
DRAFT
Roberto Bruni, Ugo Montanari

Models of Computation

– Monograph –

March 6, 2016

Springer



DRAFTMathematical reasoning may be regarded
rather schematically as the exercise of a
combination of two facilities, which we may
call intuition and ingenuity.

Alan Turing1

1 The purpose of ordinal logics (from Systems of Logic Based on Ordinals), Proceedings of the
London Mathematical Society, series 2, vol. 45, 1939.



DRAFT
Contents

Part I Preliminaries

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Structure and Meaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Syntax and Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Mathematical Models of Computation . . . . . . . . . . . . . . . . . . . 6
1.1.4 Operational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.5 Denotational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.6 Axiomatic Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 A Taste of Semantics Methods: Numerical Expressions . . . . . . . . . . . 9
1.2.1 An Informal Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.2 A Small-Step Operational Semantics . . . . . . . . . . . . . . . . . . . . 11
1.2.3 A Big-Step Operational Semantics (or Natural Semantics) . . 13
1.2.4 A Denotational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.5 Semantic Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.6 Expressions with Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Applications of Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.1 Language Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.3 Analysis and Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.4 Synergy Between Different Semantics Approaches . . . . . . . . 19

1.4 Content Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4.1 Induction and Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4.2 Semantic Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.4.3 Bisimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.4.4 Temporal and Modal Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.4.5 Probabilistic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.5 Chapters Contents and Reading Guide . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.6 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

xv



DRAFT

xvi Contents

2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.1 Basic Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1.2 Signatures and Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.1.3 Substitutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.1.4 Unification Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Inference Rules and Logical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3 Logic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Part II IMP: a simple imperative language

3 Operational Semantics of IMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.1 Syntax of IMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1.1 Arithmetic Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.1.2 Boolean Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.1.3 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.1.4 Abstract Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Operational Semantics of IMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.1 Memory State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.2 Inference Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 Abstract Semantics: Equivalence of Expressions and Commands . . . 64
3.3.1 Examples: Simple Equivalence Proofs . . . . . . . . . . . . . . . . . . . 65
3.3.2 Examples: Parametric Equivalence Proofs . . . . . . . . . . . . . . . 66
3.3.3 Examples: Inequality Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.3.4 Examples: Diverging Computations . . . . . . . . . . . . . . . . . . . . . 70

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 Induction and Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.1 Noether Principle of Well-founded Induction . . . . . . . . . . . . . . . . . . . 75

4.1.1 Well-founded Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.1.2 Noether Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.1.3 Weak Mathematical Induction . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.1.4 Strong Mathematical Induction . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.1.5 Structural Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.1.6 Induction on Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.1.7 Rule Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 Well-founded Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5 Partial Orders and Fixpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.1 Orders and Continuous Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.1.1 Orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.1.2 Hasse Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.1.3 Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107



DRAFT

Contents xvii

5.1.4 Complete Partial Orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.2 Continuity and Fixpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2.1 Monotone and Continuous Functions . . . . . . . . . . . . . . . . . . . . 110
5.2.2 Fixpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.3 Immediate Consequence Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.3.1 The Operator bR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.3.2 Fixpoint of bR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6 Denotational Semantics of IMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.1 l -Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.1.1 l -Notation: Main Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.1.2 Alpha-Conversion, Beta-Rule and Capture-Avoiding

Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.2 Denotational Semantics of IMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2.1 Denotational Semantics of Arithmetic Expressions: The
Function A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.2.2 Denotational Semantics of Boolean Expressions: The
Function B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.2.3 Denotational Semantics of Commands: The Function C . . . . 132
6.3 Equivalence Between Operational and Denotational Semantics . . . . 137

6.3.1 Equivalence Proofs For Expressions . . . . . . . . . . . . . . . . . . . . 137
6.3.2 Equivalence Proof for Commands . . . . . . . . . . . . . . . . . . . . . . 138

6.4 Computational Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Part III HOFL: a higher-order functional language

7 Operational Semantics of HOFL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
7.1 Syntax of HOFL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.1.1 Typed Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
7.1.2 Typability and Typechecking . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.2 Operational Semantics of HOFL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

8 Domain Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
8.1 The Flat Domain of Integer Numbers Z? . . . . . . . . . . . . . . . . . . . . . . . 169
8.2 Cartesian Product of Two Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
8.3 Functional Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
8.4 Lifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
8.5 Function’s Continuity Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
8.6 Useful Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183



DRAFT

xviii Contents

9 HOFL Denotational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
9.1 HOFL Semantic Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
9.2 HOFL Evaluation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

9.2.1 Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
9.2.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
9.2.3 Binary Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
9.2.4 Conditional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
9.2.5 Pairing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
9.2.6 Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
9.2.7 Lambda Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
9.2.8 Function Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
9.2.9 Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

9.3 Continuity of Meta-language’s Functions . . . . . . . . . . . . . . . . . . . . . . . 191
9.4 Substitution Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

10 Equivalence between HOFL denotational and operational semantics . 197
10.1 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
10.2 Equivalence (on Convergence) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
10.3 Operational and Denotational Equivalences of Terms . . . . . . . . . . . . . 203
10.4 A Simpler Denotational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

Part IV Concurrent Systems

11 CCS, the Calculus for Communicating Systems . . . . . . . . . . . . . . . . . . . . 211
11.1 Syntax of CCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
11.2 Operational Semantics of CCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

11.2.1 Action Prefix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
11.2.2 Restriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
11.2.3 Relabelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
11.2.4 Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
11.2.5 Parallel Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
11.2.6 Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
11.2.7 CCS with Value Passing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
11.2.8 Recursive Declarations and the Recursion Operator . . . . . . . . 224

11.3 Abstract Semantics of CCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
11.3.1 Graph Isomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
11.3.2 Trace Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
11.3.3 Bisimilarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

11.4 Compositionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
11.4.1 Bisimilarity is Preserved by Choice . . . . . . . . . . . . . . . . . . . . . 236

11.5 A Logical View to Bisimilarity: Hennessy-Milner Logic . . . . . . . . . . 237
11.6 Axioms for Strong Bisimilarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
11.7 Weak Semantics of CCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242



DRAFT

Contents xix

11.7.1 Weak Bisimilarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
11.7.2 Weak Observational Congruence . . . . . . . . . . . . . . . . . . . . . . . 244
11.7.3 Dynamic Bisimilarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

12 Temporal Logic and µ-Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
12.1 Temporal Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

12.1.1 Linear Temporal Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
12.1.2 Computation Tree Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

12.2 µ-Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
12.3 Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

13 p-Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
13.1 Name Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
13.2 Syntax of the p-calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
13.3 Operational Semantics of the p-calculus . . . . . . . . . . . . . . . . . . . . . . . 268

13.3.1 Action Prefix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
13.3.2 Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
13.3.3 Name Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
13.3.4 Parallel Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
13.3.5 Restriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
13.3.6 Scope Extrusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
13.3.7 Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
13.3.8 A Sample Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

13.4 Structural Equivalence of p-calculus . . . . . . . . . . . . . . . . . . . . . . . . . . 273
13.4.1 Reduction semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

13.5 Abstract Semantics of the p-calculus . . . . . . . . . . . . . . . . . . . . . . . . . . 274
13.5.1 Strong Early Ground Bisimulations . . . . . . . . . . . . . . . . . . . . . 275
13.5.2 Strong Late Ground Bisimulations . . . . . . . . . . . . . . . . . . . . . . 276
13.5.3 Strong Full Bisimilarities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
13.5.4 Weak Early and Late Ground Bisimulations . . . . . . . . . . . . . . 278

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

Part V Probabilistic Systems

14 Measure Theory and Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
14.1 Probabilistic and Stochastic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 283
14.2 Measure Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

14.2.1 s -field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
14.2.2 Constructing a s -field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
14.2.3 Continuous Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . 287
14.2.4 Stochastic Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

14.3 Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
14.3.1 Discrete and Continuous Time Markov Chain . . . . . . . . . . . . 292
14.3.2 DTMC as LTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293



DRAFT

xx Contents

14.3.3 DTMC Steady State Distribution . . . . . . . . . . . . . . . . . . . . . . . 295
14.3.4 CTMC as LTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
14.3.5 Embedded DTMC of a CTMC . . . . . . . . . . . . . . . . . . . . . . . . . 298
14.3.6 CTMC Bisimilarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
14.3.7 DTMC Bisimilarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

15 Markov Chains with Actions and Non-determinism . . . . . . . . . . . . . . . . 305
15.1 Discrete Markov Chains With Actions . . . . . . . . . . . . . . . . . . . . . . . . . 305

15.1.1 Reactive DTMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
15.1.2 DTMC With Non-determinism . . . . . . . . . . . . . . . . . . . . . . . . . 308

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

16 PEPA - Performance Evaluation Process Algebra . . . . . . . . . . . . . . . . . . 313
16.1 From Qualitative to Quantitative Analysis . . . . . . . . . . . . . . . . . . . . . . 313
16.2 CSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

16.2.1 Syntax of CSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
16.2.2 Operational Semantics of CSP . . . . . . . . . . . . . . . . . . . . . . . . . 315

16.3 PEPA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
16.3.1 Syntax of PEPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
16.3.2 Operational Semantics of PEPA . . . . . . . . . . . . . . . . . . . . . . . . 318

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331



DRAFT
Acronyms

⇠ operational equivalence in IMP (see Definition 3.3)
⌘den denotational equivalence in HOFL (see Definition 10.4)
⌘op operational equivalence in HOFL (see Definition 10.3)
' CCS strong bisimilarity (see Definition 11.5)
⇡ CCS weak bisimilarity (see Definition 11.16)
⇠= CCS weak observational congruence (see Section 11.7.2)
⇡d CCS dynamic bisimilarity (see Definition 11.17)
�⇠E p-calculus early bisimilarity (see Definition 13.3)
�⇠L p-calculus late bisimilarity (see Definition 13.4)
⇠E p-calculus strong early full bisimilarity (see Section 13.5.3)
⇠L p-calculus strong late full bisimilarity (see Section 13.5.3)
•tE p-calculus weak early bisimilarity (see Section 13.5.4)
•tL p-calculus weak late bisimilarity (see Section 13.5.4)
A interpretation function for the denotational semantics of IMP arithmetic

expressions (see Section 6.2.1)
ack Ackermann function (see Example 4.18)
Aexp set of IMP arithmetic expressions (see Chapter 3)
B interpretation function for the denotational semantics of IMP boolean

expressions (see Section 6.2.2)
Bexp set of IMP boolean expressions (see Chapter 3)
B set of booleans
C interpretation function for the denotational semantics of IMP com-

mands (see Section 6.2.3)
CCS Calculus of Communicating Systems (see Chapter 11)
Com set of IMP commands (see Chapter 3)
CPO Complete Partial Order (see Definition 5.11)
CPO? Complete Partial Order with bottom (see Definition 5.12)
CSP Communicating Sequential Processes (see Section 16.2)
CTL Computation Tree Logic (see Section 12.1.2)
CTMC Continuous Time Markov Chain (see Definition 14.15)

xxi



DRAFT

xxii Acronyms

DTMC Discrete Time Markov Chain (see Definition 14.14)
Env set of HOFL environments (see Chapter 9)
fix (least) fixpoint (see Definition 5.2.2)
FIX (greatest) fixpoint
gcd greatest common divisor
HML Hennessy-Milner modal Logic (see Section 11.5)
HM-Logic Hennessy-Milner modal Logic (see Section 11.5)
HOFL A Higher-Order Functional Language (see Chapter 7)
IMP A simple IMPerative language (see Chapter 3)
int integer type in HOFL (see Definition 7.2)
Loc set of locations (see Chapter 3)
LTL Linear Temporal Logic (see Section 12.1.1)
LTS Labelled Transition System (see Definition 11.2)
lub least upper bound (see Definition 5.7)
N set of natural numbers
P set of closed CCS processes (see Definition 11.1)
PEPA Performance Evaluation Process Algebra (see Chapter 16)
Pf set of partial functions on natural numbers (see Example 5.10)
PI set of partial injective functions on natural numbers (see Problem 5.11)
PO Partial Order (see Definition 5.1)
PTS Probabilistic Transition System (see Section 14.3.2)
R set of real numbers
T set of HOFL types (see Definition 7.2)
Tf set of total functions from N to N? (see Example 5.11)
Var set of HOFL variables (see Chapter 7)
Z set of integers



DRAFT
Part II

IMP: a simple imperative language



DRAFT
This part focuses on models for sequential computations that are associated to IMP, a
simple imperative language. The syntax and natural semantics of IMP are studied
in Chapter 3, while its denotational semantics is presented in Chapter 6, where it is
also reconciled with the operational semantics. Chapter 4 explains several induction
principles exploited to prove properties of programs and semantics. Chapter 5 fixes
the mathematical basis of denotational semantics. The concepts in Chapters 4 and 5
are extensively used in Chapter 6 and in the rest of the monograph.



DRAFT
Chapter 4
Induction and Recursion

To understand recursion, you must first understand recursion.
(traditional joke)

Abstract In this chapter we presents some induction techniques that will turn out
useful for proving formal properties of the languages and models presented in the
book. We start by introducing Noether principle of well-founded induction, from
which we then derive induction principles over natural numbers, terms of a signature
and derivations in a logical system. The chapter ends by presenting well-founded
recursion.

4.1 Noether Principle of Well-founded Induction

In the literature several different kinds of induction are defined, but they all rely on
the so-called Noether principle of well-founded induction. We start by defining this
important principle and will then derive several induction methods.

4.1.1 Well-founded Relations

We recall some key mathematical notions and definitions.

Definition 4.1 (Binary relation). A binary relation (relation for short) � over a set
A is a subset of the cartesian product A⇥A.

� ✓ A⇥A

For (a,b) 2 � we use the infix notation a � b and also write equivalently b � a.
Moreover, we write a 6� b in place of (a,b) 62 �.

A relation � ✓ A⇥A can be conveniently represented as an oriented graph whose
nodes are the elements of A and whose arcs n ! m represent the pairs (n,m) 2 � in
the relation.

75



DRAFT

76 4 Induction and Recursion

c ''

  

d

a '' b

22

e

XX

77 f

Fig. 4.1: Graph of a relation

Example 4.1. The graph in Figure 4.1 represents the relation � over the set {a,b,c,d,e, f }
with a � b, b � c, c � d, c � e, e � f , e � b.

Definition 4.2 (Infinite descending chain). Given a relation � over the set A, an
infinite descending chain is an infinite sequence {ai}i2N of elements in A such that

8i 2 N. ai+1 � ai

An infinite descending chain can be represented as a function a from N to A such
that a(i) decreases (according to �) as i grows:

a(0) � a(1) � a(2) � · · ·

Definition 4.3 (Well-founded relation). A relation is well-founded if it has no infi-
nite descending chains.

Definition 4.4 (Transitive closure). Let � be a relation over A. The transitive clo-
sure of �, written �+, is defined by the following inference rules

a � b
a �+ b

a �+ b b �+ c
a �+ c

By the first rule, � is always included in �+. It can be proved that (�+)+ always
coincides with �+.

Definition 4.5 (Transitive and reflexive closure). Let � be a relation over A. The
transitive and reflexive closure of �, written �⇤, is defined by the following inference
rules

a �⇤ a
a �⇤ b b � c

a �⇤ c

It can be proved that both � and �+ are included in �⇤ and that (�⇤)⇤ always
coincides with �⇤.

Example 4.2. Consider the usual “less than” < relation over integers. Since we have,
e.g., the infinite descending chain

4 > 2 > 0 > �2 > �4 > ...

it is not well-founded. Note that its transitive closure <+ is the same as <.



DRAFT

4.1 Noether Principle of Well-founded Induction 77

Example 4.3. Consider the usual “less than” < relation over natural numbers. We
cannot have an infinite descending chain {ai}i2N because there are only a finite
number of elements less than a0. Hence the relation < over N is well-founded. Note
that its transitive closure <+ is the same as <.

Example 4.4. Consider the usual “less than or equal to”  relation over natural
numbers. Since we have, e.g., the infinite descending chain

4 � 2 � 0 � 0 � 0 � ...

it is not well-founded. Note also, than any infinite descending chain must include only
a finite number of elements, because there are only a finite number of elements less
than or equal to a0, and therefore there exists some k 2 N such that 8i � k. ai = ak.
Note that  is the reflexive and transitive closure of <, i.e., <⇤=.

Theorem 4.1. Let � be a relation over A. For any x,y 2 A, x �+ y if and only if there
exist a finite number of elements z0,z1, ...,zk 2 A such that

x = z0 � z1 � · · · � zk = y.

The proof of the above theorem is left as an exercise (see Problem 4.4).
With respect to the oriented graph associated with the relation �, we note that

a �+ b means that there is a non-empty finite path from a to b, while a �⇤ b means
that there is a (possibly empty) finite path from a to b.

Theorem 4.2 (Well-foundedness of �+). A relation � is well-founded if and only
if its transitive closure �+ is well-founded.

Proof. One implication is trivial: if �+ is well-founded then � is obviously well-
founded, because any descending chain for � is also a descending chain for �+ (and
all such chains are finite by hypothesis).

For the other direction, let us assume �+ is non well-founded and take any infinite
descending chain

a0 �+ a1 �+ a2 · · ·

But whenever ai �+ ai+1 there must be a finite descending �-chain of elements
between ai and ai+1 and therefore we can build an infinite descending chain

a0 � · · · � a1 � · · · � a2 � · · ·

leading to a contradiction. ut

Example 4.5. Consider the “immediate precedence” relation � over natural numbers,
such that n � n+1 for all n 2N. Note that the transitive closure of � is the usual “less
than” < relation over natural numbers, i.e., �+=<. By Theorem 4.2 and Example 4.3
the relation � over N is well-founded.

Definition 4.6 (Acyclic relation). We say that � has a cycle if 9a 2 A.a �+ a. We
say that � is acyclic if it has no cycle (i.e., 8a 2 A.a 6�+ a).



DRAFT

78 4 Induction and Recursion

Theorem 4.3 (Well-founded relations are acyclic). If the relation � is well-founded,
then it is acyclic.

Proof. We need to prove that:

¬9a 2 A. a �+ a

By contradiction, we assume there is a 2 A such that a �+ a. This means that �+

is not well-founded, because we have an infinite descending chain

a �+ a �+ a �+ a . . .

By Theorem 4.2, � is not well-founded, leading to a contradiction, because � is
well-founded by hypothesis. ut

For example, the relation in Figure 4.1 is not acyclic and thus it is not well-
founded.

Theorem 4.4 (Well-founded relations over finite sets). Let A be a finite set and let
� be acyclic, then � is well-founded.

Proof. Since A is finite, any descending chain strictly longer than |A| must contain (at
least) two occurrences of a same element (by the so-called “pigeon hole principle”)
that form a cycle, but this is not possible because � is acyclic by hypothesis. ut

Definition 4.7 (Minimal element). Let � be a relation over the set A. Given a set
Q ✓ A, we say that m 2 Q is minimal if there is no element x 2 Q such that x � m,
i.e., 8x 2 Q. x 6� m.

It follows that Q has no minimal element if 8m 2 Q. 9x 2 Q. x � m.

Lemma 4.1 (Well-founded relation). Let � be a relation over the set A. The relation
� is well-founded if and only if every nonempty subset Q ✓ A contains a minimal
element m.

Proof. Since any double implication P , Q is equivalent to ¬P , ¬Q, the state-
ment of this lemma can be rephrased by saying that: the relation � has an infinite
descending chain if and only if there exists a nonempty subset Q ✓ A with no minimal
element.

We prove each implication (of the transformed statement) separately.

() We assume that � has an infinite descending chain a1 � a2 � a3 � · · · and we
let Q = {a1,a2,a3, . . .} be the set of all the elements in the infinite descending
chain. The set Q has no minimal element, because for any candidate ai 2 Q
we know there is one element ai+1 2 Q with ai � ai+1.

() Let Q be a nonempty subset of A with no minimal element. Since Q is
nonempty, it must contain at least an element. We randomly pick an ele-
ment a0 2 Q. Since a0 is not minimal there must exists an element a1 2 Q
such that a0 � a1, and we can iterate the reasoning (i.e. a1 is not minimal and
there is a2 2 Q with a0 � a1 � a2, etc.). So we can build an infinite descending
chain. ut



DRAFT

4.1 Noether Principle of Well-founded Induction 79

Example 4.6 (Natural numbers). Both n � n+1 (the immediate precedence relation)
and n < n+1+ k (the usual “less than” relation), with n,k 2 N, are simple examples
of well-founded relations. In fact, from every element n 2N we can start a descending
chain of length at most n.

Definition 4.8 (Terms over one-sorted signatures). Let S = {Sn}n2N a one-sorted
signature, i.e., a set of ranked operators f such that f 2 Sn if f takes n arguments.
We define the set of S -terms as the set TS that is defined inductively by the following
inference rule:

ti 2 TS i = 1, . . . ,n f 2 Sn

f (t1, . . . , tn) 2 TS
(4.1)

Definition 4.9 (Terms over many sorted signatures). Let

• S be a set of sorts (i.e. the set of the different data types we want to consider);
• S = {Ss1...sn,s}s1,...,sn,s2S be a signature over S, i.e. a set of typed operators ( f 2

Ss1...sn,s is an operator that takes n arguments, the ith argument being of type si,
and gives a result of type s).

We define the set of S -terms as the set

TS = {TS ,s}s2S

where, for s 2 S, the set TS ,s is the set of terms of sort s over the signature S , defined
inductively by the following inference rule:

ti 2 TS ,si i = 1, . . . ,n f 2 Ss1...sn,s

f (t1, . . . , tn) 2 TS ,s

(When S is a singleton, we are in the same situation as in Definition 4.8 and write
just Sn instead of Sw,s with w = s ... s| {z }

n

.)

Since the operators of the signature are known, we can specialise the above rule 4.1
for each operator, i.e. we can consider the set of inference rules:

(
ti 2 TS ,si i = 1, . . . ,n

f (t1, . . . , tn) 2 TS ,s

)

f 2Ss1 ...sn ,s

(4.2)

Note that, as special case of the above inference rule, for constants a 2 Se,s we
have:

a 2 TS ,s
(4.3)

Example 4.7 (IMP Signature). In the case of IMP, we have S = {Aexp,Bexp,Com}
and then we have an operation for each production in the grammar.



DRAFT

80 4 Induction and Recursion

For example, the sequential composition of commands “;” corresponds to the
binary infix operator (�;�) 2 SComCom,Com.

Similarly the equality expression is built using the operator (� = �) 2 SAexpAexp,Bexp.
By abusing the notation, we often write Com for TS ,Com (respectively, Aexp for

TS ,Aexp and Bexp for TS ,Bexp).
Then, we have inference rules instances such as:

skip 2 Com

skip 2 Com x := a 2 Com

skip ; x := a 2 Com

The programs we consider are (well-formed) terms over a suitable signature S
(possibly many-sorted). Therefore it is useful to define a well-founded containment
relation between a term and its subterms. For example, we will exploit this relation
when dealing with structural induction in Section 4.1.5.

Example 4.8 (Terms and subterms). For any n-ary function symbol f 2 Sn and terms
t1, . . . , tn, we let:

ti � f (t1, . . . , tn) i = 1, . . . ,n

The idea is that a term ti precedes (according to �, i.e. it is less than) any term
that contains it as a subterm (e.g. as an argument).

As a concrete example, let us consider the signature S with S0 = {c} and S2 = { f }.
Then, we have, e.g.:

c � f (c,c) � f ( f (c,c),c) � f ( f ( f (c,c),c), f (c,c))

If we look at terms as trees (function symbols as nodes with one children for each
argument and constants as leaves), then we can observe that whenever s � t the depth
of s is strictly less than the depth of t. Therefore any descending chain is finite (the
length is at most the depth of the first term of the chain). Moreover, in the particular
case above, c is the only constant and therefore the only minimal element.

Example 4.9 (Lexicographic order). A quite common (well-founded) relation is the
so-called lexicographic order. The idea is to have elements that are strings over a
given ordered alphabet and to compare them symbol-by-symbol, from the leftmost to
the rightmost: as soon as we find a symbol in one string that precedes the symbol in
the same position of the other string, then we assume that the former string precedes
the latter (independently from the remaining symbols of the two strings).

As a concrete example, let us consider the set of all pairs hn,mi of natural numbers
ordered by immediate precedence. The lexicographic order relation is defined as (see
Figure 4.2):

• 8n,m,k. (hn,mi � hn+1,ki)
• 8n,m. (hn,mi � hn,m+1i)



DRAFT

4.1 Noether Principle of Well-founded Induction 81

h2,0i //

...

h2,1i //

...

h2,2i

...

···

h1,0i //

OO << 55

h1,1i //

OO <<bb

h1,2i

OObbii

···

h0,0i //

OO << 55

h0,1i //

OO <<bb

h0,2i

OObbii

···

Fig. 4.2: Graph of the lexicographic order relation over pairs of natural numbers.

By Theorem 4.2, the relation � is well-founded if and only if its transitive closure
is such. Note that the relation �+ has no cycle and any descending chain is bound by
the only minimal element h0,0i. For example, we have:

h5,1i �+ h4,25i �+ h3,100i �+ h3,14i �+ h2,1i �+ h1,1000i �+ h0,0i

It is worth to note that any element hn,mi with n � 1 is preceded by infinitely
many elements (e.g., 8k. h0,ki � h1,0i) and it can be the first element of infinitely
many (finite) descending chains (of unbounded length).

Still, given any nonempty set Q ✓ N⇥N, it is easy to find a minimal element m 2
Q, namely such that 8b �+ m. b 62 Q. In fact, we can just take m = hm1,m2i, where
m1 is the minimum (w.r.t. the usual less-than relation over natural numbers) of the set
Q1 = {n1|hn1,n2i 2 Q} and m2 is the minimum of the set Q2 = {n2|hm1,n2i 2 Q}.
Note that Q1 is nonempty because Q is such by hypothesis, and Q2 is nonempty
because m1 2 Q1 and therefore there must exists at least one pair hm1,n2i 2 Q for
some n2. Thus

hm1 = min{n1|hn1,n2i 2 Q},min{n2|hm1,n2i 2 Q}i

is a (the only) minimal element of Q. By Lemma 4.1 the relation �+ is well-founded
and so is � (by Theorem 4.2).

4.1.2 Noether Induction

Theorem 4.5. Let � be a well-founded relation over the set A and let P be a unary
predicate over A. Then:

(8a 2 A. (8b � a. P(b)) ) P(a)) , 8a 2 A. P(a)



DRAFT

82 4 Induction and Recursion

Proof. We prove the two implications separately:

)) We proceed by contradiction by assuming ¬(8a 2 A.P(a)), i.e., that 9a 2
A. ¬P(a). Let us consider the nonempty set Q = { a 2 A | ¬P(a) } of all
those elements a in A for which P(a) is false. Since � is well-founded, we
know by Lemma 4.1 that there is a minimal element m 2 Q. Obviously ¬P(m)
(otherwise m cannot be in Q). Since m is minimal in Q, then 8b � m.b 62 Q, i.e.,
8b � m.P(b). But this leads to a contradiction, because by hypothesis we have
8a 2 A.(8b � a.P(b)) ! P(a) and instead the predicate (8b � m.P(b)) !
P(m) is false. Therefore Q must be empty and 8a 2 A.P(a) must hold.

() We observe that if 8a.P(a) then (8b � a. P(b)) ! P(a) is true for any a
because the premise (8b � a. P(b)) is not relevant (the conclusion of the
implication is true). ut

From the first implication, it follows the validity of the following induction
principle.

Definition 4.10 (Noether induction). Let � be a well-founded relation over the set
A and let P be a unary predicate over A. Then the following inference rule is called
Noether induction.

8a 2 A. (8b � a. P(b)) ) P(a)

8a 2 A. P(a)
(4.4)

We call a base case any element a 2 A such that the set of its predecessors
{b 2 A | b � a} is empty.

4.1.3 Weak Mathematical Induction

The principle of weak mathematical induction is a special case of Noether induction
that is frequently used to prove formulas over the set on natural numbers: we take

A = N n � m , m = n+1

In this case:

• if we take a = 0 then (8b � a. P(b)) ) P(a) amounts to P(0), because there is
no b 2 N such that b � 0;

• if we take a = n + 1 for some n 2 N, then (8b � a. P(b)) ) P(a) amounts to
P(n) ) P(n+1).

In other words, to prove that P(n) holds for any n 2 N we can just prove that:

• P(0) holds (base case), and
• that, given a generic n 2 N, P(n+1) holds whenever P(n) holds (inductive case).



DRAFT

4.1 Noether Principle of Well-founded Induction 83

Definition 4.11 (Weak mathematical induction).

P(0) 8n 2 N. (P(n) ) P(n+1))

8n 2 N. P(n)
(4.5)

The weak mathematical induction principle is helpful, because it allows us to
exploit the hypothesis P(n) when proving P(n+1).

4.1.4 Strong Mathematical Induction

The principle of strong mathematical induction extends the weak one by strengthen-
ing the hypotheses under which P(n+1) is proved to hold. We take:

A = N n � m , 9k 2 N. m = n+ k +1

In this case:

• if we take a = 0 then (8b � a. P(b)) ) P(a) amounts to P(0), as for the case of
weak mathematical induction;

• if we take a = n + 1 for some n 2 N, then (8b � a. P(b)) ) P(a) amounts to
(P(0) ^ P(1) ^ · · · ^ P(n)) ) P(n + 1), i.e., using a more concise notation to
(8i  n.P(i)) ) P(n+1).

In other words, to prove that P(n) holds for any n 2 N we can just prove that:

• P(0) holds, and
• that, given a generic n 2 N, P(n+1) holds whenever P(i) holds for all i = 0, ...,n.

Definition 4.12 (Strong mathematical induction).

P(0) 8n 2 N. (8i  n.P(i)) ) P(n+1)

8n 2 N. P(n)
(4.6)

The adjective “strong” comes from the fact that for proving P(n+1) we can now
exploit the stronger hypothesis P(0)^P(1)^ ...^P(n) instead of just P(n).

4.1.5 Structural Induction

The principle of structural induction is a special instance of Noether induction for
proving properties over the set of terms generated by a given signature. Here, the
order relation binds a term to its subterms.

Structural induction takes TS as set of elements and subterm-term relation as
well-founded relation:

A = TS ti < f (t1, . . . , tn) i = 1, . . . ,n



DRAFT

84 4 Induction and Recursion

Definition 4.13 (Structural induction).

8t 2 TS . (8t 0 < t. P(t 0)) ) P(t)

8t 2 TS . P(t)
(4.7)

By exploiting the definition of the well-founded subterm relation, we can expand
the above principle as the rule

8 f 2 Ss1...sn,s. 8t1 2 TS ,s1 ...8tn 2 TS ,sn . (P(t1)^ . . .^P(tn)) ) P( f (t1, . . . , tn))

8t 2 TS . P(t)

An easy link can be established w.r.t. mathematical induction by taking a unique
sort, a constant 0 and a unary operation succ (i.e., S = S0 [S1 with S0 = {0} and
S1 = {succ}). Then, the structural induction rule would become:

P(0) 8t. (P(t) ) P(succ(t)))

8t. P(t)

Example 4.10. Let us consider the grammar of IMP arithmetic expressions:

a ::= n | x | a0 +a1 | a0 �a1 | a0 ⇥a1

How do we exploit structural induction to prove that a property P(·) holds for
all arithmetic expressions a? (Namely, we want to prove that 8a 2 Aexp. P(a).) The
structural induction rule is:

8n. P(n) 8x. P(x) 8a0,a1. (P(a0)^P(a1) ) P(a0 +a1))
8a0,a1. (P(a0)^P(a1) ) P(a0 �a1)) 8a0,a1. (P(a0)^P(a1) ) P(a0 ⇥a1))

8a. P(a)

Essentially, to prove that 8a 2 Aexp. P(a), we just need to show that the property
holds for any production, i.e., we need to prove that all of the following hold:

• P(n) holds for any integer n;
• P(x) holds for any identifier x;
• P(a0 +a1) holds whenever both P(a0) and P(a1) hold;
• P(a0 �a1) holds whenever both P(a0) and P(a1) hold;
• P(a0 ⇥a1) holds whenever both P(a0) and P(a1) hold.

Example 4.11 (Termination of arithmetic expressions). Let us consider the case of
arithmetic expressions seen above and prove that the evaluation of expressions always
terminates (a property that is also called normalisation):1

8a 2 Aexp,8s 2 S ,9m 2 N. ha,si ! m

1 We recall that the (overloaded) symbol S stands here for the set of memories and not for a generic
signature.



DRAFT

4.1 Noether Principle of Well-founded Induction 85

In this case we let

P(a)
def
= 8s 2 S ,9m 2 N. ha,si ! m.

We prove that 8a 2 Aexp. P(a) by structural induction. This amounts to prove that

• P(n)
def
= 8s 2 S ,9m 2N. hn,si ! m holds for any integer n. Trivially, by applying

rule (num) we take m = n and we are done.
• P(x) def

= 8s 2 S ,9m 2 N. hx,si ! m holds for any location x. Trivially, by apply-
ing rule (ide) we take m = s(x) and we are done.

• P(a0)^P(a1) ) P(a0 +a1) for any arithmetic expressions a0 and a1. We assume

P(a0)
def
= 8s 2 S ,9m0 2 N. ha0,si ! m0

P(a1)
def
= 8s 2 S ,9m1 2 N. ha1,si ! m1.

We want to prove that

P(a0 +a1)
def
= 8s 2 S ,9m 2 N. ha0 +a1,si ! m.

Take a generic s 2 S . We want to find m 2 N such that ha0 + a1,si ! m. By
applying rule (sum) we can take m = m0 +m1 if we prove that ha0,si ! m0 and
ha1,si ! m1. But by inductive hypothesis we know that such m0 and m1 exist
and we are done.

• P(a0)^P(a1) ) P(a0 �a1) for any arithmetic expressions a0 and a1. The proof
is analogous to the previous case and thus omitted.

• P(a0)^P(a1) ) P(a0 ⇥a1) for any arithmetic expressions a0 and a1. The proof
is analogous to the previous case and thus omitted.

Example 4.12 (Determinism of arithmetic expressions). Let us consider again the
case of IMP arithmetic expressions and prove that their evaluation is deterministic:

8a 2 Aexp,8s 2 S ,8m,m0 2 N. (ha,si ! m^ha,si ! m0) ) m = m0

In other words, we want to show that given any arithmetic expression a and any
memory s the evaluation of a in s will always return exactly one value. We let

P(a)
def
= 8s 2 S ,8m,m0 2 N. (ha,si ! m^ha,si ! m0) ) m = m0

We proceed by structural induction.

a = n) We want to prove that

P(n)
def
= 8s ,m,m0. (hn,si ! m^hn,si ! m0) ) m = m0

holds. Let us take generic s ,m,m0. We assume the premises hn,si !
m and hn,si ! m0 and prove that m = m0. In fact, there is only one



DRAFT

86 4 Induction and Recursion

rule that can be used to evaluate an integer number, and it always
returns the same value. Therefore m = n = m0.

a = x) We want to prove that

P(x) def
= 8s ,m,m0. (hx,si ! m^hx,si ! m0) ) m = m0

holds. We assume the premises hx,si ! m and hx,si ! m0 and
prove that m = m0. Again, there is only one rule that can be applied,
whose outcome depends on s . Since s is the same in both cases,
m = s(x) = m0.

a = a0 +a1) We assume the inductive hypotheses

P(a0)
def
= 8s ,m0,m0

0. (ha0,si ! m0 ^ha0,si ! m0
0) ) m0 = m0

0

P(a1)
def
= 8s ,m1,m0

1. (ha1,si ! m1 ^ha1,si ! m0
1) ) m1 = m0

1

and we want to prove that P(a0 +a1), i.e., that:

8s ,m,m0. (ha0 +a1,si ! m^ha0 +a1,si ! m0) ) m = m0

We assume the premises ha0 + a1,si ! m and ha0 + a1,si ! m0

and prove that m = m0. By the first premise, it must be m = m0 +m1
for some m0,m1 such that ha0,si ! m0 and ha1,si ! m1, because
there is only one rule applicable to a0 + a1; analogously, by the
second premise, we must have m0 = m0

0 +m0
1 for some m0

0,m
0
1 such

that ha0,si ! m0
0 and ha1,si ! m1. By inductive hypothesis P(a0)

we know that m0 = m0
0 and by P(a1) we have m1 = m0

1. Thus, m =
m0 +m1 = m0

0 +m0
1 = m0 and thus P(a0 +a1) holds.

The remaining cases for a = a0 �a1 and a = a0 ⇥a1 follow exactly the same pattern
as that of a = a0 +a1.

4.1.6 Induction on Derivations

We can define an induction principle over the set of derivations of a logical system.
See Definitions 2.1 and 2.4 for the notion of inference rule and of derivation.

Definition 4.14 (Immediate sub-derivation). We say that d0 is an immediate sub-
derivation of d, or simply a sub derivation of d, written d0 � d, if and only if d has
the form ({d1, ...,dn} / y) with d1 �R x1, ...,dn �R xn and ({x1, ...,xn} / y) 2 R (i.e.,
d �R y) and d0 = di for some 1  i  n.

Example 4.13 (Immediate sub-derivation). Let us consider the derivation



DRAFT

4.1 Noether Principle of Well-founded Induction 87

num
h1,si ! 1

num
h2,si ! 2

sum
h1+2,si ! 1+2 = 3

the two derivations

num
h1,si ! 1

num
h2,si ! 2

are immediate sub-derivations of the derivation that exploits rule (sum).

We can derive the notion of proper sub-derivations out of immediate ones.

Definition 4.15 (Proper sub-derivation). We say that d0 is a proper sub-derivation
of d if and only if d0 �+ d.

Note that both � and �+ are well-founded, so they can be used in proofs by
induction.

For example, the induction principle based on immediate sub-derivation can be
phrased as follows.

Definition 4.16 (Induction on derivations). Let R be a set of inference rules and D
the set of derivations defined on R, then:

8{x1, . . . ,xn}/y 2 R. (8di �R xi. P(d1)^ . . .^P(dn)) ) P({d1, . . . ,dn}/y)

8d 2 D. P(d)
(4.8)

(Note that d1, . . . ,dn are derivation for x1, . . . ,xn).

4.1.7 Rule Induction

The last kind of induction principle we shall consider applies to sets of elements
that are defined by means of inference rules: we have a set of inference rules that
establish which elements belong to the set (i.e. the theorems of the logical system)
and we need to prove that the application of any such rule will not compromise the
validity of a given predicate.

Remind tha a rule has the form (?/y) if it is an axiom, or ({x1, . . . ,xn}/y) other-
wise. Given a set R of such rules, the set of theorems of R is defined as

IR = {y | �R y}

The rule induction principle states that to show that the property P holds for all
elements of IR, we can prove that:

• P(y) holds for any axiom ?/y 2 R;
• for any other rule {x1, . . . ,xn}/y 2 R we have (81  i  n.xi 2 IR ^P(xi)) ) P(y).



DRAFT

88 4 Induction and Recursion

Definition 4.17 (Rule induction). Let R be a logical system. The principle of rule
induction is:

8(X/y) 2 R. (X ✓ IR ^ 8x 2 X . P(x)) ) P(y)

8x 2 IR.P(x)
(4.9)

Note that in many cases we will use the simpler but less powerful rule

8(X/y) 2 R. (8x 2 X ·P(x)) ) P(y)

8x 2 IR.P(x)
(4.10)

In fact, if the latter applies, also the former does, since the implication in the
premise must be proved in fewer cases: only for rules X/y such that all the formulas
in X are theorems. However, usually it is difficult to take advantage of the restriction.

Example 4.14 (Determinism of IMP commands). We have seen in Example 4.12
that structural induction can be conveniently used to prove that the evaluation of
arithmetic expressions is deterministic. Formally, we were proving the predicate P(·)
over arithmetic expressions defined as

P(a)
def
= 8s .8m,m0. ha,si ! m^ha,si ! m0 ) m = m0

While the case of boolean expressions is completely analogous, for commands
we cannot use the same proof strategy, because structural induction cannot deal with
the rule (whtt). In this example, we show that rule induction provides a convenient
strategy to solve the problem.

Let us consider the following predicate over theorems, i.e., statements of the form
hc,si ! s 0:

Q(hc,si ! s 0)
def
= 8s1 2 S . hc,si ! s1 ) s 0 = s1

We proceed by rule induction:

rule skip): we want to show that

Q(hskip,si ! s)
def
= 8s1. hskip,si ! s1 ) s1 = s

which is obvious because there is only one rule applicable to skip:

hskip,si ! s1 -s1=s ⇤

rule assign): assuming
ha,si ! m

we want to show that

Q(hx := a,si ! s [m/x])
def
= 8s1. hx := a,si ! s1 ) s1 = s [m/x]



DRAFT

4.1 Noether Principle of Well-founded Induction 89

Let us take a generic memory s1 and assume the premise hx :=
a,si ! s1 of the implication holds. We proceed goal oriented. We
have:

hx := a,si ! s1 -s1=s [m0/x]
ha,si ! m0

But we know that the evaluation of arithmetic expressions is deter-
ministic and therefore m0 = m and s1 = s [m/x].

rule seq): assuming

Q(hc0,si ! s 00)
def
= 8s 00

1 . hc0,si ! s 00
1 ) s 00 = s 00

1

Q(hc1,s 00i ! s 0)
def
= 8s1. hc1,s 00i ! s1 ) s 0 = s1

we want to show that

Q(hc0;c1,si ! s 0)
def
= 8s1. hc0;c1,si ! s1 ) s1 = s 0

We assume the premise hc0;c1,si ! s1 and prove that s1 = s 0. We
have:

hc0;c1,si ! s1 - hc0,si ! s 00
1 , hc1,s 00

1 i ! s1

But now we can apply the first inductive hypotheses:

Q(hc0,si ! s 00)
def
= 8s 00

1 . hc0,si ! s 00
1 ) s 00

1 = s 00

to conclude that s 00
1 = s 00, which together with the second inductive

hypothesis

Q(hc1,s 00i ! s 0)
def
= 8s1. hc1,s 00i ! s1 ) s1 = s 0

allow us to conclude that s1 = s 0.
rule iftt): assuming

hb,si ! true

Q(hc0,si ! s 0)
def
= 8s1. hc0,si ! s1 ) s1 = s 0

we want to show that

Q(hif b then c0 else c1,si ! s 0)
def
=

8s1. hif b then c0 else c1,si ! s1 ) s1 = s 0

Since hb,si ! true and the evaluation of boolean expressions is
deterministic, we have:

hif b then c0 else c1,si ! s1 - hc0,si ! s1



DRAFT

90 4 Induction and Recursion

But then, exploiting the inductive hypothesis

Q(hc0,si ! s 0)
def
= 8s1. hc0,si ! s1 ) s1 = s 0

we can conclude that s1 = s 0.
rule ifff): omitted (it is analogous to the previous case).
rule whff): assuming

hb,si ! false

we want to show that

Q(hwhile b do c,si ! s)
def
= 8s1. hwhile b do c,si ! s1 ) s1 = s

Since hb,si ! false and the evaluation of boolean expressions is
deterministic, we have:

hwhile b do c,si ! s1 -s1=s ⇤

rule whtt): assuming

hb,si ! true

Q(hc,si ! s 00)
def
= 8s 00

1 . hc,si ! s 00
1 ) s 00

1 = s 00

Q(hwhile b do c,s 00i ! s 0)
def
= 8s1. hwhile b do c,s 00i ! s1 ) s1 = s 0

we want to show that

Q(hwhile b do c,si ! s 0)
def
= 8s1. hwhile b do c,si ! s1 ) s1 = s 0

Since hb,si ! true and the evaluation of boolean expressions is
deterministic, we have:

hwhile b do c,si ! s1 - hc,si ! s 00
1 , hwhile b do c,s 00

1 i ! s1

But now we can apply the first inductive hypotheses:

Q(hc,si ! s 00)
def
= 8s 00

1 . hc,si ! s 00
1 ) s 00

1 = s 00

to conclude that s 00
1 = s 00, which together with the second inductive

hypothesis

Q(hwhile b do c,s 00i ! s 0)
def
= 8s1. hwhile b do c,s 00i ! s1 ) s1 = s 0

allow us to conclude that s1 = s 0.



DRAFT

4.2 Well-founded Recursion 91

4.2 Well-founded Recursion

We conclude this chapter by presenting the concept of well-founded recursion. A
recursive definition of a function f is well-founded when the recursive calls to f take
as arguments values that are smaller w.r.t. the ones taken by the defined function
(according to a suitable well-founded relation). A special class of functions defined
on natural numbers according to the principle of well-founded recursion is that of
primitive recursive functions.

Definition 4.18 (Primitive recursive functions). The primitive recursive functions
are those (n-ary) functions over natural numbers obtained according to (any finite
application of) the following rules:

zero: The constant 0 is primitive recursive.
succ.: The successor function s : N ! N with s(n) = n+1 is primitive recursive.
proj.: For any i,k 2 N,1  i  n, the projection functions pk

i : Nk ! N with

pk
i (n1, ...,nk) = ni

are primitive recursive.
comp.: Given a k-ary primitive recursive function f : Nk ! N, and k primitive

recursive functions g1, ...,gk : Nm ! N of arity m, the m-ary function
h obtained by composing f with g1, ...,gk as shown below is primitive
recursive:

h(n1, ...,nm)
def
= f (g1(n1, ...,nm), ...,gk(n1, ...,nm))

pr.rec.: Given a k-ary primitive recursive function f : Nk ! N and a (k + 2)-ary
primitive recursive function g : Nk+2 ! N, the (k + 1)-ary function h :
Nk+1 ! N defined as the primitive recursion of f and g below is primitive
recursive:

h(0,n1, ...,nk) = f (x1, ...,xk)

h(s(n),n1, ...,nk) = g(n,h(n,n1, . . . ,nk),n1, . . . ,nk)

Note that p1
1 : N ! N is the usual identity function. It can be proved that every

primitive recursive function is total and computable.

Example 4.15. Addition can be recursively defined with the rules:

add(0,m)
def
= m

add(n+1,m)
def
= add(n,m)+1.

This does not fit immediately into the above scheme of primitive recursive func-
tions, but we can rephrase the definition as:



DRAFT

92 4 Induction and Recursion

add(0,n1)
def
= p1

1 (n1)

add(s(n),n1)
def
= s(p3

2 (n,add(n,n1),n1))

In the primitive recursive style, add plays the role of h, the identity function p1
1 plays

the role of f and the composition of s with p3
2 plays the role of g (so that it receives

the unnecessary arguments n and n1).

Let us make the well-founded recursion more precise.

Definition 4.19 (Set of predecessors). Given a well founded relation � ✓ A ⇥ A,
the set of predecessors of a set I ✓ A is the set

��1 I = {b 2 A |9a 2 I. b � a}

We recall that for I ✓ A and f : A ! B, we denote by f � I the restriction of f to
values in I, i.e., f � I : I ! B and ( f � I)(a) = f (a) for any a 2 I.

Theorem 4.6 (Well-founded recursion). Let � ✓ A⇥A be a well-founded relation
over A. Let us consider a function F with F(a,h) 2 B, where

• a 2 A
• h :<�1 {a} ! B (i.e., h is a function that has the set of predecessors of a as a

domain and B as a codomain)

Then, there exists one and only one function f : A ! B which satisfies the equation

8a 2 A. f (a) = F(a, f ���1 {a})

Proof. The proof is divided in two parts: 1) we first demonstrate that if such a
function f exists, then it is unique; and 2) we prove its existence.

1. The unicity property follows if we can prove the predicate 8a. P(a), where

P(x) def
= ( 8y �⇤ x. ( f (y) = F(y, f ���1 {y}) ^ g(y) = F(y,g ���1 {y}) ) )

) f (x) = g(x)

In fact, suppose there are two functions f ,g : A ! B such that:

8a 2 A. f (a) = F(a, f ���1 {a})

8a 2 A. g(a) = F(a,g ���1 {a})

Clearly, for any a 2 A the premise

( 8y �⇤ a. ( f (y) = F(y, f ���1 {y}) ^ g(y) = F(y,g ���1 {y}) ) )

is true and thus we can conclude f (a) = g(a).
The proof that 8a. P(a) goes by well-founded induction on �. For a 2 A, we
assume that 8b � a. P(b) and we want to prove P(a). Suppose that



DRAFT

4.2 Well-founded Recursion 93

( 8y �⇤ a. ( f (y) = F(y, f ���1 {y}) ^ g(y) = F(y,g ���1 {y}) ) )

We need to prove that f (a) = g(a). For b � a we must have f (b) = g(b), because
P(b) holds by inductive hypothesis. Thus

f ���1 {a} = g ���1 {a}

and therefore

f (a) = F(y, f ���1 {a}) = F(y,g ���1 {a}) = g(a)

2. For the existence, we build a family of functions

{ fa : �⇤�1 {a} ! B}a2A

and then take f def
=

S
a2A fa. The existence of the functions fa is guaranteed by

proving that the following property holds for all x 2 A:

Q(x) def
= 9 fx : �⇤�1 {x} ! B. 8y �⇤ x. fx(y) = F(y, fx ���1 {y})

The proof goes by well-founded recursion. We assume 8b � a. Q(b) and prove
that Q(a) holds. Let b � a and fb : �⇤�1 {b} ! B be the function such that

8y �⇤ b. fb(y) = F(y, fb ���1 {y}).

We build a relation h defined by

h def
=

[

b�a
fb

Now for any b � a there is at least one pair of the form (b,c) 2 h, because b �⇤ b.
By the uniqueness property proved before, we have that such a pair is unique.
Hence h satisfies the function property. Finally, we let

fa
def
= h[{(a,F(a,h)}

to get a function fa : �⇤�1 {a} ! B such that

8y �⇤ a. fa(y) = F(y, fa ���1 {y})

proving that Q(a) holds. ut

Theorem 4.6 guarantees that, if we (recursively) define f over any a 2 A only in
terms of the predecessors of a, then f is uniquely determined on all a. Notice that F
has a dependent type, since the type of its second argument depends on the value of
its first argument.



DRAFT

94 4 Induction and Recursion

In the following chapters we will exploit fixpoint theory to define the semantics of
recursively defined functions. Well-founded recursion gives a simpler method, which
however works only in the well-founded case.

Example 4.16 (Product as primitive recursion). Let us consider the Peano formula
that defines the product of natural numbers

p(0,y) def
= 0

p(x+1,y) def
= y+ p(x,y)

Let us write the definition in a slightly different way

py(0)
def
= 0

py(x+1)
def
= y+ py(x)

Let us recast the Peano formula seen above to the formal scheme of well-founded
recursion.

py(0)
def
= Fy(0, py �?) = 0

py(x+1)
def
= Fy(x+1, py ���1 {x+1}) = y+ py(x)

Example 4.17 (Structural recursion). Let us consider the signature S for binary trees
A = TS , where S0 = {0,1, ...} and S2 = cons (where cons(x,y) is the constructor
for building a tree out of its left and right subtree). Take the well-founded relation
xi � cons(x1,x2), i = 1,2. Let B = N.

We want to compute the sum of the elements in the leaves of a binary tree. In
Lisp-like notation:

sum(x) def
= if atom(x) then x else sum(car(x))+ sum(cdr(x))

where atom(x) returns true if x is a leaf; car(x) denotes the left subtree of x; cdr(x)
the right subtree of x. The same function defined in the structural recursion style is

sum(n)
def
= n

sum(cons(x,y)) def
= sum(x)+ sum(y)

or, according to the well-founded recursive scheme,

F(n,sum �?)
def
= n

F(cons(x,y),sum � {x,y})
def
= sum(x)+ sum(y)



DRAFT

4.2 Well-founded Recursion 95

For example, for q def
= cons(3,cons(cons(2,3),4)) we have:

sum(q) = sum(3)+ sum(cons(cons(2,3),4))

= 3+(sum(cons(2,3))+ sum(4))

= 3+((sum(2)+ sum(3))+4)

= 3+(2+3)+4)

= 12

Example 4.18 (Ackermann function). The Ackermann function is one of the earliest
examples of a computable, total recursive function that is not primitive recursive: it
grows faster than any such function. The Ackermann function ack(z,x,y) = acky(z,x)
is defined by well-founded recursion (exploiting the lexicographic order over pair of
natural numbers) by letting

8
>>>><

>>>>:

ack( 0 , 0 , y ) = y
ack( 0 , x+1 , y ) = ack(0,x,y)+1
ack( 1 , 0 , y ) = 0
ack( z+2 , 0 , y ) = 1
ack( z+1 , x+1 , y ) = ack(z,ack(z+1,x,y),y)

We have
⇢

ack(0,0,y) = y
ack(0,x+1,y) = ack(0,x,y)+1 ) ack(0,x,y) = y+ x

⇢
ack(1,0,y) = 0

ack(1,x+1,y) = ack(0,ack(1,x,y),y) = ack(1,x,y)+ y ) ack(1,x,y) = y⇥x

Intuitively, ack(1,x,y) applies addition of y for x times.

⇢
ack(2,0,y) = 1

ack(2,x+1,y) = ack(1,ack(2,x,y),y) = ack(2,x,y)⇥ y ) ack(2,x,y) = yx

In other words, ack(2,x,y) applies multiplication for y for x times. Likewise,
ack(3,x,y) applies exponentiation to the yth power for x times, and so on.

For example, we have:

ack(0,0,0) = 0+0 = 0
ack(1,1,1) = 1⇥1 = 1
ack(2,2,2) = 22 = 4

ack(3,3,3) = 333
= 327 ' 7.6⇥1012



DRAFT

96 4 Induction and Recursion

Problems

4.1. Consider the logical system R corresponding to the rules of the grammar:

S ::= aB | bA A ::= a | aS | bAA B ::= b | bS | aBB

where the well formed formulas are of the form x 2 LX , where X is either S or A or B
and where x is a string on the alphabet {a,b}.

1. Write down explicitly the rules in R.
2. Prove by rule induction—in one direction—and by mathematical induction on

the length of the strings—in the other direction—that the strings generated by
S are all the nonempty strings with the same number of a’s and b’s (i.e., prove
the formal predicate P(x 2 LS)

def
= x|a = x|b 6= 0, where x|s denotes the number of

occurrences of the symbol s in the string x), while A generates all the strings with
an additional a (formally P(x 2 LA)

def
= x|a = 1+ x|b) and B with an additional b.

3. Finally prove by induction on derivations that

P(d/(x 2 LX ))
def
= |d|  |x|

i.e., the depth of any derivation d is smaller or equal that the length of the string x
generated by it.

4.2. Define by well-founded recursion the function

locs : Com �!√(Loc)

that, given a command, returns the set of locations that appear on the left-hand side
of some assignment.

Then, prove that 8c 2 Com, 8s ,s 0 2 S

hc,si ! s 0 implies 8x 62 locs(c).s(x) = s 0(x).

4.3. Let w denote the IMP command

w def
= while x 6= 0 do (x := x�1 ; y := y+1).

Prove by rule induction that 8s ,s 0 2 S

hw,si ! s 0 implies s(x) � 0 ^ s 0 = s
h

s(x)+s(y)/y,
0/x

i
.

4.4. Let R be a binary relation over the set A, i.e., R ✓ A ⇥ A. Let R+, called the
transitive closure of R, be the relation defined by the following two rules:

xRy
xR+ y

xR+ y yR+ z
xR+ z



DRAFT

4.2 Well-founded Recursion 97

1. Prove that for any x and y

xR+ y , 9k > 0. 9z0, . . . ,zk. x = z0 ^ z0 Rz1 ^ . . .^ zk�1 Rzk ^ zk = y

(Hint: Prove the implication ) by rule induction and the implication ( by
induction on the length k of the R-chain).

2. Give the rules that define instead a relation R0 such that

xR0 y , 9k � 0. 9z0, . . . ,zk. x = z0 ^ z0 Rz1 ^ . . .^ zk�1 Rzk ^ zk = y.

4.5. Let IMP� the language obtained from IMP by removing the while construct.
Exploit the operational semantics to prove that in IMP�, for every command c it
holds the termination property

8s 2 S . 9s 0 2 S . hc,si ! s 0

4.6. Let us consider the following rules, where m, n and k are natural numbers.

(m,m) ! m
(n,m) ! k
(m,n) ! k

m < n
(m�n,n) ! k

(m,n) ! k
m > n

Prove by rule induction that, for any n,m,k 2 N,

(m,n) ! k implies k = gcd(m,n).

Note: gcd(m,n) denotes the greatest common divisor of m and n, i.e., if we write
d| j to mean that d divides j (in other words, that there exists h such that j = d ⇥h),
then gcd(n,m) is the natural number d such that d|m^d|n and for any d0 such that
d0|m^d0|n we have d0  d.

4.7. Prove that, according to the operational semantics of IMP, for any boolean
expression b, command c and stores s , s 0

hwhile b do c,si ! s 0 implies hb,s 0i ! false

Explain which induction principle you exploit in the proof.

4.8. Exploit the property from Problem 4.7 to prove that for any b 2 Bexp and
c 2 Com we have c1 ⇠ c2 ⇠ c3 where:

c1
def
= while b do c

c2
def
= while b do (c ;while b do c)

c3
def
= (while b do c) ; while b do c

4.9. Define by well-founded recursion the function



DRAFT

98 4 Induction and Recursion

locs : Aexp �!√(Loc)

that, given an arithmetic expression a, returns the set of locations that occur in a. Use
structural induction to show that 8a 2 Aexp,8s ,s 0 2 S ,8n,m 2 Z

ha,si ! n ^ ha,s 0i ! m ^ 8x 2 locs(a). s(x) = s 0(x) implies n = m

4.10. Consider the IMP program

w def
= while ¬(x = y) do (x := x+1 ; y := y�1)

Define the set of stores T = {s | ...} for which the program w terminates and:

1. Prove formally that for any store s 2 T there exists s 0 such that hw,si ! s 0.
(Hint: use well-founded induction on T )

2. Prove (by using the rule for divergence) that 8s 62 T. hw,si 6! .

4.11. Let us consider the IMP command

w def
= while x 6= 0 do x := x� y.

1. Prove that, for any s ,s 0, if hw,si ! s 0 then there exists an integer k such that
s(x) = k ⇥s(y).

2. Give a store s such that s(x) = k⇥s(y) for some integer k but such that hw,si 6!.
Explain why the program diverges for the given s .

3. Define a command c such that, for any s ,s 0, hc,si ! s 0 iff s(x) = k ⇥s(y) for
some integer k. Sketch the proof of the double implication.

4.12. Recall that the height or depth of a derivation d is recursively defined as follows:

depth(?/y) def
= 1

depth({d1, ...,dn}/y) def
= 1+max{depth(d1), ...,depth(dn)}

Given the IMP command

w def
= while x > 0 do x := x�1

prove by induction on n that for any s 2 S with s(x) = n � 0 the derivation of

hw,si ! s 0

has depth n+3.

4.13. The binomial coefficients
✓

n
k

◆
, with n,k 2 N and 0  k  n, are defined by:

✓
n
0

◆
def
= 1

✓
n
n

◆
def
= 1

✓
n+1
k +1

◆
def
=

✓
n
k

◆
+

✓
n

k +1

◆
.



DRAFT

4.2 Well-founded Recursion 99

Prove that the above definition is given by well-founded recursion, specifying the
well-founded relation and the corresponding function F(b,h).

4.14. Consider the well-known sequence of Fibonacci numbers, defined as:

F(0)
def
= 1 F(1)

def
= 1 F(n+2)

def
= F(n+1)+F(n).

where n 2 N. Explain why the above definition is given by well-founded recursion
and make explicit the well-founded relation to be used.


	Part I Preliminaries
	Introduction
	Structure and Meaning
	Syntax and Types
	Semantics
	Mathematical Models of Computation
	Operational Semantics
	Denotational Semantics
	Axiomatic Semantics

	A Taste of Semantics Methods: Numerical Expressions
	An Informal Semantics
	A Small-Step Operational Semantics
	A Big-Step Operational Semantics (or Natural Semantics)
	A Denotational Semantics
	Semantic Equivalence
	Expressions with Variables

	Applications of Semantics
	Language Design
	Implementation
	Analysis and Verification
	Synergy Between Different Semantics Approaches

	Content Overview
	Induction and Recursion
	Semantic Domains
	Bisimulation
	Temporal and Modal Logics
	Probabilistic Systems

	Chapters Contents and Reading Guide
	Further Reading
	References

	Preliminaries
	Notation
	Basic Notation
	Signatures and Terms
	Substitutions
	Unification Problem

	Inference Rules and Logical Systems
	Logic Programming
	Problems


	Part II IMP: a simple imperative language
	Operational Semantics of IMP
	Syntax of IMP
	Arithmetic Expressions
	Boolean Expressions
	Commands
	Abstract Syntax

	Operational Semantics of IMP
	Memory State
	Inference Rules
	Examples

	Abstract Semantics: Equivalence of Expressions and Commands
	Examples: Simple Equivalence Proofs
	Examples: Parametric Equivalence Proofs
	Examples: Inequality Proofs
	Examples: Diverging Computations

	Problems

	Induction and Recursion
	Noether Principle of Well-founded Induction
	Well-founded Relations
	Noether Induction
	Weak Mathematical Induction
	Strong Mathematical Induction
	Structural Induction
	Induction on Derivations
	Rule Induction

	Well-founded Recursion
	Problems

	Partial Orders and Fixpoints
	Orders and Continuous Functions
	Orders
	Hasse Diagrams
	Chains
	Complete Partial Orders

	Continuity and Fixpoints
	Monotone and Continuous Functions
	Fixpoints

	Immediate Consequence Operator
	The Operator R"0362R
	Fixpoint of  R"0362R 

	Problems

	Denotational Semantics of IMP
	-Notation
	-Notation: Main Ideas
	Alpha-Conversion, Beta-Rule and Capture-Avoiding Substitution

	Denotational Semantics of IMP
	Denotational Semantics of Arithmetic Expressions: The Function A
	Denotational Semantics of Boolean Expressions: The Function B
	Denotational Semantics of Commands: The Function C

	Equivalence Between Operational and Denotational Semantics
	Equivalence Proofs For Expressions
	Equivalence Proof for Commands

	Computational Induction
	Problems


	Part III HOFL: a higher-order functional language
	Operational Semantics of HOFL
	Syntax of HOFL
	Typed Terms
	Typability and Typechecking

	Operational Semantics of HOFL
	Problems

	Domain Theory
	The Flat Domain of Integer Numbers Z
	Cartesian Product of Two Domains
	Functional Domains
	Lifting
	Function's Continuity Theorems
	Useful Functions
	Problems

	HOFL Denotational Semantics
	HOFL Semantic Domains
	HOFL Evaluation Function
	Constants
	Variables
	Binary Operators
	Conditional
	Pairing
	Projections
	Lambda Abstraction
	Function Application
	Recursion

	Continuity of Meta-language's Functions
	Substitution Lemma
	Problems

	Equivalence between HOFL denotational and operational semantics
	Completeness
	Equivalence (on Convergence)
	Operational and Denotational Equivalences of Terms
	A Simpler Denotational Semantics
	Problems


	Part IV Concurrent Systems
	CCS, the Calculus for Communicating Systems
	Syntax of CCS
	Operational Semantics of CCS
	Action Prefix
	Restriction
	Relabelling
	Choice
	Parallel Composition
	Recursion
	CCS with Value Passing
	Recursive Declarations and the Recursion Operator

	Abstract Semantics of CCS
	Graph Isomorphism
	Trace Equivalence
	Bisimilarity

	Compositionality
	Bisimilarity is Preserved by Choice

	A Logical View to Bisimilarity: Hennessy-Milner Logic
	Axioms for Strong Bisimilarity
	Weak Semantics of CCS
	Weak Bisimilarity
	Weak Observational Congruence
	Dynamic Bisimilarity

	Problems

	Temporal Logic and -Calculus
	Temporal Logic
	Linear Temporal Logic
	Computation Tree Logic

	-Calculus
	Model Checking
	Problems

	 -Calculus
	Name Mobility
	Syntax of the -calculus
	Operational Semantics of the -calculus
	Action Prefix
	Choice
	Name Matching
	Parallel Composition
	Restriction
	Scope Extrusion
	Replication
	A Sample Derivation

	Structural Equivalence of -calculus
	Reduction semantics

	Abstract Semantics of the -calculus
	Strong Early Ground Bisimulations
	Strong Late Ground Bisimulations
	Strong Full Bisimilarities
	Weak Early and Late Ground Bisimulations

	Problems


	Part V Probabilistic Systems
	Measure Theory and Markov Chains
	Probabilistic and Stochastic Systems
	Measure Theory
	-field
	Constructing a -field
	Continuous Random Variables
	Stochastic Processes

	Markov Chains
	Discrete and Continuous Time Markov Chain
	DTMC as LTS
	DTMC Steady State Distribution
	CTMC as LTS
	Embedded DTMC of a CTMC
	CTMC Bisimilarity
	DTMC Bisimilarity

	Problems

	Markov Chains with Actions and Non-determinism
	Discrete Markov Chains With Actions
	Reactive DTMC
	DTMC With Non-determinism

	Problems

	PEPA - Performance Evaluation Process Algebra
	From Qualitative to Quantitative Analysis
	CSP
	Syntax of CSP
	Operational Semantics of CSP

	PEPA
	Syntax of PEPA
	Operational Semantics of PEPA

	Problems

	Glossary
	Solutions
	Index


