
DRAFT
Roberto Bruni, Ugo Montanari

Models of Computation

– Monograph –

March 17, 2016

Springer

DRAFTMathematical reasoning may be regarded
rather schematically as the exercise of a
combination of two facilities, which we may
call intuition and ingenuity.

Alan Turing1

1 The purpose of ordinal logics (from Systems of Logic Based on Ordinals), Proceedings of the
London Mathematical Society, series 2, vol. 45, 1939.

DRAFT
Contents

Part I Preliminaries

1 Introduction . 3
1.1 Structure and Meaning . 3

1.1.1 Syntax, Types and Pragmatics . 4
1.1.2 Semantics . 4
1.1.3 Mathematical Models of Computation 6

1.2 A Taste of Semantics Methods: Numerical Expressions 9
1.3 Applications of Semantics . 17
1.4 Content Overview . 19

1.4.1 Induction and Recursion . 22
1.4.2 Semantic Domains . 23
1.4.3 Bisimulation . 25
1.4.4 Temporal and Modal Logics . 26
1.4.5 Probabilistic Systems . 26

1.5 Chapters Contents and Reading Guide . 27
1.6 Further Reading . 29
References . 31

2 Preliminaries . 33
2.1 Notation . 33

2.1.1 Basic Notation . 33
2.1.2 Signatures and Terms . 34
2.1.3 Substitutions . 35
2.1.4 Unification Problem . 35

2.2 Inference Rules and Logical Systems . 37
2.3 Logic Programming . 45
Problems . 47

Part II IMP: a simple imperative language

xv

DRAFT

xvi Contents

3 Operational Semantics of IMP . 53
3.1 Syntax of IMP . 53

3.1.1 Arithmetic Expressions . 54
3.1.2 Boolean Expressions . 54
3.1.3 Commands . 54
3.1.4 Abstract Syntax . 55

3.2 Operational Semantics of IMP . 56
3.2.1 Memory State . 56
3.2.2 Inference Rules . 57
3.2.3 Examples . 61

3.3 Abstract Semantics: Equivalence of Expressions and Commands . . . 66
3.3.1 Examples: Simple Equivalence Proofs 67
3.3.2 Examples: Parametric Equivalence Proofs 68
3.3.3 Examples: Inequality Proofs . 70
3.3.4 Examples: Diverging Computations . 72

Problems . 75

4 Induction and Recursion . 77
4.1 Noether Principle of Well-founded Induction 77

4.1.1 Well-founded Relations . 77
4.1.2 Noether Induction . 83
4.1.3 Weak Mathematical Induction . 84
4.1.4 Strong Mathematical Induction . 85
4.1.5 Structural Induction . 85
4.1.6 Induction on Derivations . 88
4.1.7 Rule Induction . 89

4.2 Well-founded Recursion . 93
Problems . 98

5 Partial Orders and Fixpoints . 103
5.1 Orders and Continuous Functions . 103

5.1.1 Orders . 104
5.1.2 Hasse Diagrams . 106
5.1.3 Chains . 109
5.1.4 Complete Partial Orders . 111

5.2 Continuity and Fixpoints . 114
5.2.1 Monotone and Continuous Functions . 114
5.2.2 Fixpoints . 116

5.3 Immediate Consequence Operator . 120
5.3.1 The Operator bR . 120
5.3.2 Fixpoint of bR . 121

Problems . 124

DRAFT

Contents xvii

6 Denotational Semantics of IMP . 127
6.1 l -Notation . 127

6.1.1 l -Notation: Main Ideas . 128
6.1.2 Alpha-Conversion, Beta-Rule and Capture-Avoiding

Substitution . 131
6.2 Denotational Semantics of IMP . 133

6.2.1 Denotational Semantics of Arithmetic Expressions: The
Function A . 134

6.2.2 Denotational Semantics of Boolean Expressions: The
Function B . 135

6.2.3 Denotational Semantics of Commands: The Function C 136
6.3 Equivalence Between Operational and Denotational Semantics 141

6.3.1 Equivalence Proofs For Expressions . 141
6.3.2 Equivalence Proof for Commands . 142

6.4 Computational Induction . 149
Problems . 152

Part III HOFL: a higher-order functional language

7 Operational Semantics of HOFL . 157
7.1 Syntax of HOFL . 157

7.1.1 Typed Terms . 158
7.1.2 Typability and Typechecking . 162

7.2 Operational Semantics of HOFL . 165
Problems . 170

8 Domain Theory . 173
8.1 The Flat Domain of Integer Numbers Z? . 173
8.2 Cartesian Product of Two Domains . 173
8.3 Functional Domains . 175
8.4 Lifting . 178
8.5 Function’s Continuity Theorems . 180
8.6 Useful Functions . 183
Problems . 187

9 HOFL Denotational Semantics . 189
9.1 HOFL Semantic Domains . 189
9.2 HOFL Evaluation Function . 190

9.2.1 Constants . 190
9.2.2 Variables . 190
9.2.3 Binary Operators . 191
9.2.4 Conditional . 191
9.2.5 Pairing . 192
9.2.6 Projections . 192
9.2.7 Lambda Abstraction . 193
9.2.8 Function Application . 193

DRAFT

xviii Contents

9.2.9 Recursion . 193
9.3 Continuity of Meta-language’s Functions . 195
9.4 Substitution Lemma . 197
Problems . 198

10 Equivalence between HOFL denotational and operational semantics . 201
10.1 Completeness . 202
10.2 Equivalence (on Convergence) . 205
10.3 Operational and Denotational Equivalences of Terms 207
10.4 A Simpler Denotational Semantics . 208
Problems . 209

Part IV Concurrent Systems

11 CCS, the Calculus for Communicating Systems . 215
11.1 Syntax of CCS . 220
11.2 Operational Semantics of CCS . 221

11.2.1 Action Prefix . 222
11.2.2 Restriction . 222
11.2.3 Relabelling . 222
11.2.4 Choice . 223
11.2.5 Parallel Composition . 223
11.2.6 Recursion . 224
11.2.7 CCS with Value Passing . 227
11.2.8 Recursive Declarations and the Recursion Operator 228

11.3 Abstract Semantics of CCS . 230
11.3.1 Graph Isomorphism . 230
11.3.2 Trace Equivalence . 232
11.3.3 Bisimilarity . 233

11.4 Compositionality . 239
11.4.1 Bisimilarity is Preserved by Choice . 240

11.5 A Logical View to Bisimilarity: Hennessy-Milner Logic 241
11.6 Axioms for Strong Bisimilarity . 244
11.7 Weak Semantics of CCS . 246

11.7.1 Weak Bisimilarity . 246
11.7.2 Weak Observational Congruence . 248
11.7.3 Dynamic Bisimilarity . 249

Problems . 250

12 Temporal Logic and µ-Calculus . 255
12.1 Temporal Logic . 255

12.1.1 Linear Temporal Logic . 256
12.1.2 Computation Tree Logic . 258

12.2 µ-Calculus . 260
12.3 Model Checking . 263
Problems . 264

DRAFT

Contents xix

13 p-Calculus . 267
13.1 Name Mobility . 267
13.2 Syntax of the p-calculus . 270
13.3 Operational Semantics of the p-calculus . 272

13.3.1 Action Prefix . 273
13.3.2 Choice . 274
13.3.3 Name Matching . 274
13.3.4 Parallel Composition . 274
13.3.5 Restriction . 275
13.3.6 Scope Extrusion . 275
13.3.7 Replication . 275
13.3.8 A Sample Derivation . 276

13.4 Structural Equivalence of p-calculus . 277
13.4.1 Reduction semantics . 277

13.5 Abstract Semantics of the p-calculus . 278
13.5.1 Strong Early Ground Bisimulations . 279
13.5.2 Strong Late Ground Bisimulations . 280
13.5.3 Strong Full Bisimilarities . 281
13.5.4 Weak Early and Late Ground Bisimulations 282

Problems . 283

Part V Probabilistic Systems

14 Measure Theory and Markov Chains . 287
14.1 Probabilistic and Stochastic Systems . 287
14.2 Measure Theory . 288

14.2.1 s -field . 288
14.2.2 Constructing a s -field . 289
14.2.3 Continuous Random Variables . 291
14.2.4 Stochastic Processes . 295

14.3 Markov Chains . 295
14.3.1 Discrete and Continuous Time Markov Chain 296
14.3.2 DTMC as LTS . 297
14.3.3 DTMC Steady State Distribution . 299
14.3.4 CTMC as LTS . 301
14.3.5 Embedded DTMC of a CTMC . 302
14.3.6 CTMC Bisimilarity . 302
14.3.7 DTMC Bisimilarity . 304

Problems . 305

15 Markov Chains with Actions and Non-determinism 309
15.1 Discrete Markov Chains With Actions . 309

15.1.1 Reactive DTMC . 310
15.1.2 DTMC With Non-determinism . 312

Problems . 315

DRAFT

xx Contents

16 PEPA - Performance Evaluation Process Algebra 317
16.1 From Qualitative to Quantitative Analysis . 317
16.2 CSP . 318

16.2.1 Syntax of CSP . 318
16.2.2 Operational Semantics of CSP . 319

16.3 PEPA. 320
16.3.1 Syntax of PEPA . 320
16.3.2 Operational Semantics of PEPA . 322

Problems . 327

Glossary . 331

Solutions . 333

Index . 335

DRAFT
Acronyms

⇠ operational equivalence in IMP (see Definition 3.3)
⌘den denotational equivalence in HOFL (see Definition 10.4)
⌘op operational equivalence in HOFL (see Definition 10.3)
' CCS strong bisimilarity (see Definition 11.5)
⇡ CCS weak bisimilarity (see Definition 11.16)
⇠= CCS weak observational congruence (see Section 11.7.2)
⇡d CCS dynamic bisimilarity (see Definition 11.17)
�⇠E p-calculus early bisimilarity (see Definition 13.3)
�⇠L p-calculus late bisimilarity (see Definition 13.4)
⇠E p-calculus strong early full bisimilarity (see Section 13.5.3)
⇠L p-calculus strong late full bisimilarity (see Section 13.5.3)
•tE p-calculus weak early bisimilarity (see Section 13.5.4)
•tL p-calculus weak late bisimilarity (see Section 13.5.4)
A interpretation function for the denotational semantics of IMP arithmetic

expressions (see Section 6.2.1)
ack Ackermann function (see Example 4.18)
Aexp set of IMP arithmetic expressions (see Chapter 3)
B interpretation function for the denotational semantics of IMP boolean

expressions (see Section 6.2.2)
Bexp set of IMP boolean expressions (see Chapter 3)
B set of booleans
C interpretation function for the denotational semantics of IMP com-

mands (see Section 6.2.3)
CCS Calculus of Communicating Systems (see Chapter 11)
Com set of IMP commands (see Chapter 3)
CPO Complete Partial Order (see Definition 5.11)
CPO? Complete Partial Order with bottom (see Definition 5.12)
CSP Communicating Sequential Processes (see Section 16.2)
CTL Computation Tree Logic (see Section 12.1.2)
CTMC Continuous Time Markov Chain (see Definition 14.15)

xxi

DRAFT

xxii Acronyms

DTMC Discrete Time Markov Chain (see Definition 14.14)
Env set of HOFL environments (see Chapter 9)
fix (least) fixpoint (see Definition 5.2.2)
FIX (greatest) fixpoint
gcd greatest common divisor
HML Hennessy-Milner modal Logic (see Section 11.5)
HM-Logic Hennessy-Milner modal Logic (see Section 11.5)
HOFL A Higher-Order Functional Language (see Chapter 7)
IMP A simple IMPerative language (see Chapter 3)
int integer type in HOFL (see Definition 7.2)
Loc set of locations (see Chapter 3)
LTL Linear Temporal Logic (see Section 12.1.1)
LTS Labelled Transition System (see Definition 11.2)
lub least upper bound (see Definition 5.7)
N set of natural numbers
P set of closed CCS processes (see Definition 11.1)
PEPA Performance Evaluation Process Algebra (see Chapter 16)
Pf set of partial functions on natural numbers (see Example 5.13)
PI set of partial injective functions on natural numbers (see Problem 5.12)
PO Partial Order (see Definition 5.1)
PTS Probabilistic Transition System (see Section 14.3.2)
R set of real numbers
T set of HOFL types (see Definition 7.2)
Tf set of total functions from N to N? (see Example 5.14)
Var set of HOFL variables (see Chapter 7)
Z set of integers

DRAFT
Chapter 6
Denotational Semantics of IMP

The point is that, mathematically speaking, functions are
independent of their means of computation and hence are

“simpler” than the explicitly generated, step-by-step evolved
sequences of operations on representations. (Dana Scott)

Abstract In this chapter we give a more abstract, purely mathematical semantics
to IMP, called denotational semantics. The operational semantics is close to the
memory-based, executable machine-like view: given a program and a state, we derive
the state obtained after the execution of that program. The denotational semantics
takes a program and returns the transformation function over memories associated
with that program: given an initial state as argument the final state is returned as
a result. Since functions will be written in some fixed mathematical notation, i.e.,
they can also be regarded as “programs” of a suitable formalism, we can say that,
to some extent, the operational semantics defines an “interpreter” of the language
(given a program and the initial state it returns the final state obtained by executing
the program), while the denotational semantics defines a “compiler” for the language
(from programs to functions, i.e., programs written in a more abstract language). We
conclude the chapter by reconciling the equivalences induced by the operational and
the denotational semantics and by stating the principle of computational induction.

6.1 l -Notation

In the following we shall rely on l -notation as a (meta-)language for writing anony-
mous functions. When considering HOFL, then l -notation will be used both at the
level of the programming language and at the level of the denotational semantics, as
meta-language.

The l -calculus was introduced by Alonzo Church (1903-1995) in order to answer
one of the questions posed by David Hilbert (1862–1943) in his program, known
as Entscheidungsproblem (German for decision problem). Roughly, the problem
consisted in the existence of an algorithm to decide whether a given statement of a
first-order logic (possibly enriched with a finite number of axioms) is deducible or
not from the axioms of logic. Alan Turing (1912-1954) proved that no effectively
calculable algorithm can exist that solves the problem, where “calculable” meant

127

DRAFT

128 6 Denotational Semantics of IMP

computable by a Turing machine. Independently, Alonzo Church answered negatively
assuming that “calculable” meant a function expressible in the l -calculus.

6.1.1 l -Notation: Main Ideas

The l -calculus is built around the idea of expressing a calculus of functions, where it
is not necessary to assign names to functions, i.e., where functions can be expressed
anonymously. Conceptually, this amounts to have the possibility of:

• forming (anonymous) functions by abstraction over names in an expression; and
• applying a function to an argument

Building on the two basic considerations above, Church developed a theory of
functions based on rules for computation, as opposed to the classical set-theoretic
view of functions as sets of pairs (argument, result).

Example 6.1. Let us start with a simple example from arithmetic. Take a polynomial
such as

x2 �2x+5.

What is the value of the above expression when x is replaced by 2? We compute the
result by plugging in ‘2’ for ‘x’ in the expression to get

22 �2⇥2+5 = 5.

In l -notation, when we want to express that the value of an expression depends
on some value to be plugged in, we use abstraction. Syntactically, this corresponds to
prefix the expression by the special symbol l and the name of the formal parameter,
as, e.g., in:

lx. (x2 �2x+5)

The informal reading is:

wait for a value v to replace x and then compute v2 �2v+5.

We want to be able to pass some actual parameter to the function above, i.e., to ap-
ply the function to some value v. To this aim, we denote application by juxtaposition:

(lx. (x2 �2x+5)) 2

means that the function (lx. (x2 � 2x + 5)) is applied to 2 (i.e., that the actual
parameter 2 must replace the occurrences of the formal parameter x in x2 �2x+5,
to obtain 22 �2⇥2+5 = 5.)

Note that:

• by writing lx. t we are declaring x as a formal parameter appearing in t;
• the symbol l has no particular meaning (any other symbol could have been used);

DRAFT

6.1 l -Notation 129

• we say that lx ‘binds’ the (occurrences of the) variable x in t;
• the scope of the formal parameter x is just t; if x occurs also “outside” t, then it

refers to another (homonymous) identifier.

Example 6.2. Let us consider another example:

(lx. ly. (x2 �2y+5)) 2

This time we have a function that is waiting for two arguments (first x, then y), but to
which we pass one value (2). We have

(lx. ly. (x2 �2y+5)) 2 = ly. (22 �2y+5) = ly. (9�2y)

that is, the result of applying lx. ly. (x2 �2y+5) to 2 is still a function (ly. (9�2y)).

In l -calculus we can pass functions as arguments and return functions as results.

Example 6.3. Take the term l f . (f 2): it waits for a function f that will be applied
to the value 2. If we pass the function (lx. ly. (x2 �2y+5)) to l f . (f 2), written:

(l f . (f 2)) (lx. ly. (x2 �2y+5))

then we get the function ly. (9�2y) as a result.

Definition 6.1 (Lambda terms). We define lambda terms as the terms generated by
the grammar:

t ::= x | lx.t | (t0 t1) | t ! (t0, t1)

Where x is a variable.

As we can see the lambda notation is very simple, it has four constructs:

• x: is a simple variable.
• lx.t: is the lambda abstraction which allows to define anonymous functions.
• t0 t1: is the application of a function t0 to its argument t1.
• t ! t0, t1 is the conditional operator, i.e. the “if-then-else” construct in lambda

notation.

Note that we omit some parentheses when no ambiguity can arise.
Lambda abstraction lx.t is the main feature. It allows to define functions, where

x represents the parameter of the function and t is the lambda term which represents
the body of the function. For example the term lx.x is the identity function.

Note that while we can have different terms t and t 0 that define the same function.
Church proved that the problem of deciding whether t = t 0 is undecidable.

Definition 6.2 (Conditional expressions). Let t, t0 and t1 be three lambda terms, we
define:

t ! t0, t1 =

⇢
t0 if t = true
t1 if t = f alse

DRAFT

130 6 Denotational Semantics of IMP

All the notions used in this definition, like “true” and “false” can be formalised
in lambda notation only, by using lambda abstraction, as shown in Section 6.1.1.1
for the interested reader. In the following we will take the liberty to assume that data
types such as integers and booleans are available in the lambda-notation as well as
the usual operations on them.

Remark 6.1 (Associativity of abstraction and application). In the following, to limit
the number of parentheses and keep the notation more readable, we assume that
application is left-associative, and lambda-abstraction is right-associative, i.e.,

t1 t2 t3 t4 is read as (((t1 t2) t3) t4)
lx1. lx2. lx3. lx4. t is read as lx1. (lx2. (lx3. (lx4. t)))

Remark 6.2 (Precedence of application). We will also assume that application has
precedence over abstraction, i.e.:

lx. t t 0 = lx. (t t 0)

6.1.1.1 l -Notation: Booleans and Church Numerals

In the above examples, we have enriched standard arithmetic expressions with
abstraction and application. In general, it would be possible to encode booleans and
numbers (and operations over them) just using abstraction and application.

For example, let us consider the following terms:

T def
= lx. ly. x

F def
= lx. ly. y

We can assume that T represents true and F represents false.
Under this convention, we can define the usual logical operations by letting:

AND def
= l p. lq. p q p

OR def
= l p. lq. p p q

NOT def
= l p. lx. ly. p y x

Now suppose that P will reduce either to T or to F . The expression P A B can be
read as ‘if P then A else B’.

For natural numbers, we can adopt the convention that the number n is represented
by a function that takes a function f and an argument x and applies f to x for n times
consecutively. For example:

DRAFT

6.1 l -Notation 131

0 def
= l f . lx. x

1 def
= l f . lx. f x

2 def
= l f . lx. f (f x)

· · ·

Then, the operations for successor, sum, multiplication can be defined by letting:

SUCC def
= ln. l f . lx. f (n f x)

SUM def
= ln. lm. l f . lx. m f (n f x)

MUL def
= ln. lm. l f . n (m f)

6.1.2 Alpha-Conversion, Beta-Rule and Capture-Avoiding
Substitution

The names of the formal parameters we choose for a given function should not
matter. Therefore, any two expressions that differ just for the particular choice of
l -abstracted variables and have the same structure otherwise, should be considered
as equal.

For example, we do not want to distinguish between the terms

lx. (x2 �2x+5) ly. (y2 �2y+5)

On the other hand, the expressions

x2 �2x+5 y2 �2y+5

must be distinguished, because depending on the context where they are used, the
symbols x and y could have a different meaning.

We say that two terms are a-convertible if one is obtained from the other by
renaming some l -abstracted variables. We call free the variables x whose occurrences
are not under the scope of a l binder.

Definition 6.3 (Free variables). The set of free variables occurring in a term is
defined by structural recursion:

fv(x) def
= {x}

fv(lx.t) def
= fv(t)\{x}

fv(t0 t1)
def
= fv(t0)[fv(t1)

fv(t ! t0, t1)
def
= fv(t)[fv(t0)[fv(t1)

DRAFT

132 6 Denotational Semantics of IMP

The second equation highlights that the lambda abstraction is a binding operator.

Definition 6.4 (Alpha-conversion). We define a-conversion as the equivalence in-
duced by letting

lx. t = ly. (t[y/x]) if y 62 fv(t)

where t[y/x] denotes the substitution of x with y applied to the term t.

Note the side condition y 62 fv(t), which is needed to avoid ‘capturing’ other free
variables appearing in t.

For example:

l z. z2 �2y+5 = lx. x2 �2y+5 6= ly. y2 �2y+5

We have now all ingredients to define the basic computational rule, called b -rule,
which explains how to apply a function to an argument:
Definition 6.5 (Beta-rule). Let t, t 0 be two lambda terms we define:

(lx.t 0) t = t 0[t/x]

this axiom is called b -rule.
In defining alpha-conversion and the beta-rule we have used substitutions like

[y/x] and [t/x]. Let us now try to formalise the notion of substitution by structural
recursion. What is wrong with the following naive attempt?

y[t/x] def
=

⇢
t if y = x
y if y 6= x

(ly.t 0)[t/x] def
=

⇢
ly.t 0 if y = x
ly.(t 0[t/x]) if y 6= x

(t0 t1)[t/x] def
= (t0[t/x]) (t1[t/x])

(t 0 ! t0, t1)[t/x] def
= (t 0[t/x]) ! (t0[t/x]),(t1[t/x])

Example 6.4 (Substitution, without alpha-renaming). Consider the terms

t def
= lx. ly. (x2 �2y+5) t 0 def

= y.

and apply t to t 0:

t t 0 = (lx. ly. (x2 �2y+5)) y
= (ly. (x2 �2y+5))[y/x]
= ly. ((x2 �2y+5)[y/x])
= ly. (y2 �2y+5)

It happens that the free variable y 2 fv(t t 0) has been ‘captured’ by the lambda-
abstraction ly. Instead, free variables occurring in t should remain free during the
application of the substitution [t/x].

DRAFT

6.2 Denotational Semantics of IMP 133

Thus we need to correct the above version of substitution for the case related
to (ly.t 0)[t/x] by applying first the alpha-conversion to ly.t 0 (to make sure that if
y 2 fv(t), then the free occurrences of y in t will not be captured by ly when replacing
x in t 0) and then the substitution [t/x]. Formally, we let:

Definition 6.6 (Capture-avoiding substitution). Let t, t 0, t0 and t1 be four lambda
terms, we define:

y[t/x] =

⇢
t if y = x
y if y 6= x

(ly.t 0)[t/x] = l z.((t 0[z/y])[t/x]) if z 62 fv(ly. t 0)[fv(t)[{x}
(t0 t1)[t/x] = (t0[t/x]) (t1[t/x])

(t 0 ! t0, t1)[t/x] = (t 0[t/x]) ! (t0[t/x]),(t1[t/x])

Note that the matter of names is not so trivial. In the second equation we first
rename y in t 0 with a fresh name z, then proceed with the substitution of x with t.
As explained, this solution is motivated by the fact that y might not be free in t,
but it introduces some non-determinism in the equations due to the arbitrary nature
of the new name z. This non-determinism immediately disappear if we regard the
terms up to the alpha-conversion equivalence, as previously introduced. Obviously
a-conversion and substitution should be defined at the same time to avoid circularity.
By using the a-conversion we can prove statements like lx.x = ly.y.

Example 6.5 (Application with alpha-renaming). Consider the terms t, t 0 from Exam-
ple 6.4:

t t 0 = (lx. ly. (x2 �2y+5)) y
= (ly. (x2 �2y+5))[y/x]
= l z. ((x2 �2y+5)[z/y][y/x])
= l z. ((x2 �2z+5)[y/x])
= l z. (y2 �2z+5)

Finally we introduce some notational conventions for omitting parentheses when
defining the domains and codomains of functions:

A ! B⇥C = A ! (B⇥C) A⇥B⇥C = (A⇥B)⇥C
A⇥B ! C = (A⇥B) ! C A ! B ! C = A ! (B ! C)

6.2 Denotational Semantics of IMP

As we said we will use lambda notation as meta-language; this means that we will
express the semantics of IMP by translating IMP syntax to lambda terms.

The denotational semantics of IMP consists of three separate interpretation func-
tions, one for each syntax category (Aexp,Bexp,Com):

DRAFT

134 6 Denotational Semantics of IMP

Aexp: each arithmetic expression is mapped to a function from states to integers:

A : Aexp ! (S ! Z)

Bexp: each boolean expression is mapped to a function from states to booleans:

B : Bexp ! (S ! B)

Com: each command is mapped to a (partial) function from states to states:

C : Com ! (S * S)

6.2.1 Denotational Semantics of Arithmetic Expressions: The
Function A

The denotational semantics of arithmetic expressions is defined as the function:

A : Aexp ! S ! Z

We shall define A by structural recursion over the syntax of arithmetic expressions.
Let us fix some notation: We will rely on definitions of the form

A JnK def
= ls .n

with the following meaning:

• A : Aexp ! S ! Z is the interpretation function,
• n is an arithmetic expression (i.e., a term in Aexp). The surrounding brackets J

and K emphasise that it is a piece of syntax rather then part of the metalanguage.
• the expression A JnK is a function whose type is S ! Z. Notice that also the right

part of the equation must be of the same type S ! Z.

We shall often define the interpretation function A by writing equalities such as:

A JnKs def
= n

instead of

A JnK def
= ls .n

In this way, we simplify the notation in the right-hand side. Notice that both sides of
the equation (A JnKs and n) have the type Z.

Definition 6.7 (Denotational semantics of arithmetic expressions). The denota-
tional semantics of arithmetic expressions is defined by structural recursion as:

DRAFT

6.2 Denotational Semantics of IMP 135

A JnKs def
= n

A JxKs def
= sx

A Ja0 +a1Ks def
= (A Ja0Ks)+(A Ja1Ks)

A Ja0 �a1Ks def
= (A Ja0Ks)� (A Ja1Ks)

A Ja0 ⇥a1Ks def
= (A Ja0Ks)⇥ (A Ja1Ks)

Let us briefly comment on the above definitions.

Constants: The denotational semantics of any constant n is just the con-
stant function that always returns n for any s .

Variables: The denotational semantics of any variable x is the function
that takes a memory s and returns the value of x in s .

Binary expressions: The denotational semantics of any binary expression evaluates
the arguments (with the same given s) and combines the
results by exploiting the corresponding arithmetic operation.

Note that the symbols +, � and ⇥ are overloaded: in the left hand side they represent
elements of the syntax, while in the right hand side they represent operators of the
metalanguage. Similarly for the symbol n in the first equation.

6.2.2 Denotational Semantics of Boolean Expressions: The
Function B

The denotational semantics of boolean expression is given by a function B defined
in a very similar way to A . The only difference is that the values to be returned are
elements of B and not of Z and that B is not always defined in terms of itself: some
defining equations exploit the function A .

Definition 6.8 (Denotational semantics of boolean expressions). The denotational
semantics of boolean expressions is defined by structural recursion as follows:

B JvKs def
= v

B Ja0 = a1Ks def
= (A Ja0Ks) = (A Ja1Ks)

B Ja0  a1Ks def
= (A Ja0Ks)  (A Ja1Ks)

B J¬b0Ks def
= ¬ (B JbKs)

B Jb0 _b1Ks def
= (B Jb0Ks)_ (B Jb1Ks)

B Jb0 ^b1Ks def
= (B Jb0Ks)^ (B Jb1Ks)

DRAFT

136 6 Denotational Semantics of IMP

6.2.3 Denotational Semantics of Commands: The Function C

We are now ready to present the denotational semantics of commands. As one might
expect, the interpretation function of commands is the most complex. It has the
following type:

C : Com ! (S * S)

Since commands can diverge, the codomain of C is the set of partial functions from
memories to memories. As we have discussed in Example 5.14, for each partial
function we can define an equivalent total function. So we define:

C : Com ! (S ! S?)

This will simplify the notation.
Instead of presenting the whole, structurally recursive, definition of C and then

commenting the defining equations, we give each rule separately accompanied by
the necessary explanations.

We start from the simplest commands: skip and assignments.

C JskipKs def
= s (6.1)

We see that C JskipK is the identity function: skip does not modify the memory.

C Jx := aKs def
= s [A JaKs /x] (6.2)

The denotational semantics of the assignment evaluates the arithmetic expression
a via A and then modifies the memory assigning the corresponding value to the
location x.

Let us now consider the sequential composition of two commands. In interpreting
c0;c1 we first interpret c0 in the starting memory and then c1 in the state produced
by c0. The problem is that from the first application of C Jc0K we obtain a value in
S?, not necessarily in S , so we can not apply C Jc1K. To work this problem out we
introduce a lifting operator (·)⇤: it takes a function in S ! S? and returns a function
in S? ! S?, i.e., its type is (S ! S?) ! (S? ! S?).

Definition 6.9 (Lifting). Let f : S ! S?, we define a function f ⇤ : S? ! S? as
follows:

f ⇤(x) =

⇢
? if x = ?
f (x) otherwise

So the definition of the interpretation function for c0;c1 is:

C Jc0;c1Ks def
= C Jc1K⇤ (C Jc0Ks) (6.3)

Note that we apply the lifted version C Jc1K⇤ of C Jc1K to the argument C Jc0K.

DRAFT

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the l -calculus provides
a conditional operator, then we have immediately:

C Jif b then c0 else c1Ks def
= B JbKs ! C Jc0Ks ,C Jc1Ks (6.4)

The definition of the denotational semantics of the while command is more
intricate. We could think to define the interpretation simply as:

C Jwhile b do cKs def
= B JbKs ! C Jwhile b do cK⇤ (C JcKs) ,s

Obviously this definition is not a structural recursive, because the same expression
C Jwhile b do cK whose meaning we want to define appears in the right-hand side
of the defining equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, like B JbK and C JcK. To solve this issue we will
reduce the problem of defining the semantics of iteration to a fixpoint calculation.
Let us define a function Gb,c : (S ! S?) ! S ! S?:

Gb,c
def
= lj.ls .B JbKs ! j⇤(C JcKs),s

S?

S!S?

(S!S?)!S!S?

The function Gb,c takes a function j : S ! S?, and returns the function

ls .B JbKs ! j⇤(C JcKs),s

of type is S ! S?, which given a memory s evaluates B JbKs and depending on the
outcome returns either j⇤(C JcKs) or s . Note that the definition of Gb,c refers only
to subterms of the command while b do c. Clearly we require that C Jwhile b do cK
is a fixpoint of Gb,c, i.e., that:

C Jwhile b do cK = Gb,c C Jwhile b do cK

As there can be several fixpoints for Gb,c, we define C Jwhile b do cK as the least
one. Next we show that Gb,c is a monotone and continuous function, so that we can
prove that Gb,c has a least fixpoint and that by the fixpoint Theorem 5.6:

C Jwhile b do cK def
= fix Gb,c =

G

n2N
G n

b,c(?S!S?) (6.5)

To prove continuity we will consider Gb,c as operating on partial functions:

Gb,c : (S * S) �! (S * S).

DRAFT

138 6 Denotational Semantics of IMP

Partial functions in S * S can be represented as sets of pairs (s ,s 0) that we write
as formulas s �! s 0. Then the effect of Gb,c can be represented by the immediate
consequence operators for the following set of rules.

RGb,c
def
=

⇢
B JbKs C JcKs = s 00 s 00 ! s 0

s ! s 0
,

¬B JbKs

s ! s

�

Note that there are infinitely many instance of the rules, but each rule has only a
finite number of premises and that

bRGb,c = Gb,c.

The only formulas appearing in the rules are s 00 �! s 0 (as a premise of the first rule),
s �! s 0 and s �! s (as conclusions); the other formulas express side-conditions:
B JbKs ^ C JcKs = s 00 for the first rule and ¬B JbKs for the second rule. An
instance of the first rule schema is obtained by picking up two memories s and s 00

such that B JbKs is true and C JcKs = s 00. Then for every s 0 such that s 00 ! s 0

we can derive s ! s 0. The second rule schema is an axiom expressing that s ! s
whenever ¬B JbKs .

Since all the rules obtained in this way have a finite number of premises (actually
one or none), we can apply Theorem 5.8, which ensures the continuity of bRGb,c . Now
by using Theorem 5.10 we have:

fix Gb,c = fix bRGb,c = IRGb,c

Let us conclude this section with three examples which explain how to use the
definitions we have given.

Example 6.6. Let us consider the command:

w = while true do skip

now we will see how to calculate its semantics. We have C JwK def
= fix Gtrue,skip where

Gtrue,skipjs = B JtrueKs ! j⇤ (C JskipKs) ,s
= j⇤ (C JskipKs)

= j⇤s
= js

So we have Gtrue,skipj = j , that is Gtrue,skip is the identity function. Then each
function j is a fixpoint of Gtrue,skip, but we are looking for the least fixpoint. This
means that the sought solution is the least function in the CPO? of functions S ! S?.
Then we have

fix Gtrue,skip = ls .?S? .

In the following we will often write just G when the subscripts b and c are obvious
from the context.

DRAFT

6.2 Denotational Semantics of IMP 139

Example 6.7. Let us consider the commands

w def
= while b do c

c0 def
= if b then (c ; w) else skip

Now we show the denotational equivalence between w and c0 for any b and c.
Since C JwK is a fixpoint we have:

C JwK = G (C JwK) = ls .B JbKs ! C JwK⇤ (C JcKs),s

For c0 we have:

C Jif b then (c;w) else skipK = ls .B JbKs ! C Jc;wKs ,C JskipKs
= ls .B JbKs ! C JwK⇤ (C JcKs),s

Hence C JwK = C Jc0K.

Example 6.8. Let us consider the command:

c def
= while x 6= 0 do x := x�1

we have C JcK def
= fix G where:1

G j def
= ls . B Jx 6= 0K ! j⇤(C Jx := x�1Ks),s
= l s . sx 6= 0 ! j⇤s [sx�1/x],s
= ls .sx 6= 0 ! j s [sx�1/x],s

Let us see some calculation for approximating the fixpoint:

j0 = G 0 ?S!S? = ?S!S? = l s .?S?

j1 = G j0

= l s .sx 6= 0 ! ?S!S?| {z }
j0

s [sx�1/x],s

= l s .sx 6= 0 ! ?S? ,s
j2 = G j1

= ls . sx 6= 0 ! (ls 0. s 0x 6= 0 ! ?S? ,s 0
| {z }

j1

) s [sx�1/x],s

Now we have the following possibilities for computing j2s :

sx < 0) Then sx 6= 0 and s [sx�1/x]x 6= 0 and thus j2s = ?S? .
sx = 0) Then sx 6= 0 is false and thus j2s = s = s [0/x]
sx = 1) Then sx 6= 0 and s [sx�1/x]x = 0 and thus j2s = s [sx�1/x] = s [0/x].

1 Note that in the last step we can remove the lifting operation from j⇤ because s [sx�1/x] 6= ?.

DRAFT

140 6 Denotational Semantics of IMP

sx > 1) Then sx 6= 0 and s [sx�1/x]x 6= 0 and thus j2s = ?S? .

Summarising:

sx < 0

j2s = ?

sx = 0

j2s = s [0/x]

sx = 1

j2s = s [0/x]

sx > 1

j2s = ?

So we have:
j2 = ls . sx < 0 ! ? , (sx < 2 ! s [0/x],?)

We can conjecture that 8n 2 N. P(n), where:

P(n)
def
= (jn = ls . sx < 0 ! ? , (sx < n ! s [0/x],?))

We are now ready to prove our conjecture by mathematical induction on n.

Base case: The base case is trivial, indeed we know j0 = ls . ? and

ls . sx < 0 ! ? , (sx < 0 ! s [0/x],?)
= ls . sx < 0 ! ? , (0  sx < 0 ! s [0/x],?)
= ls . sx < 0 ! ? , (false ! s [0/x],?)
= ls . sx < 0 ! ? , ?
= ?

Inductive case: For the inductive case, let us assume

P(n)
def
=
�
jn = ls . sx < 0 ! ? , (sx < n ! s [0/x],?)

�
.

We want to prove:

P(n+1)
def
=
�
jn+1 = ls . sx < 0 ! ? , (sx < n+1 ! s [0/x],?)

�

By definition:

jn+1 = G jn = ls . sx 6= 0 ! jn(s [sx�1/x]),s

Letting s 0 def
= s [sx�1/x] and the inductive hypothesis, we have:

jns 0 = s 0x < 0 ! ? , (s 0x < n ! s 0[0/x],?)

= sx�1 < 0 ! ? , (sx�1 < n ! s [0/x],?)

= sx < 1 ! ? , (sx < n+1 ! s [0/x],?)

Thus:

jn+1s = sx 6= 0 ! (sx < 1 ! ? , (sx < n+1 ! s [0/x],?)) , s

Now we have the following possibilities for computing jn+1s :

DRAFT

6.3 Equivalence Between Operational and Denotational Semantics 141

sx < 0) Then sx 6= 0 and sx < 1, thus jn+1s = ?.
sx = 0) Then sx 6= 0 is false and thus jn+1s = s =

s [0/x]
1  sx < n+1) Then sx 6= 0, sx < 1 is false and sx < n+1,

thus jn+1s = s [0/x].
sx � n+1) Then sx 6= 0, sx < 1 is false and so is sx <

n+1, thus jn+1s = ?.

Summarising:

sx < 0

jn+1s = ?

sx = 0

jn+1s = s [0/x]

1  sx < n+1

jn+1s = s [0/x]

sx � n+1

jn+1s = ?

Then:

jn+1 = ls . sx < 0 ! ? , (sx < n+1 ! s [0/x],?)

which proves P(n+1).

Finally we have:

C JcK = fix G =
G

n2N
G n? =

G

n2N
jn = ls .sx < 0 ! ?,s [0/x]

6.3 Equivalence Between Operational and Denotational
Semantics

This section deals with the issue of equivalence between the two semantics of
IMP introduced up to now. As we will show, the denotational and operational
semantics agree. As usual we will handle first arithmetic and boolean expressions,
then assuming the proved equivalences we will show that operational and denotational
semantics agree also on commands.

6.3.1 Equivalence Proofs For Expressions

We start by considering arithmetic expressions. We want to prove that the operational
and denotational semantics coincide, that is, the results of evaluating an arithmetic
expression both by operational and denotational semantics are the same. If we
regard the operational semantics as an interpreter and the denotational semantics
as a compiler we are proving that interpreting an IMP program and executing its
compiled version starting from the same memory leads to the same result.

Theorem 6.1. For all arithmetic expressions a 2 Aexp, the predicate P(a) holds,
where:

DRAFT

142 6 Denotational Semantics of IMP

P(a)
def
= 8s 2 S . ha,si ! A JaKs

Proof. The proof is by structural induction on arithmetic expressions.

Const: P(n)
def
= 8s . hn,si ! A JnKs holds because, given a generic s , we have

hn,si ! n and A JnKs = n.
Vars: P(x) def

= 8s . hx,si ! A JxKs holds because, given a generic s , we have
hx,si ! sx and A JxKs = sx.

Ops: Let us generalize the proof for the binary operations of arithmetic expres-
sions. Consider two arithmetic expressions a0 and a1 and a binary operator
� 2 {+,�,⇥} of IMP, whose corresponding semantic operator is ·. We
assume:

P(a0)
def
= ha0,si ! A Ja0Ks

P(a1)
def
= ha1,si ! A Ja1Ks

and we want to prove

P(a0 �a1)
def
= ha0 �a1,si ! A Ja0 �a1Ks .

By using the inductive hypothesis we derive:

ha0 �a1,si ! A Ja0Ks ·A Ja1Ks

Finally, by definition of A

A Ja0Ks ·A Ja1Ks = A Ja0 �a1Ks .

ut

The case of boolean expressions is completely similar to that of arithmetic expres-
sions, so we leave the proof as an exercise (see Problem 6.2).

Theorem 6.2. For all boolean expressions b 2 Bexp, the predicate P(b) holds,
where:

P(b)
def
= 8s 2 S . hb,si ! B JbKs

From now on we will assume the equivalence between denotational and opera-
tional semantics for boolean and arithmetic expressions.

6.3.2 Equivalence Proof for Commands

Central to the proof of equivalence between denotational and operational semantics
is the case of commands. Operational and denotational semantics are defined in
very different formalisms: on the one hand we have an inference rule system which

DRAFT

6.3 Equivalence Between Operational and Denotational Semantics 143

allows to calculate the execution of each command, on the other hand we have a
function which associates to each command its functional meaning. So to show the
equivalence between the two semantics we will prove the following property:

Theorem 6.3. 8c 2 Com. 8s ,s 0 2 S . hc,si ! s 0 () C JcKs = s 0.

As usual we divide the proof in two parts:

Completeness: 8c 2 Com, 8s ,s 0 2 S we prove

P(hc,si ! s 0)
def
= C JcKs = s 0.

Correctness: 8c 2 Com we prove

P(c) def
= 8s ,s 0 2 S . C JcKs = s 0) hc,si ! s 0.

Notice that in this way the non defined cases are also handled for the equivalence:
for instance we have

hc,si 6!) C JcKs = ?S?

since otherwise, assuming C JcKs = s 0 for some s 0 2 S , it would follow that
hc,si ! s 0. Similarly in the opposite direction.

C JcKs = ?S?) hc,si 6!

6.3.2.1 Completeness of the Denotational Semantics

Let us prove the first part of Theorem 6.3. We let

P
�
hc,si ! s 0� def

= C JcKs = s 0

and prove that P(hc,si ! s 0) holds for any c 2 Com and s ,s 0 2 S .
We proceed by rule induction. So for each rule we will assume the property holds

for the premises and we will prove the property holds for the conclusion.

skip: Let us consider the operational rule for the skip

hskip,si ! s

We want to prove:

P(hskip,si ! s)
def
= C JskipKs = s

Obviously the proposition is true by definition of denotational semantic.
assign: Let us consider the rule for the assignment command:

DRAFT

144 6 Denotational Semantics of IMP

ha,si ! m

hx := a,si ! s [m/x]

We can assume ha,si ! m and therefore A JaKs = m by the correspon-
dence between the operational and denotational semantics of arithmetic
expressions.
We want to prove:

P(hx := a,si ! s [m/x])
def
= C Jx := aKs = s [m/x]

By the definition of denotational semantics:

C Jx := aKs = s [A JaKs /x] = s [m/x]

seq: Let us consider the concatenation rule:

hc0,si ! s 00 ⌦
c1,s 00↵! s 0

hc0;c1,si ! s 0

We assume:

P(hc0,si ! s 00)
def
= C Jc0Ks = s 00

P(
⌦
c1,s 00↵! s 0)

def
= C Jc1Ks 00 = s 0

We want to prove:

P(hc0;c1,si ! s 0)
def
= C Jc0;c1Ks = s 0

By denotational semantics definition and inductive hypotheses:

C Jc0;c1Ks = C Jc1K⇤ (C Jc0Ks) = C Jc1K⇤ s 00 = C Jc1Ks 00 = s 0

Note that the lifting operator can be removed because s 00 6= ? by inductive
hypothesis.

iftt: Let us consider the rule:

hb,si ! true hc0,si ! s 0

hif b then c0 else c1,si ! s 0

We assume:

• hb,si ! true and therefore B JbKs = true by the correspondence be-
tween operational and denotational semantics for boolean expressions;

• P(hc0,si ! s 0)
def
= C Jc0Ks = s 0.

We want to prove:

DRAFT

6.3 Equivalence Between Operational and Denotational Semantics 145

P(hif b then c0 else c1,si ! s 0)
def
= C Jif b then c0 else c1Ks = s 0

In fact, we have:

C Jif b then c0 else c1Ks = B JbKs ! C Jc0Ks ,C Jc1Ks
= true ! s 0,C Jc1Ks
= s 0

ifff: The proof for the second rule of the conditional coommand is completely
analogous to the previous one and thus omitted.

whff: Let us consider the rule:

hb,si ! false

hwhile b do c,si ! s

We assume hb,si ! false and therefore B JbKs = false. We want to
prove:

P(hwhile b do c,si ! s)
def
= C Jwhile b do cKs = s

By the fixpoint property of the denotational semantics:

C Jwhile b do cKs = B JbKs ! C Jwhile b do cK⇤ (C JcKs),s
= false ! C Jwhile b do cK⇤ (C JcKs),s
= s

whtt: At last we consider the second rule of the while command

hb,si ! true hc,si ! s 00 ⌦
while b do c,s 00↵! s 0

hwhile b do c,si ! s 0

We assume:

• hb,si ! true and therefore B JbKs = true
• P(hc,si ! s 00)

def
= C JcKs = s 00

• P(hwhile b do c,s 00i ! s 0)
def
= C Jwhile b do cKs 00 = s 0

We want to prove:

P(hwhile b do c,si ! s 0)
def
= C Jwhile b do cKs = s 0

By the definition of the denotational semantics and inductive hypotheses:

DRAFT

146 6 Denotational Semantics of IMP

C Jwhile b do cKs = B JbKs ! C Jwhile b do cK⇤ (C JcKs) ,s
= true ! C Jwhile b do cK⇤ s 00,s
= C Jwhile b do cK⇤ s 00

= C Jwhile b do cKs 00

= s 0

Note that the lifting operator can be removed since s 00 6= ?.

6.3.2.2 Correctness of the Denotational Semantics

Let us conclude the proof of Theorem 6.3 by showing the correctness of the denota-
tional semantics. We need to prove, for all c 2 Com:

P(c) def
= 8s ,s 0 2 S . C JcKs = s 0) hc,si ! s 0

Since the denotational semantics is given by structural recursion we will proceed
by induction on the structure of commands.

skip: We need to prove:

P(skip)
def
= 8s ,s 0. C JskipKs = s 0) hskip,si ! s 0

By definition we have C JskipKs = s and hskip,si ! s is an axiom of
the operational semantics.

assign: We need to prove:

P(x := a)
def
= 8s ,s 0. C Jx := aKs = s 0) hx := a,si ! s 0

By denotational semantics definition we have s 0 = s [A JaKs /x] and by the
equivalence between operational and denotational semantics for expres-
sions we have ha,si ! A JaKs , thus we can apply the rule (assign) to
conclude

hx := a,si ! s [A JaKs /x].

seq: We assume:

• P(c0)
def
= 8s ,s 00. C Jc0Ks = s 00) hc0,si ! s 00

• P(c1)
def
= 8s 00,s 0. C Jc1Ks 00 = s 0) hc1,s 00i ! s 0

We want to prove:

P(c0;c1)
def
= 8s ,s 0. C Jc0;c1Ks = s 0) hc0;c1,si ! s 0

We assume C Jc0;c1Ks = s 0 and prove hc0;c1,si ! s 0. We have

DRAFT

6.3 Equivalence Between Operational and Denotational Semantics 147

C Jc0;c1Ks = C Jc1K⇤ (C Jc0Ks) = s 0.

Since s 0 6= ?, it must be C Jc0Ks 6= ?, i.e., we can assume the termination
of c0 and can omit the lifting operator:

C Jc0;c1Ks = C Jc1K(C Jc0Ks) = s 0

Let C Jc0Ks = s 00. We have C Jc1Ks 00 = s 0. Then we can apply modus
ponens to the inductive assumptions P(c0) and P(c1), to get hc0,si ! s 00

and hc1,s 00i ! s 0. Thus we can apply the inference rule:

hc0,si ! s 00 ⌦
c1,s 00↵! s 0

hc0;c1,si ! s 0

to conclude hc0;c1,si ! s 0.
if: We assume:

• P(c0)
def
= 8s ,s 0. C Jc0Ks = s 0) hc0,si ! s 0

• P(c1)
def
= 8s ,s 0. C Jc1Ks = s 0) hc1,si ! s 0

We need to prove:

P(if b then c0 else c1)
def
= 8s ,s 0. C Jif b then c0 else c1Ks = s 0

) hif b then c0 else c1,si ! s 0

Let us assume the premise C Jif b then c0 else c1Ks = s 0 and prove that
hif b then c0 else c1,si ! s 0. By definition:

C Jif b then c0 else c1Ks = B JbKs ! C Jc0Ks ,C Jc1Ks

Now, either B JbKs = false or B JbKs = true.
If B JbKs = false, we have also hb,si ! false. Then:

C Jif b then c0 else c1Ks = C Jc1Ks = s 0

By modus ponens on the inductive hypothesis P(c1) we have hc1,si ! s 0.
Thus we can apply the rule:

hb,si ! false hc1,si ! s 0

hif b then c0 else c1,si ! s 0

to conclude hif b then c0 else c1,si ! s 0.
The case where B JbKs = true is completely analogous and thus omitted.

while: We assume:

P(c) def
= 8s ,s 00. C JcKs = s 00) hc,si ! s 00

DRAFT

148 6 Denotational Semantics of IMP

We need to prove:

P(while b do c) def
= 8s ,s 0. C Jwhile b do cKs = s 0

) hwhile b do c,si ! s 0

By definition C Jwhile b do cKs = fix Gb,c s =
⇣F

n2NG n
b,c?

⌘
s so:

C Jwhile b do cKs = s 0) hwhile b do c,si ! s 0

,⇣F
n2NG n

b,c?
⌘

s = s 0) hwhile b do c,si ! s 0

,
8n 2 N.

⇣
G n

b,c?s = s 0) hwhile b do c,si ! s 0
⌘

Notice that the last two properties are equivalent. In fact, if there is a pair
s ! s 0 in the limit, it must also occur in G k

b,c? for some k. Vice versa, if it
belongs to G n

b,c? for some n then it belongs also to the limit. Let

A(n)
def
= 8s ,s 0. G n

b,c?s = s 0) hwhile b do c,si ! s 0

We prove that 8n. A(n) by mathematical induction.

Base case: We have to prove A(0), namely:

8s ,s 0. G 0
b,c?s = s 0) hwhile b do c,si ! s 0

Since G 0
b,c?s = ?s = ? and s 0 6= ? the premise is false

and hence the implication is true.
Ind. case: Let us assume

A(n)
def
= 8s ,s 0. G n

b,c?s = s 0) hwhile b do c,si ! s 0.

We want to show that

A(n+1)
def
= 8s ,s 0. G n+1

b,c ?s = s 0) hwhile b do c,si ! s 0.

We assume G n+1
b,c ?s = Gb,c

⇣
G n

b,c?
⌘

s = s 0, that is

B JbKs !
�
G n

b,c?
�⇤

(C JcKs) ,s = s 0

Now either B JbKs = false or B JbKs = true.
• If B JbKs = false, we have hb,si ! false and s 0 = s .

Now by using the rule (whff):

hb,si ! false

hwhile b do c,si ! s

DRAFT

6.4 Computational Induction 149

we conclude hwhile b do c,si ! s .
• if B JbKs = true we have hb,si ! true and

�
G n

b,c?
�⇤

(C JcKs) = s 0.

Since s 0 6= ? there must exists some s 00 6= ? with
C JcKs = s 00 and by structural induction hc,si ! s 00.
Since

⇣
G n

b,c?
⌘⇤

(C JcKs) =
⇣

G n
b,c?

⌘
s 00 = s 0 we have

by the mathematical induction hypothesis A(n) that
⌦
while b do c,s 00↵! s 0.

Finally by using the rule (whtt):

hb,si ! true hc,si ! s 00 ⌦
while b do c,s 00↵! s 0

hwhile b do c,si ! s 0

we conclude hwhile b do c,si ! s 0.

6.4 Computational Induction

How are we able to prove properties on fixpoints? To fill this gap we introduce
computational induction, which applies to a class of properties corresponding to
inclusive sets.

Definition 6.10 (Inclusive property). Let (D,v) be a CPO, let P ✓ D be a set, we
say that P is an inclusive set if and only if:

(8n 2 N,dn 2 P))
G

n2N
dn 2 P

A property is inclusive if the set of values on which it holds is inclusive.

Intuitively, a set P is inclusive if whenever we form a chain out of elements in P,
then the limit of the chain is also in P, i.e., P is inclusive if and only if it is a CPO.

Example 6.9 (Non inclusive property). Let ({a,b}⇤ [{a,b}•,v) be a CPO where
x v y , 9z. y = xz. So the elements of the CPO are sequences of a and b and x v y
iff x is a finite prefix of y. Let us now define the following property:

• x 2 {a,b}⇤ [{a,b}• is fair iff 6 9y 2 {a,b}⇤. x = ya• _ x = yb•

Fairness is the property of an arbiter which does not favor one of two competitors all
the times from some point on. Fairness is not inclusive, indeed,

• the sequence an is finite and thus fair for any n 2 N;

DRAFT

150 6 Denotational Semantics of IMP

•
F

n2N an = a•;
• a• is obviously not fair.

Theorem 6.4 (Computational Induction). Let P be a property, (D,v) a CPO? and
f a monotone and continuous function on it. Then the inference rule:

P inclusive ? 2 P 8d 2 D. (d 2 P) f (d) 2 P)

fix f 2 P

is sound.

Proof. Given the second and the third premises, it is easy to prove by mathematical
induction that 8n. f n(?) 2 P. Then also

F
n2N f n(?) 2 P since P is inclusive and

fix(f) =
F

n2N f n(?). ut

Example 6.10 (Computational induction). Let us consider the command

w def
= while x 6= 0 do x := x�1

from Example 6.8. We want to prove the property

C Jwhile x 6= 0 do x := x�1Ks = s 0) sx � 0^s 0 = s [0/x]

By definition:

C JwK = fixG where G def
= lj. ls . sx 6= 0 ! js [sx�1/x],s

Let us define the property:

P(j)
def
= 8s ,s 0. (js = s 0) sx � 0^s 0 = s [0/x])

we will show that the property is inclusive, that is, taken a chain {ji}i2N we have:

(8i 2 N. P(ji))) P(
G

i2N
ji)

Let us assume 8i 2 N. P(ji), namely that:

8i,s ,s 0.
�
jis = s 0) sx � 0^s 0 = s [0/x]

�

We want to prove that

8s ,s 0.

(
G

i2N
ji)s = s 0) sx � 0^s 0 = s [0/x]

!

Suppose (
F

i2N ji)s = s 0. We are left to prove that sx � 0 ^ s 0 = s [0/x]. By
(
F

i2N ji)s = s 0 we have that 9k 2 N. jks = s 0. Then we can conclude the thesis
by P(jk).

DRAFT

6.4 Computational Induction 151

We can now use the computational induction:

P inclusive P(?) 8j. P(j)) P(G j)

P(fixG)

as P(fixG) = P(C JwK).

P inclusive: It has been proved above.
P(?): It is obvious, since ?s = s 0 is always false.
8j. P(j)) P(G j): We assume

P(j)
def
= 8s ,s 0. (js = s 0) sx � 0^s 0 = s [0/x])

and we want to prove

P(G j) = 8s ,s 0. (G js = s 0) sx � 0^s 0 = s [0/x])

We assume the premise

G js =
�
sx 6= 0 ! js [sx�1/x],s

�
= s 0

and need to prove that sx � 0^s 0 = s [0/x]. There are two
cases to consider:

• If sx = 0, we have

(sx 6= 0 ! js [sx�1/x],s) = s

therefore s 0 = s and trivially

sx = 0 � 0 s 0 = s = s [0/x].

• If sx 6= 0, we have

(sx 6= 0 ! js [sx�1/x],s) = js [sx�1/x].

Let s 00 = s [sx�1/x]. We exploit P(j) over s 00,s 0:

j s [sx�1/x]| {z }
s 00

= s 0) s 00x � 0^s 0 = s 00[0/x]

we have:

s 00x � 0 , s [sx�1/x]x � 0 , sx � 1) sx � 0

s 0 = s 00[0/x] = s [sx�1/x][
0/x] = s [0/x]

DRAFT

152 6 Denotational Semantics of IMP

Finally, we can conclude by computational induction that
the property P holds for the fixpoint fixG and thus for the
semantics of the command w as C JwK = fixG .

Problems

6.1. The following problems serve to get acquainted with the use of variables in the
lambda-notation.

1. Is lx. lx. x a-convertible to one or more of the following expressions?

a. ly. lx. x
b. ly. lx. y
c. ly. ly. y
d. lx. ly. x
e. l z. lw. w

2. Is ((lx. ly. x) y) equivalent to one or more of the following expressions?

a. ly. ly. y
b. ly. y
c. ly. z
d. l z. y
e. lx. y

6.2. Prove Theorem 6.2.

6.3. Prove that the commands

c def
= x := 0; if x = 0 then c1 else c2 c0 def

= x := 0; c1

are semantically equivalent for any other commands c1,c2. Carry out the proof using
both the operational semantics and the denotational semantics.

6.4. Prove that the two commands

w def
= while b do c w0 def

= while b do (if b then c else skip)

are equivalent for any b and c using the denotational semantics.

6.5. Prove that C Jwhile true do skipK = C Jwhile true do x : = x+1K.

6.6. Prove that C Jwhile x 6= 0 do x := 0K = C Jx := 0K.

6.7. Prove that

C Jwhile x = 0 do skipK = C Jif x = 0 then (while true do x := 0) else skipK .

DRAFT

6.4 Computational Induction 153

6.8. Introduce in IMP the command

repeat n times c

with n natural number, instead of the command while. Its denotational semantics is

C Jrepeat n times cKs = (C JcK)ns

1. Define the operational semantics of the new command.
2. Extend the proof of equivalence of the operational and denotational semantics of

IMP to take into account the new command.
3. Prove that the execution of every command terminates.

6.9. Add to IMP the command

reset x in c

with the following informal meaning: execute the command c in the state where x is
reset to 0, then after the execution of c reassign to location x its original value.

1. Define the operational semantics of the new command.
2. Define the denotational semantics of the new command.
3. Extend the proof of equivalence of the operational and denotational semantics of

IMP to take into account the new command.

6.10. Add to IMP the command

do c undoif b

with the following informal meaning: execute c; if after the execution of c the boolean
expression b is satisfied, then go back to the state before the execution of c.

1. Define the operational semantics of the new command.
2. Define the denotational semantics of the new command.
3. Extend the proof of equivalence of the operational and denotational semantics of

IMP to take into account the new command.

6.11. Extend IMP with the command

try c1 = c2 else c3

that returns the store obtained by computing c1 if it coincides with the one obtained
by computing c2; if they differ returns the store obtained by computing c3; it diverges
otherwise.

1. Define the operational semantics of the new command.
2. Define the denotational semantics of the new command.
3. Extend the proof of correspondence between the operational and the denotational

semantics.

DRAFT

154 6 Denotational Semantics of IMP

6.12. Consider the IMP command

w def
= while y > 0 do (r := r ⇥ x ; y := y�1)

Compute the denotational semantics C JwK = fix G .
Hint: Prove that letting jn

def
= G n?S!S? it holds 8n � 1

jn = ls . (sy > 0) ! ((sy � n) ! ?S? , s [sr ⇥ (sx)sy/r,0/y]) , s

6.13. Consider the IMP command

w def
= while x 6= 0 do (x := x�1 ; y := y+1)

Prove, using Scott computational induction, that for all s ,s 0 we have:

C JwKs = s 0) s(x) � 0^s 0 = s [s(x)+s(y)/y,0/x]

	Part I Preliminaries
	Introduction
	Structure and Meaning
	Syntax, Types and Pragmatics
	Semantics
	Mathematical Models of Computation

	A Taste of Semantics Methods: Numerical Expressions
	Applications of Semantics
	Content Overview
	Induction and Recursion
	Semantic Domains
	Bisimulation
	Temporal and Modal Logics
	Probabilistic Systems

	Chapters Contents and Reading Guide
	Further Reading
	References

	Preliminaries
	Notation
	Basic Notation
	Signatures and Terms
	Substitutions
	Unification Problem

	Inference Rules and Logical Systems
	Logic Programming
	Problems

	Part II IMP: a simple imperative language
	Operational Semantics of IMP
	Syntax of IMP
	Arithmetic Expressions
	Boolean Expressions
	Commands
	Abstract Syntax

	Operational Semantics of IMP
	Memory State
	Inference Rules
	Examples

	Abstract Semantics: Equivalence of Expressions and Commands
	Examples: Simple Equivalence Proofs
	Examples: Parametric Equivalence Proofs
	Examples: Inequality Proofs
	Examples: Diverging Computations

	Problems

	Induction and Recursion
	Noether Principle of Well-founded Induction
	Well-founded Relations
	Noether Induction
	Weak Mathematical Induction
	Strong Mathematical Induction
	Structural Induction
	Induction on Derivations
	Rule Induction

	Well-founded Recursion
	Problems

	Partial Orders and Fixpoints
	Orders and Continuous Functions
	Orders
	Hasse Diagrams
	Chains
	Complete Partial Orders

	Continuity and Fixpoints
	Monotone and Continuous Functions
	Fixpoints

	Immediate Consequence Operator
	The Operator R"0362R
	Fixpoint of R"0362R

	Problems

	Denotational Semantics of IMP
	-Notation
	-Notation: Main Ideas
	Alpha-Conversion, Beta-Rule and Capture-Avoiding Substitution

	Denotational Semantics of IMP
	Denotational Semantics of Arithmetic Expressions: The Function A
	Denotational Semantics of Boolean Expressions: The Function B
	Denotational Semantics of Commands: The Function C

	Equivalence Between Operational and Denotational Semantics
	Equivalence Proofs For Expressions
	Equivalence Proof for Commands

	Computational Induction
	Problems

	Part III HOFL: a higher-order functional language
	Operational Semantics of HOFL
	Syntax of HOFL
	Typed Terms
	Typability and Typechecking

	Operational Semantics of HOFL
	Problems

	Domain Theory
	The Flat Domain of Integer Numbers Z
	Cartesian Product of Two Domains
	Functional Domains
	Lifting
	Function's Continuity Theorems
	Useful Functions
	Problems

	HOFL Denotational Semantics
	HOFL Semantic Domains
	HOFL Evaluation Function
	Constants
	Variables
	Binary Operators
	Conditional
	Pairing
	Projections
	Lambda Abstraction
	Function Application
	Recursion

	Continuity of Meta-language's Functions
	Substitution Lemma
	Problems

	Equivalence between HOFL denotational and operational semantics
	Completeness
	Equivalence (on Convergence)
	Operational and Denotational Equivalences of Terms
	A Simpler Denotational Semantics
	Problems

	Part IV Concurrent Systems
	CCS, the Calculus for Communicating Systems
	Syntax of CCS
	Operational Semantics of CCS
	Action Prefix
	Restriction
	Relabelling
	Choice
	Parallel Composition
	Recursion
	CCS with Value Passing
	Recursive Declarations and the Recursion Operator

	Abstract Semantics of CCS
	Graph Isomorphism
	Trace Equivalence
	Bisimilarity

	Compositionality
	Bisimilarity is Preserved by Choice

	A Logical View to Bisimilarity: Hennessy-Milner Logic
	Axioms for Strong Bisimilarity
	Weak Semantics of CCS
	Weak Bisimilarity
	Weak Observational Congruence
	Dynamic Bisimilarity

	Problems

	Temporal Logic and -Calculus
	Temporal Logic
	Linear Temporal Logic
	Computation Tree Logic

	-Calculus
	Model Checking
	Problems

	 -Calculus
	Name Mobility
	Syntax of the -calculus
	Operational Semantics of the -calculus
	Action Prefix
	Choice
	Name Matching
	Parallel Composition
	Restriction
	Scope Extrusion
	Replication
	A Sample Derivation

	Structural Equivalence of -calculus
	Reduction semantics

	Abstract Semantics of the -calculus
	Strong Early Ground Bisimulations
	Strong Late Ground Bisimulations
	Strong Full Bisimilarities
	Weak Early and Late Ground Bisimulations

	Problems

	Part V Probabilistic Systems
	Measure Theory and Markov Chains
	Probabilistic and Stochastic Systems
	Measure Theory
	-field
	Constructing a -field
	Continuous Random Variables
	Stochastic Processes

	Markov Chains
	Discrete and Continuous Time Markov Chain
	DTMC as LTS
	DTMC Steady State Distribution
	CTMC as LTS
	Embedded DTMC of a CTMC
	CTMC Bisimilarity
	DTMC Bisimilarity

	Problems

	Markov Chains with Actions and Non-determinism
	Discrete Markov Chains With Actions
	Reactive DTMC
	DTMC With Non-determinism

	Problems

	PEPA - Performance Evaluation Process Algebra
	From Qualitative to Quantitative Analysis
	CSP
	Syntax of CSP
	Operational Semantics of CSP

	PEPA
	Syntax of PEPA
	Operational Semantics of PEPA

	Problems

	Glossary
	Solutions
	Index

