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Mathematical reasoning may be regarded
rather schematically as the exercise of a
combination of two facilities, which we may
call intuition and ingenuity.

Alan Turing'

! The purpose of ordinal logics (from Systems of Logic Based on Ordinals), Proceedings of the
London Mathematical Society, series 2, vol. 45, 1939.



Preface

The origins of this book lie their roots on more than 15 years of teaching a course on
formal semantics to graduate Computer Science to students in Pisa, originally called
Fondamenti dell’ Informatica: Semantica (Foundations of Computer Science: Seman-
tics) and covering models for imperative, functional and concurrent programming. It
later evolved to Tecniche di Specifica e Dimostrazione (Techniques for Specifications
and Proofs) and finally to the currently running Models of Computation, where
additional material on probabilistic models is included.

The objective of this book, as well as of the above courses, is to present different
models of computation and their basic programming paradigms, together with their
mathematical descriptions, both concrete and abstract. Each model is accompanied by
some relevant formal techniques for reasoning on it and for proving some properties.

To this aim, we follow a rigorous approach to the definition of the synfax, the
typing discipline and the semantics of the paradigms we present, i.e., the way in which
well-formed programs are written, ill-typed programs are discarded and the way in
which the meaning of well-typed programs is unambiguously defined, respectively.
In doing so, we focus on basic proof techniques and do not address more advanced
topics in detail, for which classical references to the literature are given instead.

After the introductory material (Part I), where we fix some notation and present
some basic concepts such as term signatures, proof systems with axioms and inference
rules, Horn clauses, unification and goal-driven derivations, the book is divided in
four main parts (Parts II-V), according to the different styles of the models we
consider:

IMP: imperative models, where we apply various incarnations of well-founded
induction and introduce A-notation and concepts like structural recursion,
program equivalence, compositionality, completeness and correctness,
and also complete partial orders, continuous functions, fixpoint theory;

HOFL:  ‘higher-order functional models, where we study the role of type systems,
the main concepts from domain theory and the distinction between lazy
and eager evaluation;
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CCS, m:  concurrent, non-deterministic and interactive models, where, starting from
operational semantics based on labelled transition systems, we introduce
the notions of bisimulation equivalences and observational congruences,
and overview some approaches to name mobility, and temporal and modal
logics system specifications;

PEPA: probabilistic/stochastic models, where we exploit the theory of Markov
chains and of probabilistic reactive and generative systems to address
quantitative analysis of, possibly concurrent, systems.

Each of the above models can be studied in separation from the others, but previous
parts introduce a body of notions and techniques that are also applied and extended
in later parts.

Parts I and II cover the essential, classic topics of a course on formal semantics.

Part III introduces some basic material on process algebraic models and temporal
and modal logic for the specification and verification of concurrent and mobile
systems. CCS is presented in good detail, while the theory of temporal and modal
logic, as well as m-calculus, are just overviewed. The material in-Part III can be used
in conjunction with other textbooks, e.g., on model checking or zz-calculus, in the
context of a more advanced course on the formal modelling of distributed systems.

Part I'V outlines the modelling of probabilistic and stochastic systems and their
quantitative analysis with tools like PEPA. It poses the basis for a more advanced
course on quantitative analysis of sequential and interleaving systems.

The diagram that highlights the main dependencies is represented below:

Imperative Functional
Chapter 3 Chapter 7
Chapter 4 structural Chapter 8
recursion 2

Chapter 5 Chapter 9
v
Chapter 6 Chapter 10
<X
CPO and
fixpoint

lambda
notation

B K
¢ LTS and Probabilisti
Chapter 11 | anc N Chapter 11
bisimulation
N
hapter 13

induction
and

The diagram contains a squared box for each chapter / part and a rounded-corner
box for each subject: a line with a filled-circle end joins a subject to the chapter
where it is introduced, while a line with an arrow end links a subject to a chapter or
part where it is used. In short:

Induction and recursion:  various principles of induction and the concept of struc-
tural recursion are introduced in Chapter 4 and used
extensively in all subsequent chapters.
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CPO and fixpoint:

Lambda-notation:

LTS and bisimulation:

HM-logic:

xi

the notion of complete partial order and fixpoint compu-
tation are first presented in Chapter 5. They provide the
basis for defining the denotational semantics of IMP and
HOFL. In the case of HOFL, a general theory of product
and functional domains is also introduced (Chapter 8).
The notion of fixpoint is also used to define a particular
form of equivalence for concurrent and probabilistic sys-
tems, called bisimilarity, and to define the semantics of
modal logic formulas.

A-notation is a useful syntax for managing anonymous
functions. It is introduced in Chapter 6 and used exten-
sively in Part III.

Labelled transition systems are introduced in Chapter 11
to define the operational semantics of CCS in terms of the
interactions performed. They are then extended to deal
with name mobility in Chapter 13 and with probabilities
in Part V. A bisimulation is a relation over the states of an
LTS that is closed under the execution of transitions. The
before mentioned bisimilarity is the coarsest bisimulation
relation. Various forms of bisimulation are studied in Part
IV and V.

Hennessy-Milner logic is the logic counterpart of bisimi-
larity: two state are bisimilar if and only if they satisfy the
same set of HM-logic formulas. In the context of proba-
bilistic system, the approach is extended to Larsen-Skou
logic in Chapter 15.

Each chapter of the book is concluded by a list of exercises that span over the main
techniques introduced in that chapter. Solutions to selected exercises are collected at

the end of the book.

Pisa,
February 2016

Roberto Bruni
Ugo Montanari
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HOFL: a higher-order functional language



This part focuses on models for sequential computations that are associated to HOFL,
a higher-order declarative language that follows the functional style. Chapter 7
presents the syntax, typing and operational semantics of HOFL, while Chapter 9
defines its denotational semantics. The two are related in Chapter 10. Chapter 8
extends the theory presented in Chapter 5 to allow the definition of more complex
domains, as needed by the type-constructors available in HOFL.



Chapter 9
Denotational Semantics of HOFL

Work out what you want to say before you decide how you want
to say it. (Christopher Strachey’s first law of logical design)

Abstract In this chapter we exploit the domain theory from Chapter 8 to define the
(lazy) denotational semantics of HOFL. For each type T we introduce a corresponding
domain (V) which is defined inductively over the structure of 7 and such that we
can assign an element of the domain (V;) to each (closed and typable) term ¢ with
type T. Moreover, we introduce the notion of environment, which assigns meanings to
variables, and that can be exploited to define the denotational semantics of (typable)
terms with variables. Interestingly, all constructions we use are continuous, so that
we are able to assign meaning also to any (typable) term that is recursively defined.
We conclude the chapter by showing some important properties of the denotational
semantics; in particular, that it is compositional.

9.1 HOFL Semantic Domains

In order to specify the denotational semantics of a programming language, we have to
define, by structural recursion, an interpretation function from each syntactic domain
to a semantic domain. In IMP there are three syntactic domains, Aexp for arithmetic
expressions, Bexp for boolean expressions and Com for commands. Correspondingly,
we have defined three semantics domains and three interpretation functions (7 -],
A]:] and €[-]). HOFL has a sole syntactic domain (i.e., the set of well-formed
terms ¢) and thus we have only one interpretation function, written [[-]. However,
since HOFL terms are typed, the interpretation function is parametric w.r.t. the type
7 of ¢ and we have one semantic domain V; for each type 7. Actually, we distinguish
between V, where we find the meanings of the terms of type 7 with canonical forms,
and (V¢), , where the additional element L(v,), assigns a meaning to all the terms of
type T without a canonical form. Moreover, we will need to handle terms with free
variables, as, e.g., when defining the denotational semantics of Ax.  in terms of the
denotational semantics of ¢ (with x possibly in fv(z)). This was not the case for the
operational semantics of HOFL, where only closed terms are considered. As terms
may contain free variables, we pass to the interpretation function an environment

193



194 9 Denotational Semantics of HOFL

p € Env M var — Uve),

T

which assigns meaning to variables. For consistency reasons, any environment p that
we consider must satisfy the condition p(x) € (V;), whenever x : 7. Thus, we have

[t:7]:Env— (Vi)1.

The actual semantic domains V; and (V;) are defined by structural recursion on
the syntax of types:
Vint déf Z (Vint)L déf ZL
def def
Vijsr, = (V‘l«'l )1 X (sz)l_ (VTI*’L'z)J- = ((Vfl )L % (V‘Q)J_)J_
def def
Vi~ = (Vo) = (Vay) 1] (Vo)1 = (Vo)L= (Vo) 1],
Notice that the recursive definition above takes advantage of the domain constructors
we have defined in Chapter 8. While the lifiting Z of the integer numbers Z is
strictly necessary, liftings on cartesian pairs and on continuous functions are actually
optional, since cartesian products and functional domains are already CPO, . We
will discuss the motivation of our choice by the end of Chapter 10.

9.2 HOFL Interpretation Function

Now we are ready to define the interpretation function, by structural recursion.
We briefly comment on each definition and show that the clauses of the structural
recursion are typed correctly.

9.2.1 Constants

We define the meaning of a constant as the obvious value on the lifted domain:

[n]p < (n]

At the level of types we have:

[nlp =lnl

int Z
—_ —_

Vi) 1=2Z, 7y
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9.2.2 Variables

The meaning of a variable is defined by its value in the given environment p:

def
[xlp = p(x)
It is obvious that the typing is respected (under the assumption that p(x) € (V) 1
whenever x : T):
[xlp =p(x)
T

T
| S | M|

(Vo) (Vo)L

9.2.3 Arithmetic Operators

We give the generic semantics of a binary operator op € {+,—, X} as:

[toopti] p =[] pop, [n]p

where for any operator op € {4+, —, x} in the syntax we have the corresponding
function op : Z x Z — Z on the integers Z and also the binary function op  on Z
defined as

@LZ(ZLXZL)—)ZL

|n opnz| ifx; = |n| and x, = |n2] for some ny,ny € Z
X1 Op, X2 = — .
—L A7, otherwise

We remark that op, yields L'z, when at least one of the two arguments is 1z, .
At the level of types, we have:

[[(E)I op g)ﬂp = [[!tg,]]p P, [[!t_llﬂp
. int nt . . nt I(ZLXZL)‘)ZL mnt

int (Vi) 1 (Vint) 1
| — L 1

Vint) L =21 (Vinr) L

9.2.4 Conditional

In order to define the semantics of the conditional expression, we exploit the condi-
tional operator of the meta-language

Condy :Z; x (Ve)1 X (Vo)L — (Vo)1
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defined as:

do ifv=0]
Cond.(v,do,d1) % { d ifIneZ.v=|n]An#0
J_(VT)L ifv= J‘ZL

Note that Cond; is parametric on the type 7. In the following, when 7 can be
inferred, we write just Cond. The conditional operator is strict on its first argument
(i.e., it returns L when the first argument is L) but not on the second and third
arguments.

We can now define the denotational semantics of the conditional operator by
letting:

[if  then 1o else 1] p % Cond ([1] p.[to] p. [11] )
At the level of types we have:

[if f then n else It_zl]]p = Cond; ([[Itg]}p, [[It_ll]]p, [[It_gl]]p)

) int T Tl Z x (Vo) x(Ve) 1 —=(Vz) | Iint ST T

L i ! (Vine) L (Ve) 1 (Vo) 1
(V‘r)L (VT)L

9.2.5 Pairing

For the pairing operator we simply let:

[0, 1) p < [(Irol p. [1] p)]

Note that, for 79 ¢ T and #; : 7y, the pair ([to] p, [t1] p) isin (V,) L x (Vr,) 1 and not in
((Vgy) 1 % (Vz;) 1)1, thus we apply the lifting. In fact, at the level of type consistency
we have:

L(t,01)1p = ([, []))

7 T1 T Gt
L ] L 1L ]
To*71 (Vig)r (Vo)1
e
(Vagery )1 (V)L % (Vay ) 1

—
((Veg) 1 x(Vay ) 1)1

9.2.6 Projections

We define the projections by using the lifted version of the projections 7y and m, of
the meta-language:
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[Est(t)] p L et d <= [t] p. 1 d
= mi([c]p)
[snd(1)]p € let d <= [1]p. w2 d
= m([r]p)
The let operator (see Definition 8.10) allows to de-lift [t] p in order to apply projec-

tions 7y and 7. Instead, if [¢] p = L the result is also L.
Again, we check that the type constraints are respected by the definition:

[fst( ¢ )p=let ¢ <[ ¢ Jp. m d
To*T| Viyery To*T| I(Vfo)LX(Vn ) 1= (Ve )i Vro*rll
|T0—| (Vegrry )1 (Ve )
(Vey) L

The case of snd(? : 7 * 7 ) is completely analogous and thus omitted.

9.2.7 Lambda Abstraction

For lambda-abstraction we use, of course, the lambda operator of the meta-language:

TAxp & |ad. o[/

where we bind x to d for evaluating ¢.

Note that, as in the case of pairing, we need to apply the lifting, because
Ad. [t] p[?/,] is an element of Vit = (V). = (V) 1] and not of (V7)) 1 =
(V)L = (Ve )alu.

x tlp=12 d . [glpl/d)

T T (Vro )L
| I |
=T (V)1
| I | L .
(V-;Oarl )L [(Vr())L‘)(Vfl )1l

(Veg) L= (Ve )11

9.2.8 Function Application

Similarly to the case of projections, we apply the de-lifted version of the function to
its argument:
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[t 0)] p < let @ < [11]p- @([10] p)
= (Ag. o([t]p))" (] p)

At the level of types, we have:

(g o=t g < [ulp - g (ulp)

To—T1 T Vig—1y <VTOHTI )1 V- (VTO)L
—
T
. (Ve )L
(Ve )L L !

(V‘fl )L

9.2.9 Recursion

For handling recursion we would like to find a solution (in the domain (V;) |, for
t : 7) to the recursive equation

[rec x. 1] p = [r] p[Irec AP /]

The least solution can be computed simply by applying the fix operator of the
meta-language:

[rec x. 1] p £ fix Ad. []p[*/.]

Finally, we check that also this last definition is consistent with the typing:

ey glo=  fiy A g lgel/d
> ([(Ve) L= (Vo) L]=(Ve)]  (Vo)o = .
L T : n
(Vo) : V)~
(Vo)1

9.2.10 Examples

Example 9.1. Let us see some simple examples of evaluation of the denotational
semantics. We consider three similar terms f, g, 4 such that f and % have the same de-
notational semantics while g has a different semantics because it requires a parameter
x to be evaluated even if not used.

1. fdéflx vint. 3

2. g% Ax :int. if x then 3 else 3
3. hdgrecy int — int. Ax :int. 3

Note that f, g, h : int — int. For the term f we have:
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[f1p = [Ax. 3]p = |Ad. [3]p[*/:]] = [Ad. [3]]
When considering g, instead:

[g]p = [Ax. if x then 3 else 3]p
= | Ad. [if x then 3 else 3]p[?/,]]
= |Ad.Cond(d,|3],|3])]
=|Ad. let x<=d. |3]]
where the last equality follows from the fact that both expressions Cond(d, |3],|3])
and let x <= d. |3] evaluate to 17 whend = 17 andto 3] if d isa lifted value.

Thus we can conclude that [f]p # [g]p-
Finally, for & we get:

[A]p = [rec y. Ax. 3]p
= fix Ady. [Ax.3]p[*/,]
= fix Ady. |Ady. [3]p[® /5. /1]
— fix Ad,. [Ad,. [3]]

Let I, = Ad,. |Ad,. |3]]. We can compute the fixpoint by exploiting the fixpoint
theorem to compute successive approximations:

do = IZO(J‘[ZL_)ZL]L) =1z, sz,
di = I} (do) = (Ady. |Adx. |3]])L = [Ad,. [3]]
dy = Fh(dl) = (Ady' L)“d)w |_3“)|_)“dx~ |_3H = le)w |_3“ =d

Since dp = d; we have reached the fixpoint and thus
[r]p = [Ad.. [3]]=[/]p.

Note that we could have avoided the calculation of d,, because d; is already a
maximal element in [Z; — Z ], and therefore it must be I},(d;) = d;.

9.3 Continuity of Meta-language’s Functions

In order to show that the semantics is always well defined we have to show that all
the functions we employ in the definition are continuous, so that the fixpoint theory
is applicable.

Theorem 9.1. The following functions are monotone and continuous:

1. @LZ(ZLXZL)—)ZL;
2. COI’ldTZZL X (V‘L')L X (VT)L%(VT)L;
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3. (77 7) : (Vfo)l X (Vﬁ)L - VTO*Tl ,
4. m :V‘Eo*fl — (VTO)L;

5.1 Vegsr, = (Vo) s

6. let

7. apply

8 fix: [[(Ve) L — (Vo) 1] — (Vo) ]

Proof. Monotonocity is obvious in most cases. We focus on the continuity of the
various functions

1.

2.

Since op n is monotone over a domain with only finite chains then it is also
continuous.

By using the Theorem 8.7, we can prove the continuity of Cond on each parameter
separately.

Let us show the continuity on the first parameter. Since chains in Z, are finite,
it is enough to prove monotonicity. We fix dy,d, € (V7)1 and we prove the
monotonicity of Ax. Cond:(x,d,dy) : Z| — (V) 1« Letn,m € Z.

e thecases Lz, Tz Lz or|n| gz, [n] aretrivial;
e forthecase Lz Lz, [n] then obviously

COndT(J_ZL,dl ,dy) = J‘(Vr)L E(Vr)L Cond‘;( |n|,di,d2)

because Ly, is the bottom element of (Vz), .
o forthe case [n] Ez, |m],since Z | is a flat domain we have n = m and trivially
Condy(|n],dy,d2) Cy,), Cond(|m],dy,d)

Now let us show the continuity on the second parameter, namely we fix v € Z |
and d € (V;), and forany chain {d;};cn in (V) we prove that

Cond,; <v, L] d,»,d) = | | Cond.(v,d;,d)

ieN ieN

e ifv=_17 ,then

Cond; (J_ZL, L] di,d> =1z, =| |1z, =||Cond:(1y, .d;,d)
ieN ieN ieN

e if v= 0], then Ax. Cond.(|0],x,d) is the identity function Ax. x and we have

Cond,; <LOJ, |_|di,d> = | | di=| | Cond:(|0],d;.d)

ieN ieN ieN

e if v=|n| withn #0, then Ax. Cond.(|n|,x,d) is the constant function Ax. d
and we have
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Cond; <LnJ, |_|d,~,d) =d=||d=||Cond:(|n),d;,d)

ieN ieN ieN

In all cases Cond; is continuous.
Continuity on the third parameter is analogous.

3. For pairing (_,_) we can use again the Theorem 8.7, which allows to show sepa-
rately the continuity on each parameter. If we fix the first element we have

(d, |_|d,-> = <|_| d,l_ldi> =[](d.a)

ieN ieN  ieN ieN

by definition of lub of a chain of pairs (see Theorem 8.1). The same holds for the
second parameter.

Projections 7; and m, are continuous by Theorem 8.2.

The let function is continuous since (-)* is continuous by Theorem 8.4.

apply is continuous by Theorem 8.8

fix is continuous by Theorem 8.10. a

Nk

In the previous theorem we have not mentioned the continuity proofs for lambda
abstraction and recursion. The next theorem fills these gaps.

Theorem 9.2. Let t : T be a well typed term of HOFL; then the following holds:

1. (Ad. [t]p[?/s]) is a continuous function.
2. fix Ad. [t]p[?/.] is a continuous function.

Proof. Let us prove the two properties:

1. We prove the stronger property that, for any n € N:

l(dl,...,dn). [[tﬂp[dl/m sttt ’d,, /xn]

is a continuous function. The proof is by structural induction on ¢. Below, for
brevity, we write d instead of d\, ...,d, and p instead of p[91 /, -+ % /.. ]:

t=y: Then Ad. [y]p’ is either a projection function (if y = x; for some
i € [1,n]) or the constant function Ad. p(y) Gf y & {x1,....xn}),
which are continuous.

t=1t opt: By inductive hypothesis f Lhd. [fn]p’ and f> Lhad. [n2]p’ are

continuous. Then f Ld. ((fi d),(f» d)) is continuous, and

Ad. [ op p]p’ = 2d.- ([n]p’ op, []p)
=Ad.(fid)op, (f>d)
= %L (@] f
is continuous because op N is continuous and the composition of
continuous functions yields a continuous function by Theorem 8.5.
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t=Ay.t" By induction hypothesis we can assume that A(d, d).["'1p'1%/y]
is continuous. Then curry(A(d,d).[']p’[?/,]) is continuous since
curry is continuous, and we conclude by noting that

curry (A(d.d).[/1p'[* y)) = Ad. Ad. [']p'[/,]
= Ad.[Ay.1']p".

We leave the remaining cases as an exercise.
2. To prove the second proposition we note that

fix Ad.[r]p["/x]

is the application of a continuous function (i.e., the function fix, by Theorem 8.10)
to a continuous argument (i.e., Ad.[t]p[¢/.], continuous by the first part of this
theorem) so it is continuous by Theorem 8.8. a

We conclude this section by recalling that the definition of denotational semantics
is consistent with the typing.

Theorem 9.3 (Type Consistency). If : T then t] p € (V¢) ..

Proof. The proof is by structural induction on ¢ and it has been outlined when giving
the structurally recursive definition of the denotational semantics (where we have
also relied on the previous continuity theorems). a

9.4 Substitution Lemma and Other Properties

We conclude this chapter by stating some useful theorems. The most important is the
Substitution Lemma which states that the substitution operator commutes with the
interpretation function.

Theorem 9.4 (Substitution Lemma). Let x,t : T andt' : ©'. We have

[“/d] p = [T p1MP /4]

Proof. By Theorem 7.1 we know that #'[' /] : 7. The proof is by structural induction
on ¢’ and left as an exercise (see Problem 9.13). O

In words, replacing a variable x with a term ¢ in a term ¢’ returns a term ¢'[' /,]
whose denotational semantics [t'[' /.]] p = [¢'] p[I'1° /.] depends only on the denota-
tional semantics [#] p of 7.

Remark 9.1 (Compositionality). The substitution lemma is an important result, as it
implies the compositionality of denotational semantics, namely for all terms #;,#,
and environment p we have:

[nlp=lnlp = [:"/J]p=1[?/d]p
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Theorem 9.5. Let t be a well-defined term of HOFL. Let p,p’ € Env such that
Vx € fv(r). p(x) = p'(x) then:

[1p =[1p’

Proof. The proof is by structural induction on ¢ and left as an exercise (see Prob-
lem 9.16). O

Theorem 9.6. Let ¢ € C; be a closed term in canonical form of type T. Then we
have:

VY p € Env. [[C]]p #* J‘(VTM

Proof. Immediate, by inspection of the clauses for terms in canonical forms. a

Problems

9.1. Consider the HOFL term:

1 < rec f- Ax. if x then 0 else (f(x) X f(x))
Derive the type, the canonical form and the denotational semantics of ¢.
9.2. Consider the HOFL term:

t % rec - Ax. Ay. if x x'y then x else (fx)((fx)y)

Derive the type, the canonical form and the denotational semantics of ¢.
9.3. Consider the HOFL term:

t L gst((Ax. x) (1, ((reef. Ay. (fy))2))).
Derive the type, the canonical form and the denotational semantics of ¢.
9.4. Consider the HOFL term

t ©rec £. Ax. if x then 1 else (g (f (x—1)))

1. Derive the type of ¢ and the denotational semantics of [¢] p by assuming that
pg = |k for some suitable .

2. Compute the canonical form of the term (((Ag. ) Ax. x) 1). Would it be possible
to compute the canonical form of ¢?

9.5. Let us consider the following recursive definition:

flx) i x =0 then 1 else 2x f(x—1).
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1. Define a well-formed, closed HOFL term ¢ that corresponds to the above definition
and determine its type.
2. Compute its denotational semantics [¢] p and prove that

n>0 = letop<][t]p.on=|2"].
Hint: Prove that the n-th fixpoint approximation is
dy = | Ad.Cond(|0] < d < | [n], |27], 1) ]
9.6. Let us consider the following recursive definition:

F(x) & x =0 then 0 else f(f(x—1))

1. Define a well-formed, closed HOFL term ¢ that corresponds to the above definition
and determine its type, its canonical form and its denotational semantics.
2. Define the set of fixpoints that satisfy the recursive definition.

9.7. Consider the HOFL term

t ¥ rec f- Ax. if x then O else f (x—x)

1. Determine the type of ¢ and its denotational semantics [t]p = fix L.

2. Is fix I' the unique fixpoint of I"'?
Hint: Consider the elements greater than fix I" in the order and check if they are
fixpoints for I'.

9.8. Consider the Fibonacci sequence already found in Problem 4.14 and the corre-
sponding term ¢ from Problem 7.8:

FOE1T  FO)Y1 Fu+2) ¥ Fn+1)+F(n)s.

where n € N.

1. Compute the suitable transformation I" such that [¢] p = fix I

2. Prove that the denotational semantics [¢] p satisfies the above equations, to con-
clude that the given implementation of Fibonacci numbers is correct.
Hint: Compute [[(z 0)] p, [[( 1)] p and [(r n+2)] p exploiting the equality [¢] =
INIE

9.9. Assuming that #; has type 7, let us consider the term 7, & x. (11 x).

1. Do both terms have the same type?
2. Do both terms have the same lazy denotational semantics?

9.10. Let us consider the terms
H &f 2x. rec yy+1
1 % rec yoAx. (yx)+2
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1. Do both terms have the same type?
2. Do both terms have the same lazy denotational semantics?

9.11. Given a monotone function f : Z, — Z, prove that f 17 = f(fLz ). Then,
let ¢ : int — int be a closed term of HOFL and consider the term

n Erec f.Ax. (1 (fx))
1. Determine the most general type of #;.
2. Exploit the above result to prove that [#;] p = [2] p, where

t &l rec f-Ax. (t rec y. y)

9.12. Let us extend the syntax of (lazy) HOFL by adding the construct for sequential
composition #1;#, that, informally, represents the function obtained by applying the
function #; to the argument and then the function #, to the result. Define, for the new
construct ;:

1. the typing rule;
2. the (big-step) operational semantics;
3. the denotational semantics.

Then prove that for every closed term #, both terms (¢1;#, ¢) and (# (#; t)) have the
same type and are equivalent according to the denotational semantics.

9.13. Complete the proof of the Substitution Lemma (Theorem 9.4).

9.14. Let 11,1, be well-formed HOFL terms and p an environment.

1. Prove that

[n]p = l[elp. = 16Xl = [(2x)]p ©.1)

2. Prove that the reversed implication is generally not valid by giving a counterex-
ample. Then, find the conditions under which also the reversed implication holds.

3. Exploit the Substitution Lemma (Theorem 9.4) to prove that for all ¢ and x ¢
fv(r) Ufv(tp):

e = [ulp = [iln/Alp = [e/xlp ©.2)

4. Observe that the implication 9.1 is just a special case of the latter equality 9.2 and
explain how:

9.15. Is it possible to modify the denotational semantics of HOFL assigning to the
construct
if ¢ then ¢, else 1,

e the semantics of 7, if the semantics of 7 is Ly, and
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o the semantics of 7 otherwise? (If not, why?)

9.16. Complete the proof of Theorem 9.5.

s
&
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