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This part focuses on models for sequential computations that are associated to IMP, a
simple imperative language. The syntax and natural semantics of IMP are studied
in Chapter 3, while its denotational semantics is presented in Chapter 6, where it is
also reconciled with the operational semantics. Chapter 4 explains several induction
principles exploited to prove properties of programs and semantics. Chapter 5 fixes
the mathematical basis of denotational semantics. The concepts in Chapters 4 and 5
are extensively used in Chapter 6 and in the rest of the monograph.
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Chapter 5
Partial Orders and Fixpoints

Good old Watson! You are the one fixed point in a changing age.
(Sherlock Holmes)

Abstract This chapter is devoted to the introduction of the foundations of the denota-
tional semantics of computer languages. The concepts of complete partial orders with
bottom and of monotone and continuous functions are introduced and then the main
fixpoint theorem is presented. The chapter is concluded by studying the immediate
consequence operator that is used to relate logical systems and fixpoint theory.

5.1 Orders and Continuous Functions

As we have seen, the operational semantics gives us a very concrete semantics, since
the inference rules describe step by step the bare essential operations on the state
required to reach the final state of computation. Unlike the operational semantics, the
denotational one provides a more abstract view. Indeed, the denotational semantics
gives us directly the meaning of the constructs of the language as particular functions
over domains. Domains are sets whose structure will ensure the correctness of the
constructions of the semantics.

As we will see, one of the most attractive features of the denotational semantics
is that it is compositional, namely, the meaning of a composite program is given
by combining the meanings of its constituents. The compositional property of de-
notational semantics is obtained by defining the semantics by structural recursion.
Obviously there are particular issues in defining the interpretation of the “while”
construct of IMP, since the semantics of this construct, as we saw in the previous
chapters, is inerently recursive. General recursion is forbidden in structural recursion,
which allows only the use of sub-terms. The solution to this problem is given by
solving equations of the type x = f (x), namely by finding the fixpoint(s) of suitable
functions f . On the one hand we would like to ensure that each recursive definition
that we introduce has a fixpoint. Therefore we will restrict our study to a particular
class of functions: continuous functions. On the other hand, the aim of the theory we
will develop, called domain theory, will be to identify one solution when more than
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one are available, and to provide an approximation method for computing it, which
is given by the fixpoint theorem (Theorem 5.6).

5.1.1 Orders

We introduce the general theory of partial orders which will bring us to the concept
of domain.

Definition 5.1 (Partial order). A partial order is a pair (P,vP) where P is a set and
vP ✓ P⇥P is a binary relation (i.e., it is a set of pairs of elements of P) which is:

reflexive: 8p 2 P. p vP p
antisymmetric: 8p,q 2 P. p vP q^q vP p =) p = q
transitive: 8p,q,r 2 P. p vP q^q vP r =) p vP r

We call (P,vP) a poset (for partially ordered set).

We will conveniently omit the subscript P from vP when no confusion can arise.
We write p @ q when p v q and p 6= q.

Example 5.1 (Powerset). Let (√(S),✓) be the powerset of a set S together with the
inclusion relation. It is easy to see that (√(S),✓) is a poset.

reflexive: 8s ✓ S. s ✓ s
antisymmetric: 8s1,s2 ✓ S. s1 ✓ s2 ^ s2 ✓ s1 ) s1 = s2
transitive: 8s1,s2,s3 ✓ S. s1 ✓ s2 ✓ s3 ) s1 ✓ s3

Actually, partial orders are a generalization of the concept of powerset ordered by
inclusion. Thus we should not be surprised by this result.

Remark 5.1 (Partial orders vs well-founded relations). Partial order relations should
not be confused with the well-founded relations studied in the previous chapter. In
fact:

• Any well-founded relation (on a non-empty set) is not reflexive (otherwise an
infinite descending chain could be constructed by iterating over the same element).

• Any well-founded relation is antisymmetric (the premise p v q^q v p must be
always false, otherwise an infinite descending chain could be constructed).

• A well-founded relation can be transitive, but it is not necessarily so (e.g., the
immediate precedence relation over natural numbers is well-founded but not
transitive, instead the ‘less than’ relation is well-founded and transitive).

• Any (non-empty) partial order has an infinite descending chain (take any element
p and the chain p w p w p . . .) and is thus non well-founded.

• If we take the relation @ induced by a partial order v, then it can be well-founded,
but it is not necessarily so (e.g., the strict inclusion relation over √(N) has an
infinite descending chain whose ith element is the set {n | n 2 N^n � i}).
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• If we take the reflexive and transitive closure �⇤ of a well-founded relation �, then
it is a partial order (reflexivity and transitivity are obvious, for the antisymmetric
property, suppose that there are two elements p 6= q such that p �⇤ q ^ q �⇤ p
then there would be a cycle over p using �, contradicting the assumption that �
is well-founded).

Two elements p,q 2 P are called comparable if p v q or q v p. When any two
elements of a partial order are comparable, then it is called a total order.

Definition 5.2 (Total order). Let (P,v) be a partial order such that:

8p,q 2 P. p v q _ q v p

we call (P,v) a total order.

Example 5.2. Given a set S, its powerset (√(S),✓) ordered by inclusion is a total
order if and only if |S|  1. In fact, in one direction suppose that (√(S),✓) is a total
order and take p,q 2 S; clearly {p} ✓ {q}_{q} ✓ {p} holds only when p = q, i.e.,
S must have at most one element. Vice versa, if S =? then √(S) = {?} and ?✓?;
if S = {p} for some p, then √(S) = {?,{p}} and ? ✓ ? ✓ {p} ✓ {p}.

Theorem 5.1 (Subsets of an order). Let (P,vP) be a partial order and let Q ✓ P.
Then (Q,vQ) is a partial order, with vQ

def
= vP \(Q⇥Q). Similarly, if (P,vP) is a

total order then (Q,vQ) is a total order.

The proof is left as an easy exercise to the reader (see Problem 5.1).
Let us see some examples that will be very useful to understand the concepts of

partial and total orders.

Example 5.3 (Natural Numbers). Let (N,) be the set of natural numbers with the
usual order; (N,) is a total order.

reflexive: 8n 2 N. n  n
antisymmetric: 8n,m 2 N. n  m^m  n =) m = n
transitive: 8n,m,z 2 N. n  m^m  z =) n  z
total: 8n,m 2 N. n  m_m  n

Example 5.4 (Discrete order). Let (P,v) be a partial order defined as follows:

8p 2 P. p v p

Obviously (P,v) is a partial order. We call (P,v) a discrete order.

Example 5.5 (Flat order). A flat order is a partial order (P,v) for which there exists
an element ? 2 P such that

8p,q 2 P. p v q , p = ?_ p = q

The element ? is called bottom and it is unique. In fact, suppose that two such ele-
ments ?1,?2 exist. Then, we have ?1 v ?2 and also ?2 v ?1; thus by antisymmetry
we have ?1 = ?2.
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5.1.2 Hasse Diagrams

The aim of this section is to provide a tool that allows us to represent orders in a
comfortable way.

First of all we could think to use graphs to represent an order. In this framework
each element of the order is represented by a node of the graph and the order relation
by the arrows (i.e., we would have an arrow from a to b if and only if a v b).

This notation is not very manageable, indeed we repeat many times redundant
information. For example in the usual natural numbers order we would have n+1
incoming arrows and infinite outgoing arrows, for a node labelled by n. We need a
more compact notation, which leaves implicit some information that can be inferred
by exploiting the property of partial orders. This notation is represented by the Hasse
diagrams. The idea is to omit: 1) every reflexive arc (from a node to itself), because
we know by reflexivity that such an arc is present for every node; and 2) every arc
from a to c when there is a node b with an arc from a to b and one from b to c,
because the presence of the arc from a to c can be inferred by transitivity.

Definition 5.3 (Hasse Diagram). Given a poset (A,v), let R be the binary relation
defined by:

x v y y v z x 6= y 6= z

xRz

?
xRx

We call Hasse diagram the relation H defined as:

H def
= v \R

Note that the first rule can be written more concisely as

x @ y y @ z

xRz

The Hasse diagram omits the information deducible by transitivity and reflexivity.
A simple example of Hasse diagram is in Figure 5.1.

To ensure that all the needed information is contained in the Hasse diagram we
rely on the following theorem.

Theorem 5.2 (Order relation, Hasse diagram Equivalence). Let (P,v) a partial
order with P a finite set, and let H be its Hasse diagram. Then, the transitive and
reflexive closure H⇤ of H is equal to v.

Proof. Formally, we want to prove the two inclusions H⇤ ✓ v and v ✓ H⇤

separately, where the relation H⇤ is defined by the inference rules below:

xH⇤ x
xH y
xH⇤ y

xH⇤ y^ yH⇤ z
xH⇤ z

H⇤ ✓ v: Suppose x H⇤ y. Then, there exists (see Problem 4.4) k 2N and z0, . . . ,zk
such that
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{a,b,c}
$$

{a,b}
$$

::

{a,c}
zz

OO

{b,c}
zz

dd

{a}
$$

OO ::

CC

{b} ll

dd ::

WW

{c}
zz

dd OO

[[

? qq

dd OO 55

[[ HH CC

FF

(a) √({a,b,c}) ordered by inclusion

{a,b,c}

{a,b}

::

{a,c}

OO

{b,c}

dd

{a}

OO ::

{b}

dd ::

{c}

dd OO

?

dd OO ::

(b) Hasse diagram for √({a,b,c})

Fig. 5.1: Hasse diagram for the powerset over {a,b,c} ordered by inclusion

x = z0 ^ z0 H z1 ^ . . .^ zk�1 H zk ^ zk = y

Since H ✓ v by definition, we have

x = z0 ^ z0 v z1 ^ . . .^ zk�1 v zk ^ zk = y

Hence, by transitivity of v it follows that x v y.
v ✓ H⇤: Given x v y, let us denote by ]x,y[ the set of elements strictly contained

between x and y, i.e.,

]x,y[ def
= {z | x @ z ^ z @ y}.

Clearly ]x,y[ is finite because P is finite. We prove that xH⇤ y by mathe-
matical induction on the number of elements in ]x,y[.

Base case: When ]x,y[ is empty, it means that (x,y) 62 R. Hence
xH y and thus xH⇤ y.

Inductive case: Suppose ]x,y[ has n + 1 elements. Take z 2]x,y[.
Clearly the sizes of ]x,z[ and ]z,y[ are strictly smaller
than that of ]x,y[, and since x @ z and z @ y, by induc-
tive hypothesis it follows that xH⇤ z and zH⇤ y. Hence
xH⇤ y. ut

The above theorem only allows to represent finite orders.

Example 5.6 (Infinite order). Let us see that the Hasse diagrams does not work well
with infinite orders. Let (N[{•},) be the usual order on natural numbers extended
with a top element • such that n  • and •  •. From Definition 5.3 it follows that
for any n 2 N we have nR• (because n < n + 1 < •) and that for any n,k 2 N it
holds nRn+2+ k (because n < n+1 < n+2+ k). Moreover, for any x 2 N[{•}
we have xRx. In particular, the Hasse diagram eliminates all the arcs between each
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OO

(b) H induced by (N[{•},)
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200

OO

100

OO

TT

0
""

OO

UU

VV

(c) H⇤ induced by (N[{•},)

Fig. 5.2: Infinite orders and Hasse diagrams

natural number and •. Now using the transitive and reflexive closure we would like
to get back the original order. Using the inference rules we obtain the usual order on
natural numbers without any relation between • and the natural numbers (recall that
we only allow finite proofs). The situation is illustrated in Figure 5.2

Definition 5.4 (Least element). Let (P,vP) be a partial order and take Q ✓ P. An
element ` 2 Q is a least element of (Q,vQ) if:

8q 2 Q. ` vQ q

Example 5.7 (No least element). Let us consider the order associated with the Hasse
diagram:

d e

a

@@

b

^^ @@

c

^^

The sets {a,b,d} and {a,b,c,d,e} have no least element. As we will see the elements
a,b and c are minimal since they have no smaller elements in the order.

Theorem 5.3 (Uniqueness of the least element). Let (P,v) be a partial order. P
has at most one least element.

Proof. Let `1,`2 2 P be both least elements of P, then `1 v `2 and `2 v `1. Now by
using the antisymmetric property we get `1 = `2. ut

The counterpart of the least element is the concept of greatest element. We can
define the greatest element as the least element of the reverse order v�1 (defined by
letting x v�1 y , y v x).
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Definition 5.5 (Minimal element). Let (P,vP) be a partial order and take Q ✓ P.
An element m 2 Q is a minimal element of (Q,vQ) if:

8q 2 Q. q vQ m ) q = m

As for the least element we have the dual of minimal elements, called maximal
elements: They are the minimal elements of the reverse order v�1.

Remark 5.2 (Least vs minimal elements). Note that the definition of minimal and
least element (maximal and greatest) are quite different.

• The least element ` is the (unique) smallest element of a set.
• A minimal element m is just such that no smaller element can be found in the

set, i.e., 8q 2 Q.q 6@ m (but there is no guarantee that all the elements q 2 Q are
comparable with m).

• The least element of an order is obviously minimal, but a minimal element is not
necessarily the least.

Definition 5.6 (Upper bound). Let (P,v) be a partial order and Q ✓ P be a subset
of P, then u 2 P is an upper bound of Q if:

8q 2 Q. q v u

Note that unlike a maximal element and the greatest element an upper bound does
not necessarily belong to the subset Q of elements we are considering.

Definition 5.7 (Least upper bound). Let (P,v) be a partial order and Q ✓ P be a
subset of P. Then, p 2 P is the least upper bound of Q if and only if p is the least
element of the upper bounds of P. Formally, we require that:

1. p is an upper bound of Q (8q 2 Q. q v p);
2. for any upper bound u of Q, then p v u (8u 2 P. (8q 2 Q. q v u) ) p v u);

and we write lub(Q) = p.

It follows immediately from Theorem 5.3 that the least upper bound, when it
exists, is unique.

Example 5.8 (lub). Now we will clarify the concept of lub with two examples. Let
us consider the order represented by the Hasse diagram in Figure 5.3 (a). The set of
upper bounds of the subset {b,c} is the set {h, i,>}. This set has no least element
(i.e., h and i are not comparable) so the set {b,c} has no lub. In Figure 5.3 (b) we see
that the set of upper bounds of the set {a,b} is the set { f ,h, i,>}. The least element
of the latter set is f , which is thus the lub of {a,b}.

5.1.3 Chains

One of the main concept in the study of partial orders is that of a chain, which is
formed by taking a subset of totally ordered elements.
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>
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(a) The subset {b,c} has no lub
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^^

a

OO 77

{a,b} b

OO

c

kk
OO

?

gg OO 77

(b) The subset {a,b} has lub f

Fig. 5.3: Two subsets of a poset, and their upper bounds

Definition 5.8 (Chain). Let (P,v) be a partial order, we call chain a function C :
N ! P such that:

8n 2 N. C(n) v C(n+1)

We will often write C = {di}i2N, where 8i 2 N. di = C(i), i.e.,

d0 v d1 v d2 . . .

Definition 5.9 (Finite chain). Let C : N ! P be a chain such that the image of C is
a finite set, then we say that C is a finite chain. Otherwise we say that C is infinite.

Note that a finite chain has still infinitely many elements {di}i2N, but only finitely
many different ones. In particular, it has one index k and one element d such that
8i 2 N. dk+i = d.

Example 5.9 (Finite and infinite chains). Take the partial order (N,). The chain of
even numbers

0  2  4  · · ·

is an infinite chain. Instead, the constant chain

1  1  1  · · ·

is a finite chain.

Definition 5.10 (Limit of a chain). Let C be a chain. The lub of the image of C, if
it exists, is called the limit of C. If d is the limit of the chain C = {di}i2N, we write
d =

F
i2N di.
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Remark 5.3. Each finite chain has a limit. Indeed each finite chain has a finite totally
ordered image: obviously this set has a lub (the greatest element of the set).

Lemma 5.1 (Prefix independence of the limit). Let n 2 N and let C and C0 be two
chains such that C = {di}i2N and C0 = {dn+i}i2N. Then C and C0 have the same limit,
if any.

Proof. Let us prove a stronger property, namely that the chains C and C0 have the
same set of upper bounds.

Obviously if c is an upper bound of C, then c is an upper bound of C0, since each
element of C0 is contained in C.

Vice versa if c is an upper bound of C0, we need to show that 8 j 2 N. j  n )
d j v c. Since dn v c and 8 j 2 N. j  n ) d j v dn by transitivity of v it follows that
c is an upper bound of C.

Now since C and C0 have the same set of upper bound elements, they have the
same lub, if it exists at all. ut

The main consequence of Lemma 5.1 is that we can always eliminate from or add
a finite prefix to a chain preserving the limit.

A stronger result guarantees that any infinite subsequence of a chain C has the
same set of upper bounds as C and thus the same limit, if any (see Problem 5.13).

5.1.4 Complete Partial Orders

The aim of partial orders and continuous functions is to provide a framework that
allows the definition of the denotational semantics when recursive equations are
needed. Complete partial orders extend the concept of partial orders to support the
limit operation on chains, which is a generalization of the countable union operation
on a powerset. Limits will have a key role in finding fixpoint solutions to recursive
equations.

Definition 5.11 (Complete partial orders). Let (P,v) be a partial order. We say
that (P,v) is complete (CPO) if each chain has a limit (i.e. each chain has a lub).

From Remark 5.3, it follows immediately that if a partial order has only finite
chains then it is complete.

Definition 5.12 (CPO with bottom). Let (D,v) be a CPO, we say that (D,v) is a
CPO with bottom (CPO?) if it has a least element ? (called bottom).

Let us see some examples, that will clarify the concept of CPO. To avoid ambigui-
ties, sometimes we will denote the bottom element of the CPO D by ?D.

Example 5.10 (Powerset completeness). Let us consider again the previous example
of powerset (Example 5.1). We show that the partial order (√(S),✓) is complete.
Take any chain {si}i2N of subsetes of S. Then:
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lub(s0 ✓ s1 ✓ s2 . . .) = {d | 9k 2 N. d 2 sk} =
[

i2N
si 2√(S)

Example 5.11 (Partial order without upper bounds). Now let us take the usual order
on natural numbers (N,). Obviously all its finite chains have a limit (i.e., the
greatest element of the chain). Vice versa infinite chains have no limits (i.e., there
is no natural number greater than infinitely many natural numbers). To make the
order a CPO all we have to do is to add an element greater than all the natural
numbers. So we add the element • and extend the order relation by letting x  • for
all x 2 N[{•}. The new poset (N[{•},) is a CPO, because • is the limit of any
infinite chain.

Example 5.12 (Partial order without least upper bound). Let us define the partial
order (N[{•1,•2},v) as follows:

(v� N) =, 8x 2 N[{•1}. n v •1, 8x 2 N[{•2}. x v •2

Where v� N is the restriction of v to natural numbers. This partial order is not
complete, indeed each infinite chain has two upper bounds (i.e., •1 and •2) which
are not comparable, hence there is no least upper bound.

The next example illustrates a fundamental CPO, that will be exploited in the next
chapters: the set of partial functions on natural numbers:

Example 5.13 (Partial functions). Let Pf def
= (N * N) be the set of partial functions

from natural numbers to natural numbers. Recall that a partial function is a relation
f ✓ N⇥N with the functional property:

8n,m,k 2 N. n f m^n f k ) m = k

So the set Pf can be viewed as:

Pf def
= { f ✓ N⇥N | 8n,m,k 2 N. n f m^n f k ) m = k }

Let us denote by f (n) # the predicate 9m 2N. (n,m) 2 f (i.e., f (n) # holds when the
function f is defined on n). Now it is easy to define a partial order v on Pf. We let:

f v g , (8n 2 N. f (n) # ) (g(n) # ^ f (n) = g(n)))

Thus f precedes g if whenever f is defined on n also g is defined on n and f (n) = g(n).
When f (n) is not defined, then g(n) can be defined and take any value. When both f
and g are seen as (functional) relations, then the above definition boils down to check
that f is included in g. Of course, the poset (√(N⇥N),✓) has the empty relation as
bottom element (i.e., the function undefined everywhere), and each infinite chain has
as limit the countable union of the relations in the chain.

To show that Pf is complete, we need to show that the limits of chains whose
elements are in Pf satisfy also the functional property, i.e., they are elements of Pf.
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Theorem 5.4. Let f0 ✓ f1 ✓ f2 ✓ . . . be a chain in Pf, i.e., each relation fi satisfies
the functional property, i.e.,

8i 2 N. 8n,m,k 2 N. n fi m^n fi k ) m = k.

Then, the relation f def
= [i2N fi satisfies the functional property, namely:

8n,m,k 2 N. n f m^n f k ) m = k.

Proof. Let us take generic n,m,k 2 N such that the premise n f m ^ n f k of the
implication holds. We need to prove the consequence m = k. By n f m, it exists j 2 N
with n f j m and, by n f k it exists h 2 N with n fh k. We take o = max{ j,h} then it
holds n fo m^n fo k. Since fo 2 Pf, it satisfies the functional property and thus from
n fo m^n fo k we can conclude that m = k. ut

Example 5.14 (Partial functions as total functions). Let us show a second way to
define a CPO on the partial functions on natural numbers. Let N?

def
= N[{?} and

(N?,vN?) be the flat order obtained by adding ? to the discrete order of the natural
numbers. In other words we have x vN? y iff x = y or x = ?. Then take the set of
total functions Tf = (N ! N?). Equivalently:

Tf def
= { f ✓ N⇥N? | (8n,m,k 2 N. n f m^n f k ) m = k) ^

(8n 2 N. 9x 2 N?. n f x) }

We define the following order on Tf

f v g , 8n 2 N. f (n) vN? g(n).

That is, if f (n) = ? then g(n) can assume any value, including ?; otherwise it
must be g(n) = f (n). The bottom element of the order is the function that returns
? for every argument. Note that the above order is complete, In fact, the limit of a
chain obviously exists as a relation, and it is easy to show, analogously to the partial
function case, that it is in addition a total function. The proof is left as an exercise to
the reader (see Problem 5.11).

Example 5.15 (Limit of a chain of partial functions). Let { fi : N ! N?}i2N be a
chain in Tf such that for any i 2 N we have:

fi(n)
def
=

⇢
3 if n  i ^ 2 | n
? otherwise

where the predicate k | n is true when k divides n (i.e., 2 | n is true when n is even and
false otherwise). Let us consider some evaluations of the functions fi with i 2 [0,4]:



DRAFT

112 5 Partial Orders and Fixpoints

f0(0) = 3 f0(1) = ? f0(2) = ? f0(3) = ? f0(4) = ? · · ·
f1(0) = 3 f1(1) = ? f1(2) = ? f1(3) = ? f1(4) = ? · · ·
f2(0) = 3 f2(1) = ? f2(2) = 3 f2(3) = ? f2(4) = ? · · ·
f3(0) = 3 f3(1) = ? f3(2) = 3 f3(3) = ? f3(4) = ? · · ·
f4(0) = 3 f4(1) = ? f4(2) = 3 f4(3) = ? f4(4) = 3 · · ·

Thus the limit of the chain is the function f that returns 3 when applied to even
numbers and ? otherwise:

f (n)
def
=

⇢
3 if 2 | n
? otherwise

In general, the limit f def
=
F

i2N fi of a chain in Tf is a function f :N!N? such that
f (n) = m for some m 6= ? if and only if there exists an index k 2 N with fk(n) = m.
Note also that when i  j and fi(n) 6= ? it must be the case that f j(n) = fi(n). On
the contrary, when i  j and f j(n) = ? it means that fi(n) = ?.

5.2 Continuity and Fixpoints

5.2.1 Monotone and Continuous Functions

In order to define a class of functions over CPOs which ensures the existence of
their fixpoints we introduce two general properties of functions: monotonicity and
continuity.

Definition 5.13 (monotonicity). Let f : D ! E be a function over two CPOs (D,vD)
and (E,vE), we say that f is monotone if

8d,d0 2 D. d vD d0 ) f (d) vE f (d0)

We say that a monotone function preserves the order. So if {di}i2N is a chain
on (D,vD) and f : D ! E is a monotone function, then { f (di)}i2N is a chain on
(E,vE). Often we will consider functions whose domain and codomain coincide
(i.e., E = D), in which case we just say that f is a function on (D,vD).

Example 5.16 (Non monotone function). Let us define a CPO ({?,0,1},v) such
that ? v 0, ? v 1 and x v x for any x 2 {?,0,1}. Now define a function f over
({?,0,1},v) as follows:

f (?) = 0 f (0) = 0 f (1) = 1

This function is not monotone, indeed ? v 1 but f (?) = 0 and f (1) = 1 are not
comparable (see Figure 5.4, so the function f does not preserve the order.

Continuity guarantees that taking the image of the limit of a chain is the same as
taking the limit of the images of the elements in the chain.
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Fig. 5.4: A non monotone function

Definition 5.14 (Continuity). Let f : D ! D be a monotone function on a CPO
(D,v), we say that f is a continuous function if for each chain in (D,v) we have:

f (
G

i2N
di) =

G

i2N
f (di)

Note that, as it is the case for most definitions of continuity, the operations of
applying function and taking the limit can be exchanged. For this reason, we say that
a continuous function preserves limits.

Remark 5.4. Let (D,v) be a CPO that has only finite chains. Then any chain {di}i2N
in D is such that there are d 2 D and k 2 N such that 8i 2 N. di+k = d and it has a
limit (d) that is also an element of the chain. Thus any monotone function f : D ! D
is continuous, because 8i 2 N. f (di+k) = f (d) (i.e., the chain { f (di)}i2N is finite
and its limit is f (d)).

Interestingly, continuous functions are closed under composition.

Theorem 5.5 (Continuity of composition). Let (D,vD), (E vE), and (F vF) be
three CPOs, and f : D ! E, g : E ! F be two continuous functions. Their composi-
tion

h def
= g� f : D ! F

defined by letting h(d) = g( f (d)) for all d 2 D is continuous.

Proof. Let {di}i2N be a chain in D. We want to prove that h(
F

i2N di) =
F

i2N h(di).
We have:

h(
F

i2N di) = g( f (
F

i2N di)) by definition of h = g� f
= g(

F
i2N f (di)) by continuity of f

=
F

i2N g( f (di)) by continuity of g
=
F

i2N h(di) by definition of h = g� f
ut

Remark 5.5. The composition g� f is sometimes denoted also by f ;g.

Example 5.17 (A monotone function which is not continuous). Let (N[{•},) be
the CPO from Example 5.11. Define a function f : N[{•} ! N[{•} such that:
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f (x) def
=

⇢
0 if x 2 N
1 if x = •

It is immediate to check that f is monotone:

• for n,m 2 N, if n  m we have f (n) = 0  0 = f (m);
• for n 2 N, we have n  • and f (n) = 0  1 = f (•);
• for •  • we have of course f (•)  f (•).

Let us consider the chain {di}i2N of even numbers:

0  2  4  6  . . .

whose limit is •. The chain { f (di)}i2N is instead the constant chain

0  0  0  0  . . .

whose limit is 0. So we have

f (
G

i2N
di) = f (•) = 1 6= 0 =

G

i2N
f (di)

The monotone function f does not preserve the limits and thus it is not continuous.

5.2.2 Fixpoints

Now we are ready to study fixpoints of continuous functions.

Definition 5.15 (Pre-fixpoint and fixpoint). Let f be a continuous function over a
CPO? (D,v). An element p is a pre-fixpoint if

f (p) v p.

An element d 2 D is a fixpoint of f if

f (d) = d.

Of course any fixpoint of f is also a pre-fixpoint of f , i.e., the set of fixpoints of f
is included in the set of its pre-fixpoints.

We will denote by gfp( f ) the greatest fixpoint of f and by lfp( f ) the least fixpoint
of f , when they exist.

Let f : D ! D and d 2 D. We denote by f n(d) the repeated application of f to d
for n times, i.e.,

f 0(d)
def
= d

f n+1(d)
def
= f ( f n(d))
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Lemma 5.2. Let (D,v) be a partial order and f : D ! D be a monotone function.
The elements { f n(?)}n2N form a chain in D.

Proof. The property 8n 2 N. f n(?) v f n+1(?) can be readily proved by mathemat-
ical induction on n.

Base case: For n = 0 we have f 0(?) = ? v f 1(?) = f (?), as ? is the least
element of D.

Inductive case: Let us assume that the property holds for n, i.e., that

f n(?) v f n+1(?).

We want to prove that the property holds for n+1, i.e., that

f n+1(?) v f n+2(?).

In fact by definition we have f n+1(?) = f ( f n(?)) and f n+2(?) =
f ( f n+1(?)). Since f is monotone and by the inductive hypothesis
we have:

f n+1(?) = f ( f n(?)) v f ( f n+1(?)) = f n+2(?).
ut

When (D,v) is complete then the chain { f n(?)}n2N must have a limit
F

n2N f n(?).
Next theorem ensures that the least fixpoint of a continuous function always exists

and that it is computed by the above limit.

Theorem 5.6 (Kleene’s Fixpoint theorem). Let f : D ! D be a continuous function
on a CPO? D. Then, let

fix( f ) =
G

n2N
f n(?).

The element fix( f ) 2 D has the following properties:

1. fix( f ) is a fixpoint of f , namely

f (fix( f )) = fix( f )

2. fix( f ) is the least pre-fixpoint of f , namely

f (d) v d ) fix( f ) v d

Since any fixpoint is a pre-fixpoint, fix( f ) is also the least fixpoint of f .

Proof. We prove the two items separately.

1. By continuity we will show that fix( f ) is a fixpoint of f :
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f (fix( f )) = f (
G

n2N
f n(?)) (by definition of fix)

=
G

n2N
f ( f n(?)) (by continuity of f )

=
G

n2N
f n+1(?) (by definition of f n+1)

So we need to compute the limit of the chain:

f (?) v f 2(?) v f 3(?) v . . .

Since the limit is independent from any finite prefix of the chain, it coincides with
the limit of the chain

f 0(?) = ? v f (?) v f 2(?) v f 3(?) v . . .

G

n2N
f n+1(?) =

G

n2N
f n(?) (by Lemma 5.1)

= fix( f ) (by definition of fix)

2. We want to prove that fix( f ) is the least pre-fixpoint. We prove that any pre-
fixpoint of f is an upper bound of the chain { f n(?)}n2N. Let d be a pre-fixpoint
of f , i.e.,

f (d) v d (5.1)

By mathematical induction we show that

8n 2 N. f n(?) v d

i.e., that d is an upper bound for the chain { f n(?)}n2N:

base case: obviously f 0(?) = ? v d
inductive case: let us assume f n(?) v d, we want to prove that f n+1(?) v d:

f n+1(?) = f ( f n(?)) (by definition of f n+1)
v f (d) (by monotonicity of f

and inductive hypothesis)
v d (because d is a pre-fixpoint)

Since d is an upper bound for { f n(?)}n2N and fix( f ) is the limit (i.e., the least
upper bound) of the same chain, it must be fix( f ) v d.

ut

Now let us make two examples which show that bottom element and the continuity
property are required to compute the least fixpoint.

Example 5.18 (Bottom is necessary). Let ({true, false},v) be the discrete order of
boolean values. Obviously it is complete (because only finite chains of the form
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•2
f // •2

•1
f

33

•1

...
...

2
f

44

2

1 f

33

1

0 f

33

0

Fig. 5.5: Continuity is necessary

x v x v x v . . . exist) and it has no bottom element, as true and false are not
comparable. The identity function is monotone and has two fixpoints, but there is
no least fixpoint. On the contrary, the negation function is also monotone but has no
fixpoint.

Example 5.19 (Continuity is necessary). Let us consider the CPO? (N[{•1,•2},v)
where:

v� N =, 8d 2 N[{•1}. d v •1, 8d 2 N[{•1,•2}. d v •2.

The bottom element is 0. We define a monotone function f as follows (see Figure 5.5):

f (n)
def
=

⇢
n+1 if n 2 N
•2 otherwise

Note that f is not continuous. Let us consider the chain of even numbers {di}i2N. It
follows that { f (di)}i2N is the chain of odd numbers. We have:

G

i2N
di = •1

G

i2N
f (di) = •1

Therefore:

f

 
G

i2N
di

!
= f (•1) = •2 6= •1 =

G

i2N
f (di)

Note that f has only one fixpoint, indeed:

f (•2) = •2

But such fixpoint is not reachable by taking
F

n2N f n(0) = •1.
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5.3 Immediate Consequence Operator

In this section we reconcile two different approaches for defining semantics: inference
rules, like those used for defining the operational semantics of IMP, and fixpoint
theory, that will be applied to define the denotational semantics of IMP. We show
that the set of theorems of a logical system R can be defined as the least fixpoint of a
suitable operator, called immediate consequence operator and denoted bR.

5.3.1 The Operator bR

Let us consider a set F of well-formed formulas and a set R of inference rules over
them. We define an operator bR over (√(F),✓), the CPO? of sets of well-formed
formulas ordered by inclusion.

Definition 5.16 (Immediate consequence operator bR). Let R be a logical system.
We define a function bR :√(F) !√(F) as follows (for any S ✓ F):

bR(S)
def
= {y | 9(X/y) 2 R. X ✓ S}

The function bR is called immediate consequence operator.

The operator bR, when applied to a set of well-formed formulas S, calculates a new
set of formulas by applying the inference rules of R to the facts in S in all possible
ways, i.e., bR(S) is the set of conclusions we can derive in one step from the hypothesis
in S using rules in R. We will show that the set of theorems of R is equal to the least
fixpoint of the immediate consequence operator bR.

To apply the fixpoint theorem, we need to prove that bR is monotone and continu-
ous.

Theorem 5.7 (Monotonicity of bR). bR is a monotone function.

Proof. Let S1 ✓ S2. We want to show that bR(S1) ✓ bR(S2). Let us assume y 2 bR(S1),
then there exists a rule (X/y) 2 R with X ✓ S1. So we have X ✓ S2 and y 2 bR(S2). ut

Theorem 5.8 (Continuity of bR ). Let R be a logical system such that for any (X/y) 2
R the set of premises X is finite. Then bR is continuous.

Proof. Let {Si}i2N be a chain in √(F). We want to prove that
[

i2N

bR(Si) = bR(
[

i2N
Si).

As usual we prove the two inclusions separately:

✓) Let y 2
S

i2N bR(Si) so there exists a natural number k such that y 2 bR(Sk). Since
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Sk ✓
[

i2N
Si

by monotonicity

bR(Sk) ✓ bR
 
[

i2N
Si

!

hence y 2 bR(
S

i2N Si).
◆) Let y 2 bR(

S
i2N Si) so there exists a rule X/y 2 R with X ✓

S
i2N Si. Since X is

finite, there exists a natural number k such that X ✓ Sk. In fact, for every x 2 X
there will be a natural number kx with x 2 Skx and letting k = max{kx}x2X we
have X ✓ Sk. Since X ✓ Sk we have y 2 bR(Sk) ✓

S
i2N bR(Si) as required. ut

5.3.2 Fixpoint of bR

Now we are ready to present the fixpoint of bR. For this purpose let us define IR as the
set of theorems provable in R:

IR
def
=
[

i2N
Ii
R

where

I0
R

def
= ?

In+1
R

def
= bR(In

R) [ In
R

Note that the generic In
R contains all theorems provable with derivations of depth1

at most n, and IR contains all theorems provable by using the rule system R.

Theorem 5.9. Let R a rule system, it holds:

8n 2 N. In
R = bRn(?)

Proof. By induction on n

base case: I0
R = bR0(?) = ?.

inductive case: We assume In
R = bRn(?) and want to prove In+1

R = bRn+1(?). Then:

In+1
R = bR(In

R) [ In
R (by definition of In+1

R )
= bR(bRn(?)) [ bRn(?) (by inductive hypothesis)
= bRn+1(?) [ bRn(?) (by definition of bRn+1)
= bRn+1(?) (because bRn+1(?) ◆ bRn(?))

1 See Problem 4.12.
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In the last step of the proof we have exploited the property bRn+1(?) ◆ bRn(?), which
is an instance of Lemma 5.2 (by taking D =√(F), v = ✓, ? = ? and f = bR). ut

Theorem 5.10 (Fixpoint of bR). Let R a logical system, it holds:

fix(bR) = IR

Proof. By continuity of bR (Theorem 5.8) and the fixpoint theorem (Theorem 5.6),
we know that the least fixpoint of bR exists and that

fix(bR)
def
=
[

n2N

bRn(?)

Then, by Theorem 5.9:

IR
def
=
[

n2N
In
R =

[

n2N

bRn(?)
def
= fix(bR)

as required. ut

Example 5.20 (Rule system with discontinuous bR). Let us consider the logical system
R below:

?
P(1)

P(x)

P(x+1)

8n 2 N. P(1+2⇥n)

P(0)

To ensure the continuity of bR, Theorem 5.8 requires that the system has only rules
with finitely many premises. The third rule of our system instead has infinitely many
premises; it corresponds to

P(1) P(3) P(5) · · ·

P(0)

The continuity of bR, namely the fact that for all chains {Si}i2N we have
S

i2N bR(Si) =
bR(
S

i2N Si), does not hold in this case. Indeed if we take the chain

{P(1)} ✓ {P(1),P(3)} ✓ {P(1),P(3),P(5)} . . .

We have:

i 0 1 2
Si {P(1)} ✓ {P(1),P(3)} ✓ {P(1),P(3),P(5)}

bR(Si) {P(1),P(2)} ✓ {P(1),P(2),P(4)} ✓ {P(1),P(2),P(4),P(6)}

Then we have:
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[

i2N
Si = {P(1),P(3),P(5), . . .}

[

i2N

bR(Si) = {P(1),P(2),P(4),P(6), . . .}

bR(
[

i2N
Si) = {P(1),P(2),P(4), . . . P(0)|{z}

3rd rule

}

because the third rule applies only when the predicate P holds for all the odd numbers,
as in

S
i2N Si. Let us now compute the limit of bR

fix(bR) =
[

n2N

bRn(?) = {P(1),P(2),P(3),P(4), . . .}

In fact, we have:

bR0(?) = ?
bR1(?) = {P(1)}
bR2(?) = {P(1),P(2)}
bR3(?) = {P(1),P(2),P(3)}

· · ·

But fix(bR) is not a fixpoint of bR, because P(0) 62 fix(bR) but P(0) 2 bR(fix(bR))!

bR(fix(bR)) = {P(0),P(1),P(2),P(3),P(4), . . .} 6= fix(bR)

Example 5.21 (Balanced parentheses). Let us consider the grammar for balanced
parentheses, from Example 2.5

S ::= e | (S) | SS

The corresponding logical system is:

?
e 2 LS

s 2 LS

(s) 2 LS

s1 2 LS s2 2 LS

s1s2 2 LS

So we can use the bR operator and the fixpoint theorem to find all the strings generated
by the grammar:

LS0 = bR0(?) = ?
LS1 = bR(S0) = {e}
LS2 = bR(S1) = {e, ( )}
LS3 = bR(S2) = {e, ( ), (( )), ( )( )}
. . .
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So the language generated by the grammar is LS = fix(bR).

Problems

5.1. Prove Theorem 5.1. Hint: The proof is easy, because the axioms of partial and
total orders are all universally quantified.

5.2. Let (√(N),✓) be the CPO? of sets of natural numbers, ordered by inclusion.
Assume a set X ✓ N is fixed. Let f ,g :√(N) �!√(N) be the functions:

f (S)
def
= S \X

g(S)
def
= (N\S)\X

1. Are f and g monotone?
2. Are they continuous?
3. Do the answers to the above questions depend on the given set X?

5.3. Define three functions fi : Di ! Di over three suitable CPO Di for i 2 [1,3] (not
necessarily with bottom) such that

1. f1 is continuous, has fixpoints but not a least fixpoint;
2. f2 is continuous and it has no fixpoint;
3. f3 is monotone but not continuous.

5.4. Define a partial order D = (D,v) that is not complete.

1. Let x @0 y if and only if y v x and x 6= y.
Is the non reflexive reversed order D 0 = (D,@0) a well-founded relation?

2. In general, is it possible that D 0 is well-founded for some D?

5.5. Let V ⇤ [V • be the set of finite (V ⇤) and infinite (V •) strings over the alphabet
V = {a,b,c}, and let a v ab , where juxtaposition in ab denotes string concatena-
tion and ab = a if a is infinite.

1. Is the structure (V ⇤ [V •,v) a partial order?
2. If yes, is it a complete partial order?
3. Does there exist a bottom element?
4. Which are the maximal elements?

5.6. Let (D1,v1) and (D2,v2) be two CPOs such that D1,D2 ✓ D. Consider the
structures:

• (D1 [D2 , v), where x v y iff x v1 y_ x v2 y
• (D1 \D2 , �), where x � y iff x v1 y^ x v2 y

1. Are they always partial orders?
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2. If so, are they complete?

In case of negative answers, exhibit some counterexample.

5.7. Let X and Y be sets and X? and Y? be the corresponding flat domains. Show that
a function f : X? ! Y? is continuous if and only if one of the following conditions
holds:

1. f is strict, i.e., f (?) = ?.
2. f is constant.

5.8. Let {>} be a one-element set and {>}? the corresponding flat domain. Let W
be the domain of vertical natural numbers

0  1  2  3  ...  •.

Show that the set of continuous functions from W to {>}? is in bijection with W .
Hint: Define what the possible continuous functions from W to {>}? are.

5.9. Let D = N[{•0,•1} and v be the relation over D such that:

• for any pair of natural numbers n,m 2 N, we let n v m iff n  m;
• for any natural number n 2 N, we let n v •0 iff n is even;
• for any natural number n 2 N, we let n v •1 iff n is odd;
• and we set •0 v •0 v •1 v •1.

Is (D,v) a CPO? Explain.

5.10. Consider the set N⇥N of pairs of natural numbers with the lexicographic order
relation v defined by letting:

(n,m) v (n0,m0) if n < n0 _ (n = n0 ^m < m0)

1. Prove that v is a partial order with bottom.
2. Show that the chain {(0,k)}k2N has a lub.
3. Exhibit a chain without lub.
4. Consider the subset [0,n]⇥N, with the same order, and then show, also in this

case, a chain without lub .
5. Finally, prove that [0,n] ⇥ (N[ •) with the same order (where x  • for any

x 2 N), is complete with bottom, and show a monotone, non continuous function
on it.

5.11. Prove that the set Tf of total functions from N to N? defined in Example 5.14
forms a complete partial order.

5.12. Consider the set PI of partial injective functions from N to N. A partial injective
function f can be seen as a relation {(x,y) | x,y 2 N^ y = f (x)} ✓ N⇥N such that

• (x,y),(x,y0) 2 f implies y = y0, (i.e., f is a partial function), and
• (x,y),(x0,y) 2 f implies x = x0, (i.e., f is injective).
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Accordingly, the elements of PI can be ordered by inclusion.

1. Prove that (PI,✓) is a complete partial order.
2. Prove that the function F : PI ! PI with F( f ) = {(2 ⇥ x,y) | (x,y) 2 f } is

monotone and continuous.
(Hint: Consider F as computed by the immediate consequences operator bR, with
R consisting only of the rule (x,y)/(2⇥ x,y).)

5.13. Let (D,v) be a CPO, {di}i2N a chain in D and f : N ! N a function such that
for all i, j 2 N if i < j then f (i) < f ( j). Prove that:

G

i2N
d f (i) =

G

i2N
di

5.14. Let D,E be two CPO? and f : D ! E, g : E ! D be two continuous functions
between them. Their compositions h = g � f : D ! D and k = f � g : E ! E are
known to be continuos and thus have least fixpoints.

D
f

++h=g� f 99 E
g

kk k= f �g
yy

Let e0 = fix k 2 E. Prove that g(e0) = fix h 2 D by showing that:

1. g(e0) is a fixpoint for h, and
2. that g(e0) is the least pre-fixpoint for h.
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