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Mathematical reasoning may be regarded
rather schematically as the exercise of a
combination of two facilities, which we may
call intuition and ingenuity.

Alan Turing'

! The purpose of ordinal logics (from Systems of Logic Based on Ordinals), Proceedings of the
London Mathematical Society, series 2, vol. 45, 1939.
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Part 11
IMP: a simple imperative language



This part focuses on models for sequential computations that are associated to IMP, a
simple imperative language. The syntax and natural semantics of IMP are studied
in Chapter 3, while its denotational semantics is presented in Chapter 6, where it is
also reconciled with the operational semantics. Chapter 4 explains several induction
principles exploited to prove properties of programs and semantics. Chapter 5 fixes
the mathematical basis of denotational semantics. The concepts in Chapters 4 and 5
are extensively used in Chapter 6 and in the rest of the monograph.



Chapter 3
Operational Semantics of IMP

Programs must be written for people to read, and only
incidentally for machines to execute. (H. Abelson and G.
Sussman)

Abstract This chapter introduces the formal syntax and operational semantics of a
simple, structured imperative language called IMP, with static variable allocation and
no sophisticated declaration constructs for data types, functions, classes, methods
and the like. The operational semantics is defined in the natural style and it assumes
an abstract machine with a vary basic form of memory to associate integer value to
variables. The operational semantics is used to derive a notion of program equivalence
and several example of (in)equivalence proofs are shown.

3.1 Syntax of IMP
The IMP programming language is a simple imperative language (e.g., it can be seen
as a bare bone version of the C language) with only three data types:

int: the set of integer numbers, ranged over by metavariables m,n, ...
Z={0,+£1,4+2,...}

bool: the set of boolean values, ranged over by metavariables u, v, ...
B = { true, false }

locations:  the (denumerable) set of memory locations (we consider programs
that use a finite number of locations and we assume there are enough
locations available for any program), ranged over by metavariables

X, Y, ...
Loc locations

The grammar for IMP comprises three syntactic categories:

Aexp:  Arithmetic expressions, ranged over by a,d’, ...
Bexp: Boolean expressions, ranged over by b, b, ...

51



52 3 Operational Semantics of IMP

Com: Commands, ranged over by c,c, ...

Definition 3.1 (IMP: syntax). The following productions define the syntax of IMP:

a€Aexp = n|x|ayta | ap—ar | apxa
b€ Bexp = v|a0:a1 |a0§a1 |ﬁb‘b0\/b1 ‘bo/\bl
ce€Com == skip | x:=a | cp;c | if b then ¢ else ¢; | while b do ¢

where we recall that n is an integer number, v a boolean value and x a location.

IMP is a very simple imperative language and there are several constructs we
deliberately omit. For example we omit other common conditional statements, like
switch, and other cyclic constructs like repeat. Moreover IMP commands imposes
a structured flow of control, i.e., IMP has no labels, no goto statements, no break
statements, no continue statements. Other things which are missing and are difficult
to model are those concerned with modular programming. In particular, we have no
procedures, no modules, no classes, no types. Since IMP does not include variable
declarations, procedures and blocks, memory allocation is essentially static and finite.
Of course, IMP has no concurrent programming construct.

3.1.1 Arithmetic Expressions

An arithmetic expression can be an integer number, or a location, a sum, a difference
or a product. We notice that we do not have division, because it can be undefined (e.g.,
7/0) or give different values (e.g., 0/0) so that its use would introduce unnecessary
complexity.

3.1.2 Boolean Expressions

A boolean expression can be a logical value v, or the equality of an arithmetic
expression with another, an arithmetic expression less or equal than another one, a
negation, a logical conjunction or disjunction.

To keep the notation compact, in the following we will take the liberty of writing
boolean expressions such as x # 0, in place of —(x =0) and x > 0 in place of 1 < x
or (0<x)A—(x=0).

3.1.3 Commands

A command can be skip, i.e. a command which is not doing anything, or an as-
signment where we have that an arithmetic expression is evaluated and the value is
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assigned to a location; we can also have the sequential execution of two commands
(one after the other); an if-then-else with the obvious meaning: we evaluate a boolean
expression b, if it is true we execute cq and if it is false we execute c¢;. Finally we
have a while statement, which is a command that keeps executing ¢ until b becomes
false.

3.1.4 Abstract Syntax

The notation above gives the so-called abstract syntax in that it simply says how to
build up new expressions and commands but it is ambiguous for parsing a string. It
is the job of the concrete syntax to provide enough information through parentheses
or orders of precedence between operation symbols for a string to parse uniquely.
It is helpful to think of a term in the abstract syntax as a specific parse tree of the
language.

Example 3.1 (Valid expressions).

(while b do ¢) ; ¢, is a valid command;
while b do (c; ; ¢3) is a valid command;
while b do ¢; ; ¢ is not a valid command, because it is ambiguous.

In the following we will assume that enough parentheses have been added to
resolve any ambiguity in the syntax. Then, given any formula of the form a €
Aexp, b € Bexp, or ¢ € Com, the process to check if such formula is a “theorem” is
deterministic (no backtracking is needed).

Example 3.2 (Validity check). Let us consider the formula:
if (x = 0) then (skip) else (x:= (x— 1)) € Com

We can prove its validity by the following (deterministic) derivation, where we write
N to mean that several derivation steps are grouped into one for brevity:

if (x = 0) then (skip) else (x := (x— 1)) € Com N\ x =0 € Bexp, skip € Com,
x:=(x—1)€Com
N X € Aexp, 0 € Aexp, skip € Com,
x:=(x—1)€Com
NS x—1€Aexp
N X € Aexp,1 € Aexp
DN
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3.2 Operational Semantics of IMP

3.2.1 Memory State

In order to define the evaluation of an expression or the execution of a command, we
need to handle the state of the machine which is going to execute the IMP statements.
Beside expressions to be evaluated and commands to be executed, we also need to
record in the state some additional elements like values and stores. To this aim, we
introduce the notion of memory:

o € X =(Loc—Z)

A memory 0 is an element of the set X which contains all the functions from locations
to integer numbers. A particular o is just a function from locations to integer numbers
so it is a function which associates to each location x the value o(x) that x stores.

Since Loc is an infinite set, things can be complicated: handling functions from
an infinite set is not a good idea for a model of computation. Although Loc is large
enough to store all the values that are manipulated by expressions and commands, the
functions we are interested in are functions which are almost everywhere 0, except
for a finite subset of memory locations.

If, for instance, we want to represent a memory such that the location x contains
the value 5 and the location y the value 10 and elsewhere is stored 0, we write:

o= (5/x,10/Y)

In this way we can represent any interesting memory by a finite set of pairs.
We let () denote the memory such that all locations are assigned the value 0.

Definition 3.2 (Memory update). Given a memory o, we denote by c["/,] the
memory where the value of x is updated to n,4.e. such that

ot /100 ={ 5y v s
Note that 6" /4|["/x] = o[™/,]. In fact:

S0 ={ oy = o(0) £ s

Moreover, when x # y, then the order of updates is not important, i.e., o[" /|["/,] =
o[ /4][" /). For this reason, we often use the more compact notation ¢["/,,” /].



3.2 Operational Semantics of IMP 55

3.2.2 Inference Rules

Now we are going to give the operational semantics to IMP using a logical system.
It is called “big-step” semantics (see Section 1.2.3) because it leads to the result in
one single proof.

We are interested in three kinds of well formed formulas:

Arithmetic expressions:  The evaluation of an element a € Aexp in a given memory
o results in an integer number.

(a,0) = n

Boolean expressions: The evaluation of an element b € Bexp.in a given memory
o results in either true or false.

(by,oy =v

Commands: The evaluation of an element ¢ € Com in a given memory
o leads to an updated final state ¢”.

{c,0) = 0

Next we show each inference rule and comment on it.

3.2.2.1 Inference Rules for Arithmetic Expressions

We start with the rules about arithmetic expressions.

——— (num) (3.D
(n,0) = n

The axiom 3.1 (num) is trivial: the evaluation of any numerical constant n (seen
as syntax) results in the corresponding integer value n (read as an element of the
semantic domain) no matter which o.

oot -

The axiom 3.2 (ide) is also quite intuitive: the evaluation of an identifier x in the
memory ¢ results in the value stored in x.

<a0,6> — no <a1,6> — n

a0 n=np+n; (sum) (3.3)
ap—rdai, n
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The rule 3.3 (sum) has several premises: the evaluation of the syntactic expression
ap+ap in o returns a value n that corresponds to the arithmetic sum of the values ng
and n; obtained after evaluating, respectively, ap and a; in . Note that we exploit
the side condition n = ng + n; to indicate the relation between the target n of the
conclusion and the targets of the premises. We present an equivalent, but more
compact, version of the rule (sum), where the target of the conclusion is obtained as
the sum of the targets of the premises. In the following we shall adopt the second
format (3.4).

<(10,G> — no <(11,G> — N

(sum) (3.4)
<a0+a1,0'> — ng+ny

We remark the difference between the two occurrences of the symbol + in the
rule: in the source of the conclusion (i.e., ag + a;) it denotes a piece of syntax, in
the target of the conclusion (i.e., ng + n1) it denotes a semantic operation. To avoid
any ambiguity we could have introduced different symbols in the two cases, but we
have preferred to overload the symbol and keep the notation simpler. We hope the
reader is expert enough to assign the right meaning to each occurrence of overloaded
symbols by looking at the context in which they appear.

The way we read this rule is very interesting because, in general, if we want
to evaluate the lower part we have to go up, evaluate the uppermost part and then
compose the results and finally go down again to draw the conclusion:

(2) evaluate
\ (3) Godown

Goup (1)\

¥
(4) Find the result

In this case we suppose we want to evaluate, in the memory o, the arithmetic
expression ag + a;. We have to evaluate ag in the same memory ¢ and get ng, then
we have to evaluate a; within the same memory ¢ to get n and then the final result
will be ng + n;. Note that the same memory o is duplicated and distributed to the
two evaluations of @y and a, which may occur independently in any order.

This kind of mechanism is very powerful because we deal with more proofs at
once. First, we evaluate ag. Second, we evaluate a;. Then, we put all together. If we
need to evaluate several expressions on a sequential machine we have to deal with
the issue of fixing the order in which to proceed. On the other hand, in this case,
using a logical language we just model the fact that we want to evaluate a tree (an
expression) which is a tree of proofs in a very simple way and make explicit that the
order is not important.
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The rules for the remaining arithmetic expressions are similar to the one for the
sum. We report them for completeness, but do not comment on them.

<aO7G> — o <Cl],G> —n

(dif) (3.5)

<a0—a1,6> — ng —ny

<a076> — o <a],0-> —rny

(prod) (3.6)
<a0 ><6117G> — ng X ny

3.2.2.2 Inference Rules for Boolean Expressions
The rules for boolean expressions are also similar to the previous ones and need no

particular comment, except for noting that the premises of rules (equ) and (leq) refer
the judgements of arithmetic expressions.

(v,o) = v (bool) 3-7)

(ap,0) = ng (ar,o) = n

e (3-8)
<a0 = a1,6> — (n() = nl) ( qu)
<(10,0'> — o <ala O-> —ny (leq) (39)
(ag € a1,0) = (no <ny)
(byoy—=v
7 (not) (3.10)
(—=b,0) = v
<b0,6>—>\1() <b],6>—>V| ()r) (3-11)
<b0\/b1,6> — (V()\/vl)
b by,
(bo,0) = vo  (b1,0) = v (and) .12

<b0/\b1,6> — (Vo/\vl)
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3.2.2.3 Inference Rules for Commands

Next, we move to the inference rules for commands.

— (ski
<Skip’6>_>G(S p) (3.13)

The rule 3.13 (skip) is very simple: it leaves the memory ¢ unchanged.

(a,0) > m

a0 ol @14

The rule 3.14 (assign) exploits the assignment operation to update ¢: we remind
that ™ /,] is the same memory as & except for the value assigned to x (m instead of
6 (x)). Note that the premise refers to the judgements of arithmetic expressions.

{co,0) = 0" {c1,0"y— o

e o) 5 0 (seq) (3.15)
5C1,y

The rule 3.15 (seq) for the sequential composition (concatenation) of commands
is quite interesting. We start by evaluating the first command ¢ in the memory ©.
As a result we get an updated memory ¢” which we use for evaluating the second
command ci. In fact the order of evaluation of the two command is important and it
would not make sense to evaluate c; in the original memory o, because the effects of
executing ¢y would be lost. Finally, the memory ¢’ obtained by evaluating ¢ in ¢”
is returned as the result of evaluating cy; ¢ in .

The conditional statement requires two different rules, that depend on the evalua-
tion of the condition b (they are mutually exclusive).

(b,c) — true {cg,0) — o’

iftt (3.16)
(if b then ¢ else c|,0) — o’ (it

(b,0) — false (c|,0) — o’

ifff (3.17)
(if b then ¢ else ci,0) — o (i)

The rule 3.16 (iftt) checks that b evaluated to true and then returns as result
the memory ¢’ obtained by evaluating the command cg in . On the contrary, the
rule 3.17 (ifff) checks that b evaluated to false and then returns as result the memory
o’ obtained by evaluating the command ¢; in ©.

Also the while statement requires two different rules, that depends on the evalua-
tion of the guard b; they are mutually exclusive.
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(b,0) — true (c,0) — c” (while b do c,c6") — o

whtt (3.18)
(while b do c,0) — o’ (wht)

(b,0) — false

(whff) (3.19)
(while b do ¢,0) > ©

The rule 3.18 (whtt) applies to the case where the guard evaluates to true: we need
to compute the memory 6" obtained by the evaluation of the body c in ¢ and then to
iterate the evaluation of the cycle over ¢”.

The rule 3.19 (whff) applies to the case where the guard evaluates to false: then
the cycle terminates and the memory ¢ is returned unchanged.

Remark 3.1. There is an important difference between the rule 3.18 and all the other
inference rules we have encountered so far. All the other rules take as premises
formulas that are “smaller in size” than their conclusions. This fact allows to decrease
the complexity of the atomic goals to be proved as the derivation proceeds further,
until having basic formulas to which axioms can be applied. The rule 3.18 is different
because it recursively uses as a premise a formula as complex as its conclusion. This
justifies the fact that a while command can cycle indefinitely, without terminating.

The set of all inference rules above defines the operational semantics of IMP.
Formally, they induce a relation that contains all the pairs input-result, where the
input is the expression / command together with the initial memory and the result is
the corresponding evaluation:

—C (Aexp X Z X Z) U (Bexp x Z xB)U (Com x £ x X)

We will see later that the computation is deterministic, in the sense that given any
expression / commands and any memory-as input there is at most one result (exactly
one in case of arithmetic and boolean expressions).

3.2.3 Examples

Example 3.3 (Semantic evaluation of a command). Let us consider the (extra-
bracketed) command

¢ (x:=0); (while (0<y) do ((x:=((x+(2xy)+1): (y:=(-1)))

To improve readability and without introducing too much ambiguity, we can write
it as follows:

¢S x:=0; while 0 <y do (x:=x+(2xy)+1:y=y—1)
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or exploiting the usual convention for indented code, as:
c def x:=0;
while 0 <y do (
xi=x+2xy)+1;
yi=y—1
)

Without too much difficulties, the experienced reader can guess the relation
between the value of y at the beginning of the execution and that of x at the end
of the execution: The program computes the square of (the value initially stored
in) y plus 1 (when y > 0) and stores it in x. In fact, by exploiting the well-known
equalities 0 = 0 and (n+1)?> = n*> +2n+ 1, the value of (y+ 1)? is computed as
the sum of the first y+ 1 odd numbers ):‘,IY:O(Zi +1). For example, for y = 3 we have
42=1+3+5+7=16.

We report below the proof of well-formedness of the command, as a witness that
c respects the syntax of IMP. (Of course the inference rules used in the derivation are
those associated to the productions of the grammar of IMP.)

2y
X (@xy)
o xeexy) 1 > 1
x o a® (@t @xy)+1) y 1)
07y aZ=(@t@x)+) o ri=r-1)
10 A0Sy e® (= (adxy)F):bi=y-1)

xi=0 % (while(0 < y)do((x:= ((x+(2xy))+1)):(y:=(y—1)))
¢ = ((x1= 0): (while(0 < y)do((x == ((x+ (2 %)) + 1)): (v := (y +1)))))

We can summarize the above proof as follows, introducing several shorthands for
referring to some subterms of ¢ that will be useful later.

a
1
aj

1
x:=0;while0 < ydo(x:=x+(2xy)+1;y:=y—1)

c3 C4
L 1
(%)
L 1
Cl
L 1
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To find the semantics of ¢ in a given memory we proceed in the goal-oriented
fashion. For instance, we take the well-formed formula <c, (27 ey y)> — o, with
o unknown, and check if there exists a memory & such that the formula becomes
a theorem. This is equivalent to find an answer to the following question: “given
the initial memory (*’/,,?/,) and the command c to be executed, can we find a
derivation that leads to some memory ¢?” By answering in the affirmative, we would
have a proof of termination for ¢ and would establish the content of the memory at
the end of the computation.

To convince the reader that the notation for goal-oriented derivations introduced
in Section 2.3 is more effective than the tree-like notation, we first show the proof
in the tree-like notation: the goal to prove is the root (situated at the bottom) and
the “pieces” of derivation are added on top. As the tree grows rapidly large, we split
the derivation in smaller pieces that are proved separately. We use “?” to mark the
missing parts of the derivations.

num
<07 (27/x72/y)> —0 . R
assign

=0,/ ) = G112 1) U] = o {er,01) >0
(e, ()2 ) > o

Note that c; is a cycle, therefore we have two possible rules that can be applied,
depending on the evaluation of the guard. We only show the successful derivation,

recalling that o) = (27/)6,2 /)) [O/x] = (O/x,2 /y)

seq

— num —lde
(0,01) =0 <y761>—>61(Y):21 ? ?
€q
(0 <y,01) — (0 <2) = true (€2,01) = 02 (c1,02) > ©
whitt
<C],61> — O

Next we need to prove the goals (¢, (°/,% /,)) = 02 and {(c|,0,) — ©. Let us
focus on (¢, 01) — 0 first:

?

num

<a17(0/)€72/}’)>‘>ml <17(0/X72/}')>‘>1 ?
sum _—
<a,(0/x.,2/y)>—>m:m’+l ) y—1,03) = m" )
assign — assign
(e, L2 1)) = (/2 )3) " )x] = 03 (ca,03) = 03 | /y| = 02
- seq

<c27 (0/X52/}'>> — 02

We show separately the details for the pending derivations of (ay, (°/y,2 /y)) — n!
and (y —1,03) > m":
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num id
o 2L =2 0Ol N2
(x, (/2 /4)) =0 @xy, (/2w =2x2=4 "

(ar, (/2 )y)) = m' =0+4=4

sum

Since m’ =4, then it means thatm = m'+ 1 =5 and hence o3 = (°/,,% /,) [’ /x| =

Cle?/y)-

ide num

o, (5/)6,2 /y)> —2 (1, (5 [ /y)> —l
y—1, (S/X,Z/y)> am'=2-1=1

Since m" = 1 we know that 6, = (/2.2 /,) [ [y| =€ /2 1y) [' ] = (/" ):
Next we prove (c1, (°/x,! /y)) — o, this time omitting some details (the derivation
is analogous to the one just seen).

?

: le : S
0 Gl ) wtme e L= () = o) o

whitt
e, (1)) =0
Hence 04 = (3/,,% /) and next we prove (¢, (3/..,0 /3)) — o.
: ?
leq seq
<0§y7 (8/X70/)’)>_>tme <02:(8/x70/y)>_7 (9/)6’_1 /)’) :0-5 <C]’65>_>G htt

.12 h) =0

Hence 05 = (°/x,”' /). Finally:

(0<y, (9/):77] /y)) — false le
whif
(er, Ol N = Ol ) =0

Summing up all the above, we have proved the theorem:

(e, T/ 1)) = Cle ) -
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It is evident that as the proof tree grows larger it gets harder to paste the different
pieces of the proof together. We now show the same proof as a goal-oriented deriva-
tion, which should be easier to follow. To this aim, we group several derivation steps
into a single one omitting trivial steps.

X _0 (27/):; /y)>_>0-17 <C170-1>_>G
07 (27/167 /y>>_>”7
Cl, (27/)672 /y) [n/x]> — 0

@@L e R
(
(

Scvor— () () o
(
(
(0,

Noi=(27/02/y) 1/

N (0<y,(°/2/y)) — true,
2, (°/s2/y)) = 02, (e1,00) = ©

( /Xaz/y)> —ny (), (0/x72/y)> —r ny,
ny <na, (e, (O/x,2 /y)) = G, (c1,00) > ©

C37( /X7 /))>_>o-37 <C470-3>_>G27
c1,02) =

(
(
Syt 0 Cx) Lo
(
(

N

\;1:0 l’lz:Z

C4, /x’ /))[ /X]>_>62a <01702>_>0-

\;:0+(2x2)+ 1=5 03:(5/)“2/),)

(
c4,( Jx: /y) — 02, (c1,02) > O
(

O ARURARCR />)
=) B0ty (e Clel /o)) =
o= p=C i) er CleTti) = 0
No=(0/, 1) (0 ».(°/x 71 /y)) — false

’\D

There are commands ¢ and memories ¢ such that there is no ¢’ for which we can
find a proof of (c,) — o’. We use the notation below to denote such cases:

(c,0) /A iff =30'.(c,0) = 0o

The condition =30’.{c,0) — ¢’ can be written equivalently as Vo’.{c,c) / o’

Example 3.4 (Non termination). Let us consider the command

¢ while true do skip

Given o, the only possible derivation goes as follows:
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" R (true,o) — true, (skip,c) — o1, (c,01) — &’

~. (skip,0) — o1, {c,01) — 0’

Noj=c (¢,0) =0

(c,0) > 0O

After a few steps of derivation we reach the same goal from which we started and
there are no alternatives to try!

In this case, we can prove that (¢, ) /. We proceed by contradiction, assuming
there exists ¢’ for which we can find a (finite) derivation d for {c,0) — ¢’. Let d be
the derivation sketched below:

(c,0) — o' X (true,o) — true, (skip,o) — o1, {c,01) = 0’
() \ {c,0) = ¢’
NGO
We have marked by (x) the last occurrence of the goal (¢,0) — o’. But this leads
to a contradiction, because the next step of the derivation can only be obtained by

applying rule (whtt) and therefore it should lead to another instance of the original
goal.

3.3 Abstract Semantics: Equivalence of Expressions and
Commands

The same way as we can write different expressions denoting the same value, we
can write different programs for solving the same problem. For example we are used
not to distinguish between say 2 +2 and 2 x 2 because both evaluate to 4. Similarly,
would you distinguish between, say, x := 1;y:=0and y := 0;x := y+ 1? So a natural
question arise: when are two programs “equivalent”? The equivalence between two
commands is an important issue because it allows, e.g., to replace a program with an
equivalent but more efficient one. Informally, two programs are equivalent if they
behave in the same way. But can we make this idea more precise?

Since the evaluation of a command depends on the memory, two equivalent
programs must behave the same w.r.t. any initial memory. For example the two
commands x := 1 and x := y+ 1 assign the same value to x only when evaluated in
a memory o such that o(y) = 0, so that it wouldn’t be safe to replace one for the
other in any program. Moreover, we must take into account that commands may
diverge when evaluated with a certain memory, like while x > 0 do x:=x— 1 when
evaluated in a store ¢ such that o (x) < 0. We will call abstract semantics the notion
of behaviour w.r.t. we will compare programs for equivalence.
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The operational semantics offers a straightforward abstract semantics: two pro-
grams are equivalent if they result in the same memory when evaluated over the same
initial memory.

Definition 3.3 (Equivalence of expressions and commands). We say that the arith-
metic expressions a; and ap are equivalent, written a; ~ ay if and only if for any
memory o they evaluate in the same way. Formally:

ay~ay iff Vo,n((a;,0)—=n < (a,0)—>n)

We say that the boolean expressions b and b; are equivalent, written by ~ b, if
and only if for any memory ¢ they evaluate in the same way. Formally:

by~by iff Vo,v((b,0) =>v & (br,0)=>V)

We say that the commands ¢ and ¢, are equivalent, written ¢ ~ ¢ if and only if
for any memory ¢ they evaluate in the same way. Formally:

ci~cy iff Vo,0'.({c1,0) =0 & (cz,0) =0)

Note that if the evaluation of {c1, &) diverges there is no ¢’ such that {c;,0) — ¢’.
Then, when ¢ ~ c3, the double implication prevents (¢, ) to converge. As an easy
consequence, any two programs that diverge for any ¢ are equivalent.

3.3.1 Examples: Simple Equivalence Proofs

The first example we show is concerned with fully specified programs that operate
on unspecified memories.

Example 3.5 (Equivalent commands). Let us try to prove that the following two
commands are equivalent:

1 % whilex #£ 0dox := 0
def
cp=x:=0

It is immediate to prove that
Vo.(cs,0) = 0’ = 0[0/x]

Hence 6 and ¢’ can differ only for the value stored in x. In particular, if (x) =0
then 0’ = o.

The evaluation of ¢; in ¢ depends on ¢ (x): if o(x) = 0 we must apply the rule 3.19
(whff), otherwise the rule 3.18 (whtt) must be applied. Since we do not know the
value of 6(x), we consider the two cases separately. The corresponding hypotheses
are called path conditions and outline a very important technique for the symbolic
analysis of programs.
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Case 6(x) #0) Letus inspect a possible derivation for {c;, ) — ¢’. Since 6 (x) #
0 we select the rule (iftt) at the first step:

(c1,0) > 0" N (x#0,0) —>true, (x:=0,0)— oy,
<01,0'1>—>G/
Nowops) (0L 2@
{

Case o(x) =0) Let us inspect a derivation for (c1,0) — o’. Since o(x) #0 we
select the rule (ifff) at the first step:

(c1,0) = 0" Nyze (x#0,0) — false
N o) =0
N O
Finally, we observe the following:
(c1,0) = ©
(c2,0) = 0o')i]=0

(c1,0) = o[0/4]
(c2,0) = 0[°/4]

e If o(x) =0, then {
e Otherwise, if o(x) # 0, then {

Therefore c| ~ ¢ because for any o they result in the same memory.

The general methodology should be clear by now: in case the computation termi-
nates we need just to develop the derivation and compare the results.

3.3.2 Examples: Parametric Equivalence Proofs

The programs considered so far were entirely spelled out: all the commands and
expressions were given and the only unknown parameter was the initial memory o©.
In this section we address equivalence proofs for programs that contain symbolic
expressions a and b and symbolic commands c: we will need to prove that the equality
holds for any such a, b and c.

This is not necessarily more complicated than what we have done already: the
idea is that we can just carry the derivation with symbolic parameters.

Example 3.6 (Parametric proofs (1)). Let us consider the commands:
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c1 “ while b do ¢

e ©if b then (c;while b do ¢) else skip = if b then (c;c|) else skip

Is it true that Vb € Bexp,c € Com. (¢1 ~ ¢2)?

We start by considering the derivation for ¢ in a generic initial memory . The
command c; is a cycle and there are two rules we can apply: either the rule 3.19
(whff), or the rule 3.18 (whtt). Which rule to use depends on the evaluation of b.
Since we do not know what b is, we must take into account both possibilities and
consider the two cases separately.

(b,0) — false)  For ¢; we have:

(while b do c,0) -0’ Ny_s (b,0)— false
N

For ¢, we have:

(if b then (c;cy) else skip,0) =0’ ~_ (b,0) — false,
(skip,0) — o’
p |

o'=c

It is evident that if (b, o) — false then the two derivations for ¢;
and c; lead to the same result.
(b,o) — true)  For ¢; we have:

(while b do ¢,6) — ¢' N\ (b,0) — true, (c,0) — 01,
<C],O'1>—>G/
N {¢,0) = o1, (e1,01) =0

We find it convenient to stop here the derivation, because other-
wise we should add further hypotheses on the evaluation of ¢ and
of the guard b after the execution of c. Instead, let us look at the
derivation of ¢:

/

(if b then (c;c) else skip,c) — o' \_(b,0) — true,
(c;c1,0) — o

N {c;er,0) — o’

N (¢,0) = o,
(

C1 > /
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Now we can stop again, because we have reached exactly the
same subgoals that we have obtained by evaluating ¢! It is then
obvious that if (b,0) — true then the two derivations for ¢;
and ¢, will necessarily lead to the same result whenever they
terminate, and if one diverges the other diverges too.

Summing up the two cases, and since there are no more alternatives to try, we can
conclude that ¢; ~ c;.

Note that the equivalence proof technique that exploits reduction to the same
subgoals is one of the most convenient methods for proving the equivalence of while
commands, whose evaluation may diverge.

Example 3.7 (Parametric proofs (2)). Let us consider the commands:

def .
c1 = while b do ¢
def . .
le) = if b then c else skip
Is it true that Vb € Bexp,c € Com. c| ~ ¢3?
We have already examined the different derivations for ¢ in the previous example.
Moreover, the evaluation of ¢, when (b, ) — false is also analogous to that of the

command c; in Example 3.6. Therefore we focus on the analysis of ¢, for the case
(b, ) — true. Trivially:

(if b then ¢, else skip,o) — o' N\_(b,0) — true, (while b do ¢,0) — ¢’

. (while b do ¢,c) — ¢

So we reduce to the subgoal identical to the evaluation of ¢1, and we can conclude
that ¢ ~ c».

3.3.3 Examples: Inequality Proofs

The next example deals with programs that can behave the same or exhibit different
behaviours depending on the initial memory.

Example 3.8 (Inequality proof). Let us consider the commands:

1 & (while x>0 do x:=1);x:=0
def
c=x:=0
Let us prove that ¢; % ¢;.
For ¢, we have
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(x:=0,0) = 0" Ng/—gu/n) (0,0) —=n
\n:() 0

That is: Vo. (x:=0,0) — c[0/x].
Next, we focus on the first part of ¢

w % while x> 0 do x:= 1
If o(x) <0 it is immediate to check that
(while x>0dox:=1,0) —©

The derivation is sketched below:

(w,0) = 6’ Ng—g (x>0,0)— false
N (x,0)—=n, (0,6) >m, n<m
Na=otr) (0,0) = m,0(x)<m
Nun=o ©(x) <0
N O

Instead, if we assume o (x) > 0, then:

(wo) =o' N (x>0,0) > true, (x:=1,06)=0", (wo") =0

' (x:i=1,06) = 0", (wo")— o
)\*G":O'[l/x] <W,O'[1/X]> — G/
/

Let us continue the derivation for (w, [1/x]) — o’

(w,o[l/a]y =0 (x>0,0[1/x]) — true, (x:=1,0[1/x]) = ", (w,6") — o’

NG (x:i=1,0[1/x]) = 0", (w,6")— o’

\G”/:G[I/X] <W76[] /x]> — o

Now, note that we got the same subgoal (w, o[1/x]) — ¢’ already inspected: hence
it is not possible to conclude the derivation, which will loop.
Summing up all the above we conclude that:

Vo,0’. (whilex>0dox:=1,0) 06 = o(x)<0Ac'=0

We can now complete the reduction for the whole ¢; when o(x) < 0 (the case
o(x) > 0 is discharged, because we know that there is no derivation).
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(w;x:=0,0) = o'\ (w,0)—=0" (x:=0,0") — o
Nbi_g (x:=0,0) >0’
o'=afo (O

Therefore the evaluation ends with 6’ = ¢[0/x].

By comparing c; and ¢, we have that:

e there are memories for which the two commands behave the same (i.e., when
o(x) <0)

;[ {(whilex > 0dox:=1);x:=0,0) =0’

do,0 { (x:=0,0) > o’

e there are also cases for which the two commands exhibit different behaviours:
6.6 ((whilex > Odox := 1);x:=0,0) /4
U {x:=0,0) >0’
As an example, take any ¢ with o(x) =1 and ¢’ = ¢[0/x].

Since we can find pairs (0, 6”) such that c¢; loops and ¢, terminates we have that

C1l 74 ).

Note that in disproving the equivalence we have exploited a standard technique in
logic: to show that a universally quantified formula is not valid we can exhibit one
counterexample. Formally:

—Vx.(P(x) € Q(x)) = Ix.(P(x) A ~Q(x)) V (=P(x) A O(x))

3.3.4 Examples: Diverging Computations

What does it happen if the program has infinite different looping situations? How
should we handle the memories for which this happens?
Let us rephrase the definition of equivalence between commands:

Vo o {<c1,6> —0' & {(c,0) = o
b

<C1,G>7L> <~ <6276>7L>

Next we see an example where this situation emerges.

Example 3.9 (Proofs of non-termination). Let us consider the commands:

¢1 ¥ while x>0 do x:=1
c défwhile x>0dox:=x+1
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Is it true that ¢; ~ ¢2? On the one hand, note that ¢; can only store 1 in x, whereas
¢y can keep incrementing the value stored in x, so one may be lead to suspect that
the two commands are not equivalent. On the other hand, we know that when the
commands diverge, the values stored in the memory locations are inessential.

As already done in previous examples, let us focus on the possible derivation of ¢
by considering two separate cases that depends of the evaluation of the guard x > 0:

Case 6(x) <0) If o(x) <0, we know already from Example 3.8 that (c|,0) — o:

(c1,0) =0 Ng—g (x>0,0)— false
Nt O

In this case, the body of the while is not executed and the resulting
memory is left unchanged. We leave to the reader to fill the details
for the analogous derivation of ¢;, which behaves the same.

Case 6(x) >0) If o(x) > 0, we know already from Example 3.8 that (c;, o) /4
Now we must check if ¢, diverges too when ¢ (x) > 0:

(c2,0) >0’ N (x>0,0) — true,
(x:=x+1,0)— 01, {c2,01) 0
N (xi=x+1,0) =0y, (c2,01) >0
* o(x)+1
N oot/ (230 [ "9 /) = o

K Ax> 0,0 [GMH /X]> s true,

(x:=x+1, G[ +l/x]>_>627
(¢2,00) —
K¢ (s _x+1c[ +]/x]>—>0'27
(c2,00) —
'\;2161 [al(x)ﬂ/x]:(,[a(x)n/x} (¢, [ +2/ b — o

Now the situation is more subtle: we keep looping, but without
crossing the same subgoal twice, because the memory is updated
with different values for x at each iteration. However, using induc-
tion, that will be the subject of Section 4.1.3, we can prove that the
derivation will not terminate. Roughly, the idea is the following:

e atstep 0, i.e., at the first iteration, the cycle does not terminate;
e if at the ith step the cycle has not terminated yet, then it will
not terminate at the (i + 1)th step, because x > 0= x+1 > 0.
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The formal proof would require to show that at the ith iteration the
values stored in the memory at location x will be ¢ (x) 4 i, from
which we can conclude that the expression x > 0 will hold true
(since by assumption ¢(x) > 0 and thus ¢ (x) +i > 0). Once the
proof is completed, we can conclude that ¢, diverges and therefore
Cc] ~ ().

Let us consider the command w & while » do c. As we have seen in the last
example, to prove the non-termination of w we can exploit the induction hypotheses
over memory states to define the inference rule below: the idea is that if we can find
a set § of memories such that, for any ¢’ € S, the guard b is evaluated to true and
the execution of ¢ leads to a memory ¢” which is also in S, then we can conclude
that w diverges when evaluated in any of the memories ¢ € S.

ceS Vo' €S.(b,0') > true Vo' €S,Vo".((c,0')— " = oc"€5)

(3.20)
(w,0) £

Note that the property
Vo ({c,0') = 0" = o" €Y)

is satisfied even when (c, 6’} /, because there is no ¢” such that the left-hand side
of the implication holds.

Remind that, in general, program termination is semi-decidable (and non-
termination possibly non semi-decidable), so.we cannot have a proof technique
for demonstrating the convergence or divergence of any program.

Example 3.10 (Collatz’s algorithm). Consider the algorithm below, which is known
as Collatz’s algorithm, or also as Half Or Triple Plus One

ddéfx::y;k:zo;whilex>0d0 (x:=x—=2;k:=k+1)

¢ % while y# 1 do(d ; if x=0 then y:=k else y:= (3xy)+1)

The command d, when executed in a memory ¢ with o(y) > 0, terminates by
producing either a memory ¢’ with o’(x) = 0 and 6(y) =2 x ¢’(k) (when o (y)
is even), or a memory ¢” with 6”(x) = —1 (when o(y) is odd). The command c¢
exploits d to update at each iteration the value of y to either the half of y (when & (y)
is even) or three times y plus one (when o(y) is odd). It is an open mathematical
conjecture to prove that the command ¢ terminates when executed in any memory &
with o(y) > 0. The conjecture has been checked by computers and proved true! for
all starting values of y up to 5 x 2%

I Source http://en.wikipedia.org/wiki/Collatz_conjecture, last visited July
2015.
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Problems

3.1. Consider the IMP command
def .
w = whiley>0do (r:=rxx;y:=y—1)

Letc & (r:=1;w)and o def [9/x,2/y]. Use goal-oriented derivation, according to

the operational semantics of IMP, to find the memory ¢’ such that {c,0) — o', if it
exists.

3.2. Consider the IMP command
w % while y > 0 do if y =0 then y:=y+ 1 else skip
For which memories ¢, 6’ do we have (w,0) — ¢’?
3.3. Prove that for any b € Bexp,c € Com we have ¢ ~if b then c else c.

3.4. Prove that for any b € Bexp,c € Com we have ¢| ~ c,, where:

c1 % while b do ¢

c &1 while b do if b then c else skip

3.5. Prove that for any b € Bexp,c € Com we have ¢y ~ ¢, where:

¢ % ¢ . while bdo ¢

e & (while b do ¢) ;
3.6. Prove that ¢q o¢ ¢, where:
c1 défwhile)c>0 do x:=0
¢, & while x >0 do x:=0
3.7. Consider the IMP command
wdéfwhilexgydo (x:=x+1;y:=y+2)

Find the largest set S of memories such that the command w diverges. Use the
inference rule for divergence to prove non-termination.

3.8. Prove that ¢; % ¢, where:

¢ % while x>0 do x:=x+1

> % while x> 0 do x:=x+2
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3.9. Suppose we extend IMP with the arithmetic expression ag/a; for integer division,
whose operational semantics is:

<a0,0'> — no <a176> — ny

anjar o) np = ny X n (div) (3.21)
ap/ai, n

1. Prove that the semantics of extended arithmetic expressions is not deterministic.
In other words, give a counterexample to the property below:

Va € Aexp,Vo € X, Vn,m € Z. ({a,0) = n A {a,06) > m = n=m)

2. Prove that the semantics of extended arithmetic expressions is not always defined.
In other words, give a counterexample to the property below:

Va € Aexp,Yo € Z,In € Z. {(a,0) = n

3.10. Define a small-step operational semantics for IMP. To this aim, introduce a
special symbol x as a termination marker and consider judgements of either the form
(¢,0) = (c’,0") or {¢,0) — (x,0"). Define the semantics in such a way that the
evaluation is deterministic and that {c, ) —* (x,¢’} if and only if (c,G) — 0’ in
the usual big-step semantics seen for IMP.
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