour w.r.t. we will compare programs for equivalence.

3.3 Abstract Semantics: Equivalence of Expressions and Commands 65

The operational semantics offers a straightforward abstract semantics: two pro-
grams are equivalent if they result in the same memory when evaluated over the same
initial memory.

Definition 3.3 (Equivalence of expressions and commands). We say that the arith-
metic expressions a; and ap are equivalent, written a; ~ ay if and only if for any
memory o they evaluate in the same way. Formally:

ay~ay iff Vo,n((a;,0)—=n < (a,0)—>n)

We say that the boolean expressions b and b; are equivalent, written by ~ b, if
and only if for any memory ¢ they evaluate in the same way. Formally:

by~by iff Vo,v((b,0) =>v & (br,0)=>V)

We say that the commands ¢ and ¢, are equivalent, written ¢ ~ ¢ if and only if
for any memory ¢ they evaluate in the same way. Formally:

ci~cy iff Vo,0'.({c1,0) =0 & (cz,0) =0)

Note that if the evaluation of {c1, &) diverges there is no ¢’ such that {c;,0) — ¢’.
Then, when ¢ ~ c3, the double implication prevents (¢,) to converge. As an easy
consequence, any two programs that diverge for any ¢ are equivalent.

3.3.1 Examples: Simple Equivalence Proofs

The first example we show is concerned with fully specified programs that operate
on unspecified memories.

Example 3.5 (Equivalent commands). Let us try to prove that the following two
commands are equivalent:

1 % whilex #£ 0dox := 0
def
cp=x:=0

It is immediate to prove that
Vo.(cs,0) = 0’ = 0[0/x]

Hence 6 and ¢’ can differ only for the value stored in x. In particular, if (x) =0
then 0’ = o.

The evaluation of ¢; in ¢ depends on ¢ (x): if o(x) = 0 we must apply the rule 3.19
(whff), otherwise the rule 3.18 (whtt) must be applied. Since we do not know the
value of 6(x), we consider the two cases separately. The corresponding hypotheses
are called path conditions and outline a very important technique for the symbolic
analysis of programs.

66 3 Operational Semantics of IMP

Case 6(x) #0) Letus inspect a possible derivation for {c;,) — ¢’. Since 6 (x) #
0 we select the rule (iftt) at the first step:

(c1,0) > 0" N (x#0,0) —>true, (x:=0,0)— oy,
<01,0'1>—>G/
Nowops) (0L 2@
{

Case o(x) =0) Let us inspect a derivation for (c1,0) — o’. Since o(x) #0 we
select the rule (ifff) at the first step:

(c1,0) = 0" Nyze (x#0,0) — false
N o) =0
N O
Finally, we observe the following:
(c1,0) = ©
(c2,0) = 0o')i]=0

(c1,0) = o[0/4]
(c2,0) = 0[°/4]

e If o(x) =0, then {
e Otherwise, if o(x) # 0, then {

Therefore c| ~ ¢ because for any o they result in the same memory.

The general methodology should be clear by now: in case the computation termi-
nates we need just to develop the derivation and compare the results.

3.3.2 Examples: Parametric Equivalence Proofs

The programs considered so far were entirely spelled out: all the commands and
expressions were given and the only unknown parameter was the initial memory o©.
In this section we address equivalence proofs for programs that contain symbolic
expressions a and b and symbolic commands c: we will need to prove that the equality
holds for any such a, b and c.

This is not necessarily more complicated than what we have done already: the
idea is that we can just carry the derivation with symbolic parameters.

Example 3.6 (Parametric proofs (1)). Let us consider the commands:

3.3 Abstract Semantics: Equivalence of Expressions and Commands 67

c1 “ while b do ¢

e ©if b then (c;while b do ¢) else skip = if b then (c;c|) else skip

Is it true that Vb € Bexp,c € Com. (¢1 ~ ¢2)?

We start by considering the derivation for ¢ in a generic initial memory . The
command c; is a cycle and there are two rules we can apply: either the rule 3.19
(whff), or the rule 3.18 (whtt). Which rule to use depends on the evaluation of b.
Since we do not know what b is, we must take into account both possibilities and
consider the two cases separately.

(b,0) — false) For ¢; we have:

(while b do c,0) -0’ Ny_s (b,0)— false
N

For ¢, we have:

(if b then (c;cy) else skip,0) =0’ ~_ (b,0) — false,
(skip,0) — o’
p |

o'=c

It is evident that if (b, o) — false then the two derivations for ¢;
and c; lead to the same result.
(b,o) — true) For ¢; we have:

(while b do ¢,6) — ¢' N\ (b,0) — true, (c,0) — 01,
<C],O'1>—>G/
N {¢,0) = o1, (e1,01) =0

We find it convenient to stop here the derivation, because other-
wise we should add further hypotheses on the evaluation of ¢ and
of the guard b after the execution of c. Instead, let us look at the
derivation of ¢:

/

(if b then (c;c) else skip,c) — o' _(b,0) — true,
(c;c1,0) — o

N {c;er,0) — o’

N (¢,0) = o,
(

C1 > /

68 3 Operational Semantics of IMP

Now we can stop again, because we have reached exactly the
same subgoals that we have obtained by evaluating ¢! It is then
obvious that if (b,0) — true then the two derivations for ¢;
and ¢, will necessarily lead to the same result whenever they
terminate, and if one diverges the other diverges too.

Summing up the two cases, and since there are no more alternatives to try, we can
conclude that ¢; ~ c;.

Note that the equivalence proof technique that exploits reduction to the same
subgoals is one of the most convenient methods for proving the equivalence of while
commands, whose evaluation may diverge.

Example 3.7 (Parametric proofs (2)). Let us consider the commands:

def .
c1 = while b do ¢
def . .
le) = if b then c else skip
Is it true that Vb € Bexp,c € Com. c| ~ ¢3?
We have already examined the different derivations for ¢ in the previous example.
Moreover, the evaluation of ¢, when (b,) — false is also analogous to that of the

command c; in Example 3.6. Therefore we focus on the analysis of ¢, for the case
(b,) — true. Trivially:

(if b then ¢, else skip,o) — o' N_(b,0) — true, (while b do ¢,0) — ¢’

. (while b do ¢,c) — ¢

So we reduce to the subgoal identical to the evaluation of ¢1, and we can conclude
that ¢ ~ c».

3.3.3 Examples: Inequality Proofs

The next example deals with programs that can behave the same or exhibit different
behaviours depending on the initial memory.

Example 3.8 (Inequality proof). Let us consider the commands:

1 & (while x>0 do x:=1);x:=0
def
c=x:=0
Let us prove that ¢; % ¢;.
For ¢, we have

3.3 Abstract Semantics: Equivalence of Expressions and Commands 69

(x:=0,0) = 0" Ng/—gu/n) (0,0) —=n
\n:() 0

That is: Vo. (x:=0,0) — c[0/x].
Next, we focus on the first part of ¢

w % while x> 0 do x:= 1
If o(x) <0 it is immediate to check that
(while x>0dox:=1,0) —©

The derivation is sketched below:

(w,0) = 6’ Ng—g (x>0,0)— false
N (x,0)—=n, (0,6) >m, n<m
Na=otr) (0,0) = m,0(x)<m
Nun=o ©(x) <0
N O

Instead, if we assume o (x) > 0, then:

(wo) =o' N (x>0,0) > true, (x:=1,06)=0", (wo") =0

' (x:i=1,06) = 0", (wo")— o
)*G":O'[l/x] <W,O'[1/X]> — G/
/

Let us continue the derivation for (w, [1/x]) — o’

(w,o[l/a]y =0 (x>0,0[1/x]) — true, (x:=1,0[1/x]) = ", (w,6") — o’

NG (x:i=1,0[1/x]) = 0", (w,6")— o’

\G”/:G[I/X] <W76[] /x]> — o

Now, note that we got the same subgoal (w, o[1/x]) — ¢’ already inspected: hence
it is not possible to conclude the derivation, which will loop.
Summing up all the above we conclude that:

Vo,0’. (whilex>0dox:=1,0) 06 = o(x)<0Ac'=0

We can now complete the reduction for the whole ¢; when o(x) < 0 (the case
o(x) > 0 is discharged, because we know that there is no derivation).

70 3 Operational Semantics of IMP

(w;x:=0,0) = o'\ (w,0)—=0" (x:=0,0") — o
Nbi_g (x:=0,0) >0’
o'=afo (O

Therefore the evaluation ends with 6’ = ¢[0/x].

By comparing c; and ¢, we have that:

e there are memories for which the two commands behave the same (i.e., when
o(x) <0)

;[{(whilex > 0dox:=1);x:=0,0) =0’

do,0 { (x:=0,0) > o’

e there are also cases for which the two commands exhibit different behaviours:
6.6 ((whilex > Odox := 1);x:=0,0) /4
U {x:=0,0) >0’
As an example, take any ¢ with o(x) =1 and ¢’ = ¢[0/x].

Since we can find pairs (0, 6”) such that c¢; loops and ¢, terminates we have that

C1l 74).

Note that in disproving the equivalence we have exploited a standard technique in
logic: to show that a universally quantified formula is not valid we can exhibit one
counterexample. Formally:

—Vx.(P(x) € Q(x)) = Ix.(P(x) A ~Q(x)) V (=P(x) A O(x))

3.3.4 Examples: Diverging Computations

What does it happen if the program has infinite different looping situations? How
should we handle the memories for which this happens?
Let us rephrase the definition of equivalence between commands:

Vo o {<c1,6> —0' & {(c,0) = o
b

<C1,G>7L> <~ <6276>7L>

Next we see an example where this situation emerges.

Example 3.9 (Proofs of non-termination). Let us consider the commands:

¢1 ¥ while x>0 do x:=1
c défwhile x>0dox:=x+1

3.3 Abstract Semantics: Equivalence of Expressions and Commands 71

Is it true that ¢; ~ ¢2? On the one hand, note that ¢; can only store 1 in x, whereas
¢y can keep incrementing the value stored in x, so one may be lead to suspect that
the two commands are not equivalent. On the other hand, we know that when the
commands diverge, the values stored in the memory locations are inessential.

As already done in previous examples, let us focus on the possible derivation of ¢
by considering two separate cases that depends of the evaluation of the guard x > 0:

Case 6(x) <0) If o(x) <0, we know already from Example 3.8 that (c|,0) — o:

(c1,0) =0 Ng—g (x>0,0)— false
Nt O

In this case, the body of the while is not executed and the resulting
memory is left unchanged. We leave to the reader to fill the details
for the analogous derivation of ¢;, which behaves the same.

Case 6(x) >0) If o(x) > 0, we know already from Example 3.8 that (c;, o) /4
Now we must check if ¢, diverges too when ¢ (x) > 0:

(c2,0) >0’ N (x>0,0) — true,
(x:=x+1,0)— 01, {c2,01) 0
N (xi=x+1,0) =0y, (c2,01) >0
* o(x)+1
N oot/ (230 ["9 /) = o

K Ax> 0,0 [GMH /X]> s true,

(x:=x+1, G[+l/x]>_>627
(¢2,00) —
K¢ (s _x+1c[+]/x]>—>0'27
(c2,00) —
'\;2161 [al(x)ﬂ/x]:(,[a(x)n/x} (¢, [+2/ b — o

Now the situation is more subtle: we keep looping, but without
crossing the same subgoal twice, because the memory is updated
with different values for x at each iteration. However, using induc-
tion, that will be the subject of Section 4.1.3, we can prove that the
derivation will not terminate. Roughly, the idea is the following:

e atstep 0, i.e., at the first iteration, the cycle does not terminate;
e if at the ith step the cycle has not terminated yet, then it will
not terminate at the (i + 1)th step, because x > 0= x+1 > 0.

72 3 Operational Semantics of IMP

The formal proof would require to show that at the ith iteration the
values stored in the memory at location x will be ¢ (x) 4 i, from
which we can conclude that the expression x > 0 will hold true
(since by assumption ¢(x) > 0 and thus ¢ (x) +i > 0). Once the
proof is completed, we can conclude that ¢, diverges and therefore
Cc] ~ ().

Let us consider the command w & while » do c. As we have seen in the last
example, to prove the non-termination of w we can exploit the induction hypotheses
over memory states to define the inference rule below: the idea is that if we can find
a set § of memories such that, for any ¢’ € S, the guard b is evaluated to true and
the execution of ¢ leads to a memory ¢” which is also in S, then we can conclude
that w diverges when evaluated in any of the memories ¢ € S.

ceS Vo' €S.(b,0') > true Vo' €S,Vo".((c,0')— " = oc"€5)

(3.20)
(w,0) £

Note that the property
Vo ({c,0') = 0" = o" €Y)

is satisfied even when (c, 6’} /, because there is no ¢” such that the left-hand side
of the implication holds.

Remind that, in general, program termination is semi-decidable (and non-
termination possibly non semi-decidable), so.we cannot have a proof technique
for demonstrating the convergence or divergence of any program.

Example 3.10 (Collatz’s algorithm). Consider the algorithm below, which is known
as Collatz’s algorithm, or also as Half Or Triple Plus One

ddéfx::y;k:zo;whilex>0d0 (x:=x—=2;k:=k+1)

¢ % while y# 1 do(d ; if x=0 then y:=k else y:= (3xy)+1)

The command d, when executed in a memory ¢ with o(y) > 0, terminates by
producing either a memory ¢’ with o’(x) = 0 and 6(y) =2 x ¢’(k) (when o (y)
is even), or a memory ¢” with 6”(x) = —1 (when o(y) is odd). The command c¢
exploits d to update at each iteration the value of y to either the half of y (when & (y)
is even) or three times y plus one (when o(y) is odd). It is an open mathematical
conjecture to prove that the command ¢ terminates when executed in any memory &
with o(y) > 0. The conjecture has been checked by computers and proved true! for
all starting values of y up to 5 x 2%

I Source http://en.wikipedia.org/wiki/Collatz_conjecture, last visited July
2015.

3.3 Abstract Semantics: Equivalence of Expressions and Commands 73

Problems

3.1. Consider the IMP command
def .
w = whiley>0do (r:=rxx;y:=y—1)

Letc & (r:=1;w)and o def [9/x,2/y]. Use goal-oriented derivation, according to

the operational semantics of IMP, to find the memory ¢’ such that {c,0) — o', if it
exists.

3.2. Consider the IMP command
w % while y > 0 do if y =0 then y:=y+ 1 else skip
For which memories ¢, 6’ do we have (w,0) — ¢’?
3.3. Prove that for any b € Bexp,c € Com we have ¢ ~if b then c else c.

3.4. Prove that for any b € Bexp,c € Com we have ¢| ~ c,, where:

c1 % while b do ¢

c &1 while b do if b then c else skip

3.5. Prove that for any b € Bexp,c € Com we have ¢y ~ ¢, where:

¢ % ¢ . while bdo ¢

e & (while b do ¢) ;
3.6. Prove that ¢q o¢ ¢, where:
c1 défwhile)c>0 do x:=0
¢, & while x >0 do x:=0
3.7. Consider the IMP command
wdéfwhilexgydo (x:=x+1;y:=y+2)

Find the largest set S of memories such that the command w diverges. Use the
inference rule for divergence to prove non-termination.

3.8. Prove that ¢; % ¢, where:

¢ % while x>0 do x:=x+1

> % while x> 0 do x:=x+2

74 3 Operational Semantics of IMP

3.9. Suppose we extend IMP with the arithmetic expression ag/a; for integer division,
whose operational semantics is:

<a0,0'> — no <a176> — ny

anjar o) np = ny X n (div) (3.21)
ap/ai, n

1. Prove that the semantics of extended arithmetic expressions is not deterministic.
In other words, give a counterexample to the property below:

Va € Aexp,Vo € X, Vn,m € Z. ({a,0) = n A {a,06) > m = n=m)

2. Prove that the semantics of extended arithmetic expressions is not always defined.
In other words, give a counterexample to the property below:

Va € Aexp,Yo € Z,In € Z. {(a,0) = n

3.10. Define a small-step operational semantics for IMP. To this aim, introduce a
special symbol x as a termination marker and consider judgements of either the form
(¢,0) = (c’,0") or {¢,0) — (x,0"). Define the semantics in such a way that the
evaluation is deterministic and that {c,) —* (x,¢’} if and only if (c,G) — 0’ in
the usual big-step semantics seen for IMP.

	Part I Preliminaries
	Introduction
	Structure and Meaning
	Syntax and Types
	Semantics
	Mathematical Models of Computation
	Operational Semantics
	Denotational Semantics
	Axiomatic Semantics

	A Taste of Semantics Methods: Numerical Expressions
	An Informal Semantics
	A Small-Step Operational Semantics
	A Big-Step Operational Semantics (or Natural Semantics)
	A Denotational Semantics
	Semantic Equivalence
	Expressions with Variables

	Applications of Semantics
	Language Design
	Implementation
	Analysis and Verification
	Synergy Between Different Semantics Approaches

	Content Overview
	Induction and Recursion
	Semantic Domains
	Bisimulation
	Temporal and Modal Logics
	Probabilistic Systems

	Chapters Contents and Reading Guide

	Preliminaries
	Notation
	Basic Notation
	Signatures and Terms
	Substitutions
	Unification Problem

	Inference Rules and Logical Systems
	Logic Programming
	Problems

	Part II IMP: a simple imperative language
	Operational Semantics of IMP
	Syntax of IMP
	Arithmetic Expressions
	Boolean Expressions
	Commands
	Abstract Syntax

	Operational Semantics of IMP
	Memory State
	Inference Rules
	Examples

	Abstract Semantics: Equivalence of Expressions and Commands
	Examples: Simple Equivalence Proofs
	Examples: Parametric Equivalence Proofs
	Examples: Inequality Proofs
	Examples: Diverging Computations

	Problems

	Induction and Recursion
	Noether Principle of Well-founded Induction
	Well-founded Relations
	Noether Induction
	Weak Mathematical Induction
	Strong Mathematical Induction
	Structural Induction
	Induction on Derivations
	Rule Induction

	Well-founded Recursion
	Problems

	Partial Orders and Fixpoints
	Orders and Continuous Functions
	Orders
	Hasse Diagrams
	Chains
	Complete Partial Orders

	Continuity and Fixpoints
	Monotone and Continuous Functions
	Fixpoints

	Immediate Consequence Operator
	The Operator R"0362R
	Fixpoint of R"0362R

	Problems

	Denotational Semantics of IMP
	-Notation
	-Notation: Main Ideas
	Alpha-Conversion, Beta-Rule and Capture-Avoiding Substitution

	Denotational Semantics of IMP
	Denotational Semantics of Arithmetic Expressions: The Function A
	Denotational Semantics of Boolean Expressions: The Function B
	Denotational Semantics of Commands: The Function C

	Equivalence Between Operational and Denotational Semantics
	Equivalence Proofs For Expressions
	Equivalence Proof for Commands

	Computational Induction
	Problems

	Part III HOFL: a higher-order functional language
	Operational Semantics of HOFL
	Syntax of HOFL
	Typed Terms
	Typability and Typechecking

	Operational Semantics of HOFL
	Problems

	Domain Theory
	The Flat Domain of Integer Numbers Z
	Cartesian Product of Two Domains
	Functional Domains
	Lifting
	Function's Continuity Theorems
	Useful Functions
	Problems

	HOFL Denotational Semantics
	HOFL Semantic Domains
	HOFL Evaluation Function
	Constants
	Variables
	Binary Operators
	Conditional
	Pairing
	Projections
	Lambda Abstraction
	Function Application
	Recursion

	Continuity of Meta-language's Functions
	Substitution Lemma
	Problems

	Equivalence between HOFL denotational and operational semantics
	Completeness
	Equivalence (on Convergence)
	Operational and Denotational Equivalences of Terms
	A Simpler Denotational Semantics
	Problems

	Part IV Concurrent Systems
	CCS, the Calculus for Communicating Systems
	Syntax of CCS
	Operational Semantics of CCS
	Action Prefix
	Restriction
	Relabelling
	Choice
	Parallel Composition
	Recursion
	CCS with Value Passing
	Recursive Declarations and the Recursion Operator

	Abstract Semantics of CCS
	Graph Isomorphism
	Trace Equivalence
	Bisimilarity

	Compositionality
	Bisimilarity is Preserved by Choice

	A Logical View to Bisimilarity: Hennessy-Milner Logic
	Axioms for Strong Bisimilarity
	Weak Semantics of CCS
	Weak Bisimilarity
	Weak Observational Congruence
	Dynamic Bisimilarity

	Problems

	Temporal Logic and -Calculus
	Temporal Logic
	Linear Temporal Logic
	Computation Tree Logic

	-Calculus
	Model Checking
	Problems

	 -Calculus
	Name Mobility
	Syntax of the -calculus
	Operational Semantics of the -calculus
	Action Prefix
	Choice
	Name Matching
	Parallel Composition
	Restriction
	Scope Extrusion
	Replication
	A Sample Derivation

	Structural Equivalence of -calculus
	Reduction semantics

	Abstract Semantics of the -calculus
	Strong Early Ground Bisimulations
	Strong Late Ground Bisimulations
	Strong Full Bisimilarities
	Weak Early and Late Ground Bisimulations

	Problems

	Part V Probabilistic Systems
	Measure Theory and Markov Chains
	Probabilistic and Stochastic Systems
	Measure Theory
	-field
	Constructing a -field
	Continuous Random Variables
	Stochastic Processes

	Markov Chains
	Discrete and Continuous Time Markov Chain
	DTMC as LTS
	DTMC Steady State Distribution
	CTMC as LTS
	Embedded DTMC of a CTMC
	CTMC Bisimilarity
	DTMC Bisimilarity

	Problems

	Markov Chains with Actions and Non-determinism
	Discrete Markov Chains With Actions
	Reactive DTMC
	DTMC With Non-determinism

	Problems

	PEPA - Performance Evaluation Process Algebra
	From Qualitative to Quantitative Analysis
	CSP
	Syntax of CSP
	Operational Semantics of CSP

	PEPA
	Syntax of PEPA
	Operational Semantics of PEPA

	Problems

	Glossary
	Solutions

