Roberto Bruni, Ugo Montanari

Models of Computation

— Monograph —

April 20, 2016

Springer

Mathematical reasoning may be regarded
rather schematically as the exercise of a
combination of two facilities, which we may
call intuition and ingenuity.

Alan Turing'

! The purpose of ordinal logics (from Systems of Logic Based on Ordinals), Proceedings of the
London Mathematical Society, series 2, vol. 45, 1939.

Preface

The origins of this book lie their roots on more than 15 years of teaching a course on
formal semantics to graduate Computer Science to students in Pisa, originally called
Fondamenti dell’ Informatica: Semantica (Foundations of Computer Science: Seman-
tics) and covering models for imperative, functional and concurrent programming. It
later evolved to Tecniche di Specifica e Dimostrazione (Techniques for Specifications
and Proofs) and finally to the currently running Models of Computation, where
additional material on probabilistic models is included.

The objective of this book, as well as of the above courses, is to present different
models of computation and their basic programming paradigms, together with their
mathematical descriptions, both concrete and abstract. Each model is accompanied by
some relevant formal techniques for reasoning on it and for proving some properties.

To this aim, we follow a rigorous approach to the definition of the synfax, the
typing discipline and the semantics of the paradigms we present, i.e., the way in which
well-formed programs are written, ill-typed programs are discarded and the way in
which the meaning of well-typed programs is unambiguously defined, respectively.
In doing so, we focus on basic proof techniques and do not address more advanced
topics in detail, for which classical references to the literature are given instead.

After the introductory material (Part I), where we fix some notation and present
some basic concepts such as term signatures, proof systems with axioms and inference
rules, Horn clauses, unification and goal-driven derivations, the book is divided in
four main parts (Parts II-V), according to the different styles of the models we
consider:

IMP: imperative models, where we apply various incarnations of well-founded
induction and introduce A-notation and concepts like structural recursion,
program equivalence, compositionality, completeness and correctness,
and also complete partial orders, continuous functions, fixpoint theory;

HOFL: ‘higher-order functional models, where we study the role of type systems,
the main concepts from domain theory and the distinction between lazy
and eager evaluation;

X Preface

CCS, m: concurrent, non-deterministic and interactive models, where, starting from
operational semantics based on labelled transition systems, we introduce
the notions of bisimulation equivalences and observational congruences,
and overview some approaches to name mobility, and temporal and modal
logics system specifications;

PEPA: probabilistic/stochastic models, where we exploit the theory of Markov
chains and of probabilistic reactive and generative systems to address
quantitative analysis of, possibly concurrent, systems.

Each of the above models can be studied in separation from the others, but previous
parts introduce a body of notions and techniques that are also applied and extended
in later parts.

Parts I and II cover the essential, classic topics of a course on formal semantics.

Part III introduces some basic material on process algebraic models and temporal
and modal logic for the specification and verification of concurrent and mobile
systems. CCS is presented in good detail, while the theory of temporal and modal
logic, as well as m-calculus, are just overviewed. The material in-Part III can be used
in conjunction with other textbooks, e.g., on model checking or zz-calculus, in the
context of a more advanced course on the formal modelling of distributed systems.

Part I'V outlines the modelling of probabilistic and stochastic systems and their
quantitative analysis with tools like PEPA. It poses the basis for a more advanced
course on quantitative analysis of sequential and interleaving systems.

The diagram that highlights the main dependencies is represented below:

Imperative Functional
Chapter 3 Chapter 7
Chapter 4 structural Chapter 8
recursion 2

Chapter 5 Chapter 9
v
Chapter 6 Chapter 10
<X
CPO and
fixpoint

lambda
notation

B K
¢ LTS and Probabilisti
Chapter 11 | anc N Chapter 11
bisimulation
N
hapter 13

induction
and

The diagram contains a squared box for each chapter / part and a rounded-corner
box for each subject: a line with a filled-circle end joins a subject to the chapter
where it is introduced, while a line with an arrow end links a subject to a chapter or
part where it is used. In short:

Induction and recursion: various principles of induction and the concept of struc-
tural recursion are introduced in Chapter 4 and used
extensively in all subsequent chapters.

Preface

CPO and fixpoint:

Lambda-notation:

LTS and bisimulation:

HM-logic:

xi

the notion of complete partial order and fixpoint compu-
tation are first presented in Chapter 5. They provide the
basis for defining the denotational semantics of IMP and
HOFL. In the case of HOFL, a general theory of product
and functional domains is also introduced (Chapter 8).
The notion of fixpoint is also used to define a particular
form of equivalence for concurrent and probabilistic sys-
tems, called bisimilarity, and to define the semantics of
modal logic formulas.

A-notation is a useful syntax for managing anonymous
functions. It is introduced in Chapter 6 and used exten-
sively in Part III.

Labelled transition systems are introduced in Chapter 11
to define the operational semantics of CCS in terms of the
interactions performed. They are then extended to deal
with name mobility in Chapter 13 and with probabilities
in Part V. A bisimulation is a relation over the states of an
LTS that is closed under the execution of transitions. The
before mentioned bisimilarity is the coarsest bisimulation
relation. Various forms of bisimulation are studied in Part
IV and V.

Hennessy-Milner logic is the logic counterpart of bisimi-
larity: two state are bisimilar if and only if they satisfy the
same set of HM-logic formulas. In the context of proba-
bilistic system, the approach is extended to Larsen-Skou
logic in Chapter 15.

Each chapter of the book is concluded by a list of exercises that span over the main
techniques introduced in that chapter. Solutions to selected exercises are collected at

the end of the book.

Pisa,
February 2016

Roberto Bruni
Ugo Montanari

Acknowledgements

We want to thank our friend and colleague Pierpaolo Degano for encouraging us to
prepare this book and submit it to the EATCS monograph series. We thank Ronan
Nugent and all the people at Springer for their editorial work. We acknowledge all
the students of the course on Models of Computation (MOD) in Pisa for helping us
to refine the presentation of the material in the book and to eliminate many typos
and shortcomings from preliminary versions of this text. Last but not least, we thank
Lorenzo Galeotti, Andrea Cimino, Lorenzo Muti, Gianmarco Saba, Marco Stronati,
former students of the course on Models of Computation, who helped us with the
IXTEX preparation of preliminary versions of this book, in the form of lecture notes.

Xiii

Contents

Part I Preliminaries

1 Inmtroduction.......... 3
1.1 Structure and Meaning0..ee oo, 3
1.1.1 Syntax, Types and Pragmatics..........c............... 4

112 Semanticsoouuneeeiie et 4

1.1.3 Mathematical Models of Computation................... 6

1.2 A Taste of Semantics Methods: Numerical Expressions 9
1.3 Applications of Semanticscou. et eneenn.. 17
1.4 Key Topics and Techniqueso ..., 20
1.4.1 Induction and Recursion 20

1.4.2 Semantic Domainsc..... ... o i, 22

1.4.3 Bisimulation i 24

1.4.4 Temporal and Modal Logicsoiviinn... 25

1.4.5° Probabilistic Systems i, 25

1.5 Chapters Contents and Reading Guide 26
1.6 FurtherReading......... 28
Referenceso 30
2 Preliminaries 0. 33
2.1 NOTATOM &« . v ettt et e ettt e e e e e e e 33
2.1.1 BasicNotationccooiiiiiiiiiiinieinna.. 33
2.1.2 Signaturesand Termscouineiineiinnennn .. 34

2.1.3 Substitutions 35

2.1.4 Unification Problem 35

2.2 Inference Rules and Logical Systems 37
2.3 Logic Programmingcouuuuiiieiiiinneeennnnn... 45
Problems 47

Part I IMP: a simple imperative language

XV

Xvi

Contents

Operational Semanticsof IMP 53
3.1 Syntaxof IMP 53
3.1.1 Arithmetic Expressionsc.ooiioii.. 54

3.1.2 Boolean Expressionsoiiiiiiiiin. 54

313 Commands ...t 55

3.1.4 ADStract Syntaxoeiiiiii i 55

3.2 Operational Semanticsof IMP................................ 56
321 Memory Stateoutuunii et e 56

322 InferenceRules........., 57

323 Examples........oiiiii e 62

3.3 Abstract Semantics: Equivalence of Expressions and Commands ... 66
3.3.1 Examples: Simple Equivalence Proofs................... 67

3.3.2 Examples: Parametric Equivalence Proofs 69

3.3.3 Examples: Inequality Proofsc......... 71

3.3.4 Examples: Diverging Computationso..unooon. 73
Problems 75
Induction and Recursion0. e 79
4.1 Noether Principle of Well-founded Induction 79
4.1.1 Well-founded Relations oo .. 79
4.1.2 Noether Induction.0 a ... 85

4.1.3 Weak Mathematical Inductionc...c....... 86
4.1.4 Strong Mathematical Induction. 87

4.1.5 Structural Induction e 87

4.1.6 Induction on Derivationsc....... 90
4177 RuleInductionco i 91

4.2 Well-founded Recursion, 95
Problems . ..o 100
Partial Orders and Fixpointsou... 105
5.1 Orders and Continuous Functions 105
501 Orders 106

5.1.2. HasseDiagramsc.ouiiiiiiiinnneennnnn. 108

5.3 Chains ..o cut 112
5.1.4 Complete Partial Orders 113

5.2 Continuity and Fixpoints i ... 116
5.2.1 Monotone and Continuous Functions.................... 116

5.2.2 FIXPOINtS . .o ov ittt 118

5.3 Immediate Consequence Operator.c.c..vveeeennnn.... 121
5.3.1° The Operator Roovuueee e 122

532 FIXPOINtOF R ..ot 123

Problems 126

Contents
6 Denotational Semanticsof IMP
6.1 A-NOtAtionottt
6.1.1 A-Notation: MainIdeascccoevvn...
6.1.2 Alpha-Conversion, Beta-Rule and Capture-Avoiding
Substitution
6.2 Denotational Semanticsof IMP...........
6.2.1 Denotational Semantics of Arithmetic Expressions: The
Function @
6.2.2 Denotational Semantics of Boolean Expressions: The
Function Zo i
6.2.3 Denotational Semantics of Commands: The Function %
6.3 Equivalence Between Operational and Denotational Semantics
6.3.1 Equivalence Proofs For Expressionsc............
6.3.2 Equivalence Proof for Commandsc..............
6.4 Computational Inductiono i,
Problems

Part III HOFL: a higher-order functional language

7 Operational Semanticsof HOFL
7.1 Syntax of HOFL
711 Typed Termsot i

7.1.2 Typability and Typechecking

7.2 Operational Semanticsof HOFLc............
Problems

8 DomainTheory i,
8.1 The Flat Domain of Integer Numbers Z |

8.2 Cartesian Product of Two Domains...c........................

8.3 Functional Domainsc.0iiiiiiieiiinaa..

8.4 Lifting.t e

8.5 Function’s Continuity Theorems

8.6 Apply, Curryand Fix i,
Problems

9 Denotational Semantics of HOFL
9.1 HOFL Semantic Domainscooiiiiiineineenn..

9.2 HOFL Interpretation Function
0.2.1 CONStantSovte et e

0.2.2 Variables

9.2.3 Arithmetic Operatorsouueiiiunnneennnn..

924 Conditionalcc.iiiiiii e

9.2.5 Pairingt

9.2.6 Projections.coiiiiiiiiii i

9.2.7 Lambda Abstraction................oviiiiiernenn....

9.2.8 Function Applicationoiiiiiineeennn...

Xviii

10

Contents

9.2.9 ReCUISIONcoouuuiiiiiii i, 198
9.2.10 Examples 198

9.3 Continuity of Meta-language’s Functions....................... 199
9.4 Substitution Lemma and Other Properties 202
Problems 203
Equivalence between HOFL denotational and operational semantics . 207
10.1 HOFL: Operational Semantics vs Denotational Semantics. 207
10.2 COITECINESS . .« ¢ v vttt e ettt e e e e e e e e e e 208
10.3 Equivalence (on Convergence).oueeuneeunneenn iunn. 211
10.4 Operational and Denotational Equivalences of Terms............. 214
10.5 A Simpler Denotational Semantics¢covn..... 215
Problems 216

Part IV Concurrent Systems

11

CCS, the Calculus for Communicating Systems. 223
11.1 From Sequential to Concurrent Systems.oo..uoen... 223
11.2 Syntax of CCS o i 229
11.3 Operational Semantics of CCS 230
11.3.1 ActionPrefix. i 230
11.3.2 ReStriCtion .« ..o ettt e e 230
11.3.3 Relabellingooiimeeii i 231
11.3.4 ChOiCe ... v v ettt e e 231
11.3.5 Parallel Composition oot 232
11.3.6 Recursioni..iveiiini i, 233
11.3.7 CCS with Value Passing 236
11.3.8 Recursive Declarations and the Recursion Operator. 237
11.4 Abstract Semantics of CCSt i i 238
11.4.1 Graph Isomorphism 239
11.4.2 Trace Equivalence = ...c........cooiiiiiiinnneennnn.. 241
11.4.3 Bisimilarityo . 242
11.5 Compositionalitycoovnnet e 247
11.5.1 Bisimilarity is Preserved by Choice 248
11.6 A Logical View to Bisimilarity: Hennessy-Milner Logic 249
11.7 Axioms for Strong Bisimilarity 253
11.8 Weak Semantics of CCS...... 255
11.8.1 Weak Bisimilarity, 255
11.8.2 Weak Observational Congruence 257
11.8.3 Dynamic Bisimilarity................ 258

Problems 259

Contents XiX

12 Temporal Logic and y-Calculus 265
12.1 Temporal Logic it 265
12.1.1 Linear Temporal Logic, 266
12.1.2 Computation Tree Logic, 268

122 p-Caleulus 270
12.3 Model Checkingcouiuiiinn it 273
Problems 274
13 m-Caleulus ... 277
13.1 Name Mobilitycoo it 277
13.2 Syntax of the mw-calculus 280
13.3 Operational Semantics of the m-calculusc......... 282
13.3.1 Action Prefix. ... 283
1332 Choice ... 284
13.3.3 Name Matchingot it ennnennnn 284
13.3.4 Parallel Compositionc..ccoiiiiieieaa... 284
13.3.5 Restrictionooouin it 285
13.3.6 Scope EXtrusionccoiunieiiibiiineeenn... 285
13.3.7 Replication i, 285
13.3.8 A Sample Derivationccoieeinniiiinennn... 286

13.4 Structural Equivalence of m-calculus 287
13.4.1 Reduction SeMantiCsoeuueuunueiieenn .. 287

13.5 Abstract Semantics of the w-calculus 288
13.5.1 Strong Early Ground Bisimulations 289
13.5.2 Strong Late Ground Bisimulations 290
13.5.3 Strong Full Bisimilarities. 291
13.5.4 Weak Early and Late Ground Bisimulations 292
Problems . ..o 293

Part V Probabilistic Systems

14 Measure Theory and Markov Chains............................. 297
14.1 Probabilistic and Stochastic Systems 297
14.2 Measure Theory.o i i 298

142.1 o-field 298
14.2.2 Constructinga o-field, 299
14.2.3 Continuous Random Variables 301
14.2.4 Stochastic Processes.c.coviiiniiinniiinen... 305
14.3 Markov Chainsouiiinniiii i, 305
14.3.1 Discrete and Continuous Time Markov Chain 306
1432 DTMC asLTS.o e 307
14.3.3 DTMC Steady State Distribution 309
1434 CTMC as LTS 311
14.3.5 Embedded DTMC of aCTMCcoovuinn.. 312

14.3.6 CTMC Bisimilaritycoiiiiiiiiiinin .. 312

XX Contents

14.3.7 DTMC Bisimilaritycooiiiiiiiiinn... 314

Problems 315

15 Markov Chains with Actions and Non-determinism 319
15.1 Discrete Markov Chains With Actions 319
15.1.1 Reactive DTMCottt 320

15.1.2 DTMC With Non-determinism 322

Problems 325

16 PEPA - Performance Evaluation Process Algebra 327
16.1 From Qualitative to Quantitative Analysisc...... 327

16,2 CSP .. e 328
16.2.1 Syntax of CSP. i i 328

16.2.2 Operational Semantics of CSP 329

16.3 PEPA. ... e 330
16.3.1 Syntax of PEPAl 330

16.3.2 Operational Semantics of PEPA . .0..................... 332

Problems e 337
GloSSarY e 341
Solutions e 343

Acronyms

2

|
U
Q
S

d
<

oy X

020 IR X IR

2 22
NN

Lo Ne
try

!
&

]

ack
Aexp

Bexp

CCS
Com
CPO
CPO
CSP
CTL
CTMC

operational equivalence in IMP (see Definition 3.3)
denotational equivalence in HOFL (see Definition 10.4)
operational equivalence in HOFL (see Definition 10.3)
CCS strong bisimilarity (see Definition 11.5)

CCS weak bisimilarity (see Definition 11.16)

CCS weak observational congruence (see Section 11.8.2)
CCS dynamic bisimilarity (see Definition 11.17)
m-calculus early bisimilarity (see Definition 13.3)
m-calculus late bisimilarity (see Definition 13.4)
m-calculus strong early full bisimilarity (see Section 13.5.3)
m-calculus strong late full bisimilarity (see Section 13.5.3)

n-calculus weak early bisimilarity (see Section 13.5.4)

n-calculus weak late bisimilarity (see Section 13.5.4)

interpretation function for the denotational semantics of IMP arithmetic
expressions (see Section 6.2.1)

Ackermann function (see Example 4.18)

set of IMP arithmetic expressions (see Chapter 3)

interpretation function for the denotational semantics of IMP boolean
expressions (see Section 6.2.2)

set of IMP boolean expressions (see Chapter 3)

set of booleans

interpretation function for the denotational semantics of IMP com-
mands (see Section 6.2.3)

Calculus of Communicating Systems (see Chapter 11)

set of IMP commands (see Chapter 3)

Complete Partial Order (see Definition 5.11)

Complete Partial Order with bottom (see Definition 5.12)
Communicating Sequential Processes (see Section 16.2)
Computation Tree Logic (see Section 12.1.2)

Continuous Time Markov Chain (see Definition 14.15)

XXi

xxii

DTMC
Env

fix

FIX
gcd
HML
HM-Logic
HOFL
IMP
int
Loc
LTL
LTS
lub

PEPA
Pf

PI
PO
PTS

Tf
Var

Acronyms

Discrete Time Markov Chain (see Definition 14.14)

set of HOFL environments (see Chapter 9)

(least) fixpoint (see Definition 5.2.2)

(greatest) fixpoint

greatest common divisor

Hennessy-Milner modal Logic (see Section 11.6)
Hennessy-Milner modal Logic (see Section 11.6)

A Higher-Order Functional Language (see Chapter 7)

A simple IMPerative language (see Chapter 3)

integer type in HOFL (see Definition 7.2)

set of locations (see Chapter 3)

Linear Temporal Logic (see Section 12.1.1)

Labelled Transition System (see Definition 11.2)

least upper bound (see Definition 5.7)

set of natural numbers

set of closed CCS processes (see Definition 11.1)
Performance Evaluation Process Algebra (see Chapter 16)
set of partial functions on natural numbers (see Example 5.13)
set of partial injective functions on natural numbers (see Problem 5.12)
Partial Order (see Definition 5.1)

Probabilistic Transition System (see Section 14.3.2)

set of real numbers

set of HOFL types (see Definition 7.2)

set of total functions from N to N (see Example 5.14)
set of HOFL variables (see Chapter 7)

set of integers

Part 111
HOFL: a higher-order functional language

This part focuses on models for sequential computations that are associated to HOFL,
a higher-order declarative language that follows the functional style. Chapter 7
presents the syntax, typing and operational semantics of HOFL, while Chapter 9
defines its denotational semantics. The two are related in Chapter 10. Chapter 8
extends the theory presented in Chapter 5 to allow the definition of more complex
domains, as needed by the type-constructors available in HOFL.

Chapter 9
Denotational Semantics of HOFL

Work out what you want to say before you decide how you want
to say it. (Christopher Strachey’s first law of logical design)

Abstract In this chapter we exploit the domain theory from Chapter 8 to define the
(lazy) denotational semantics of HOFL. For each type T we introduce a corresponding
domain (V) which is defined inductively over the structure of 7 and such that we
can assign an element of the domain (V;) to each (closed and typable) term ¢ with
type T. Moreover, we introduce the notion of environment, which assigns meanings to
variables, and that can be exploited to define the denotational semantics of (typable)
terms with variables. Interestingly, all constructions we use are continuous, so that
we are able to assign meaning also to any (typable) term that is recursively defined.
We conclude the chapter by showing some important properties of the denotational
semantics; in particular, that it is compositional.

9.1 HOFL Semantic Domains

In order to specify the denotational semantics of a programming language, we have to
define, by structural recursion, an interpretation function from each syntactic domain
to a semantic domain. In IMP there are three syntactic domains, Aexp for arithmetic
expressions, Bexp for boolean expressions and Com for commands. Correspondingly,
we have defined three semantics domains and three interpretation functions (7 -],
A]:] and €[-]). HOFL has a sole syntactic domain (i.e., the set of well-formed
terms ¢) and thus we have only one interpretation function, written [[-]. However,
since HOFL terms are typed, the interpretation function is parametric w.r.t. the type
7 of ¢ and we have one semantic domain V; for each type 7. Actually, we distinguish
between V, where we find the meanings of the terms of type 7 with canonical forms,
and (V¢), , where the additional element L(v,), assigns a meaning to all the terms of
type T without a canonical form. Moreover, we will need to handle terms with free
variables, as, e.g., when defining the denotational semantics of Ax. in terms of the
denotational semantics of ¢ (with x possibly in fv(z)). This was not the case for the
operational semantics of HOFL, where only closed terms are considered. As terms
may contain free variables, we pass to the interpretation function an environment

193

194 9 Denotational Semantics of HOFL

p € Env M var — Uve),

T

which assigns meaning to variables. For consistency reasons, any environment p that
we consider must satisfy the condition p(x) € (V;), whenever x : 7. Thus, we have

[t:7]:Env— (Vi)1.

The actual semantic domains V; and (V;) are defined by structural recursion on
the syntax of types:
Vint déf Z (Vint)L déf ZL
def def
Vijsr, = (V‘l«'l)1 X (sz)l_ (VTI*’L'z)J- = ((Vfl)L % (V‘Q)J_)J_
def def
Vi~ = (Vo) = (Vay) 1] (Vo)1 = (Vo)L= (Vo) 1],
Notice that the recursive definition above takes advantage of the domain constructors
we have defined in Chapter 8. While the lifiting Z of the integer numbers Z is
strictly necessary, liftings on cartesian pairs and on continuous functions are actually
optional, since cartesian products and functional domains are already CPO, . We
will discuss the motivation of our choice by the end of Chapter 10.

9.2 HOFL Interpretation Function

Now we are ready to define the interpretation function, by structural recursion.
We briefly comment on each definition and show that the clauses of the structural
recursion are typed correctly.

9.2.1 Constants

We define the meaning of a constant as the obvious value on the lifted domain:

[n]p < (n]

At the level of types we have:

[nlp =lnl

int Z
—_ —_

Vi) 1=2Z, 7y

9.2 HOFL Interpretation Function 195

9.2.2 Variables

The meaning of a variable is defined by its value in the given environment p:

def
[xlp = p(x)
It is obvious that the typing is respected (under the assumption that p(x) € (V) 1
whenever x : T):
[xlp =p(x)
T

T
| S | M|

(Vo) (Vo)L

9.2.3 Arithmetic Operators

We give the generic semantics of a binary operator op € {+,—, X} as:

[toopti] p =[] pop, [n]p

where for any operator op € {4+, —, x} in the syntax we have the corresponding
function op : Z x Z — Z on the integers Z and also the binary function op on Z
defined as

@LZ(ZLXZL)—)ZL

|n opnz| ifx; = |n| and x, = |n2] for some ny,ny € Z
X1 Op, X2 = — .
—L A7, otherwise

We remark that op, yields L'z, when at least one of the two arguments is 1z, .
At the level of types, we have:

[[(E)I op g)ﬂp = [[!tg,]]p P, [[!t_llﬂp
. int nt . . nt I(ZLXZL)‘)ZL mnt

int (Vi) 1 (Vint) 1
| — L 1

Vint) L =21 (Vinr) L

9.2.4 Conditional

In order to define the semantics of the conditional expression, we exploit the condi-
tional operator of the meta-language

Condy :Z; x (Ve)1 X (Vo)L — (Vo)1

196 9 Denotational Semantics of HOFL

defined as:

do ifv=0]
Cond.(v,do,d1) % { d ifIneZ.v=|n]An#0
J_(VT)L ifv= J‘ZL

Note that Cond; is parametric on the type 7. In the following, when 7 can be
inferred, we write just Cond. The conditional operator is strict on its first argument
(i.e., it returns L when the first argument is L) but not on the second and third
arguments.

We can now define the denotational semantics of the conditional operator by
letting:

[if then 1o else 1] p % Cond ([1] p.[to] p. [11])
At the level of types we have:

[if f then n else It_zl]]p = Cond; ([[Itg]}p, [[It_ll]]p, [[It_gl]]p)

) int T Tl Z x (Vo) x(Ve) 1 —=(Vz) | Iint ST T

L i ! (Vine) L (Ve) 1 (Vo) 1
(V‘r)L (VT)L

9.2.5 Pairing

For the pairing operator we simply let:

[0, 1) p < [(Irol p. [1] p)]

Note that, for 79 ¢ T and #; : 7y, the pair ([to] p, [t1] p) isin (V,) L x (Vr,) 1 and not in
((Vgy) 1 % (Vz;) 1)1, thus we apply the lifting. In fact, at the level of type consistency
we have:

L(t,01)1p = ([, []))

7 T1 T Gt
L] L 1L]
To*71 (Vig)r (Vo)1
e
(Vagery)1 (V)L % (Vay) 1

—
((Veg) 1 x(Vay) 1)1

9.2.6 Projections

We define the projections by using the lifted version of the projections 7y and m, of
the meta-language:

9.2 HOFL Interpretation Function 197

[Est(t)] p L et d <= [t] p. 1 d
= mi([c]p)
[snd(1)]p € let d <= [1]p. w2 d
= m([r]p)
The let operator (see Definition 8.10) allows to de-lift [t] p in order to apply projec-

tions 7y and 7. Instead, if [¢] p = L the result is also L.
Again, we check that the type constraints are respected by the definition:

[fst(¢)p=let ¢ <[¢ Jp. m d
To*T| Viyery To*T| I(Vfo)LX(Vn) 1= (Ve)i Vro*rll
|T0—| (Vegrry)1 (Ve)
(Vey) L

The case of snd(? : 7 * 7) is completely analogous and thus omitted.

9.2.7 Lambda Abstraction

For lambda-abstraction we use, of course, the lambda operator of the meta-language:

TAxp & |ad. o[/

where we bind x to d for evaluating ¢.

Note that, as in the case of pairing, we need to apply the lifting, because
Ad. [t] p[?/,] is an element of Vit = (V). = (V) 1] and not of (V7)) 1 =
(V)L = (Ve)alu.

x tlp=12 d . [glpl/d)

T T (Vro)L
| I |
=T (V)1
| I | L .
(V-;Oarl)L [(Vr())L‘)(Vfl)1l

(Veg) L= (Ve)11

9.2.8 Function Application

Similarly to the case of projections, we apply the de-lifted version of the function to
its argument:

198 9 Denotational Semantics of HOFL

[t 0)] p < let @ < [11]p- @([10] p)
= (Ag. o([t]p))" (] p)

At the level of types, we have:

(g o=t g < [ulp - g (ulp)

To—T1 T Vig—1y <VTOHTI)1 V- (VTO)L
—
T
. (Ve)L
(Ve)L L !

(V‘fl)L

9.2.9 Recursion

For handling recursion we would like to find a solution (in the domain (V;) |, for
t : 7) to the recursive equation

[rec x. 1] p = [r] p[Irec AP /]

The least solution can be computed simply by applying the fix operator of the
meta-language:

[rec x. 1] p £ fix Ad. []p[*/.]

Finally, we check that also this last definition is consistent with the typing:

ey glo= fiy A g lgel/d
> ([(Ve) L= (Vo) L]=(Ve)] (Vo)o = .
L T : n
(Vo) : V)~
(Vo)1

9.2.10 Examples

Example 9.1. Let us see some simple examples of evaluation of the denotational
semantics. We consider three similar terms f, g, 4 such that f and % have the same de-
notational semantics while g has a different semantics because it requires a parameter
x to be evaluated even if not used.

1. fdéflx vint. 3

2. g% Ax :int. if x then 3 else 3
3. hdgrecy int — int. Ax :int. 3

Note that f, g, h : int — int. For the term f we have:

9.3 Continuity of Meta-language’s Functions 199

[f1p = [Ax. 3]p = |Ad. [3]p[*/:]] = [Ad. [3]]
When considering g, instead:

[g]p = [Ax. if x then 3 else 3]p
= | Ad. [if x then 3 else 3]p[?/,]]
= |Ad.Cond(d,|3],|3])]
=|Ad. let x<=d. |3]]
where the last equality follows from the fact that both expressions Cond(d, |3],|3])
and let x <= d. |3] evaluate to 17 whend = 17 andto 3] if d isa lifted value.

Thus we can conclude that [f]p # [g]p-
Finally, for & we get:

[A]p = [rec y. Ax. 3]p
= fix Ady. [Ax.3]p[*/,]
= fix Ady. |Ady. [3]p[® /5. /1]
— fix Ad,. [Ad,. [3]]

Let I, = Ad,. |Ad,. |3]]. We can compute the fixpoint by exploiting the fixpoint
theorem to compute successive approximations:

do = IZO(J‘[ZL_)ZL]L) =1z, sz,
di = I} (do) = (Ady. |Adx. |3]])L = [Ad,. [3]]
dy = Fh(dl) = (Ady' L)“d)w |_3“)|_)“dx~ |_3H = le)w |_3“ =d

Since dp = d; we have reached the fixpoint and thus
[r]p = [Ad.. [3]]=[/]p.

Note that we could have avoided the calculation of d,, because d; is already a
maximal element in [Z; — Z], and therefore it must be I},(d;) = d;.

9.3 Continuity of Meta-language’s Functions

In order to show that the semantics is always well defined we have to show that all
the functions we employ in the definition are continuous, so that the fixpoint theory
is applicable.

Theorem 9.1. The following functions are monotone and continuous:

1. @LZ(ZLXZL)—)ZL;
2. COI’ldTZZL X (V‘L')L X (VT)L%(VT)L;

200 9 Denotational Semantics of HOFL

3. (77 7) : (Vfo)l X (Vﬁ)L - VTO*Tl ,
4. m :V‘Eo*fl — (VTO)L;

5.1 Vegsr, = (Vo) s

6. let

7. apply

8 fix: [[(Ve) L — (Vo) 1] — (Vo)]

Proof. Monotonocity is obvious in most cases. We focus on the continuity of the
various functions

1.

2.

Since op n is monotone over a domain with only finite chains then it is also
continuous.

By using the Theorem 8.7, we can prove the continuity of Cond on each parameter
separately.

Let us show the continuity on the first parameter. Since chains in Z, are finite,
it is enough to prove monotonicity. We fix dy,d, € (V7)1 and we prove the
monotonicity of Ax. Cond:(x,d,dy) : Z| — (V) 1« Letn,m € Z.

e thecases Lz, Tz Lz or|n| gz, [n] aretrivial;
e forthecase Lz Lz, [n] then obviously

COndT(J_ZL,dl ,dy) = J‘(Vr)L E(Vr)L Cond‘;(|n|,di,d2)

because Ly, is the bottom element of (Vz), .
o forthe case [n] Ez, |m],since Z | is a flat domain we have n = m and trivially
Condy(|n],dy,d2) Cy,), Cond(|m],dy,d)

Now let us show the continuity on the second parameter, namely we fix v € Z |
and d € (V;), and forany chain {d;};cn in (V) we prove that

Cond,; <v, L] d,»,d) = | | Cond.(v,d;,d)

ieN ieN

e ifv=_17 ,then

Cond; (J_ZL, L] di,d> =1z, =| |1z, =||Cond:(1y, .d;,d)
ieN ieN ieN

e if v= 0], then Ax. Cond.(|0],x,d) is the identity function Ax. x and we have

Cond,; <LOJ, |_|di,d> = | | di=| | Cond:(|0],d;.d)

ieN ieN ieN

e if v=|n| withn #0, then Ax. Cond.(|n|,x,d) is the constant function Ax. d
and we have

9.3 Continuity of Meta-language’s Functions 201

Cond; <LnJ, |_|d,~,d) =d=||d=||Cond:(|n),d;,d)

ieN ieN ieN

In all cases Cond; is continuous.
Continuity on the third parameter is analogous.

3. For pairing (_,_) we can use again the Theorem 8.7, which allows to show sepa-
rately the continuity on each parameter. If we fix the first element we have

(d, |_|d,-> = <|_| d,l_ldi> =[](d.a)

ieN ieN ieN ieN

by definition of lub of a chain of pairs (see Theorem 8.1). The same holds for the
second parameter.

Projections 7; and m, are continuous by Theorem 8.2.

The let function is continuous since (-)* is continuous by Theorem 8.4.

apply is continuous by Theorem 8.8

fix is continuous by Theorem 8.10. a

Nk

In the previous theorem we have not mentioned the continuity proofs for lambda
abstraction and recursion. The next theorem fills these gaps.

Theorem 9.2. Let t : T be a well typed term of HOFL; then the following holds:

1. (Ad. [t]p[?/s]) is a continuous function.
2. fix Ad. [t]p[?/.] is a continuous function.

Proof. Let us prove the two properties:

1. We prove the stronger property that, for any n € N:

l(dl,...,dn). [[tﬂp[dl/m sttt ’d,, /xn]

is a continuous function. The proof is by structural induction on ¢. Below, for
brevity, we write d instead of d\, ...,d, and p instead of p[91 /, -+ % /..]:

t=y: Then Ad. [y]p’ is either a projection function (if y = x; for some
i € [1,n]) or the constant function Ad. p(y) Gf y & {x1,....xn}),
which are continuous.

t=1t opt: By inductive hypothesis f Lhd. [fn]p’ and f> Lhad. [n2]p’ are

continuous. Then f Ld. ((fi d),(f» d)) is continuous, and

Ad. [op p]p’ = 2d.- ([n]p’ op, []p)
=Ad.(fid)op, (f>d)
= %L (@] f
is continuous because op N is continuous and the composition of
continuous functions yields a continuous function by Theorem 8.5.

202 9 Denotational Semantics of HOFL

t=Ay.t" By induction hypothesis we can assume that A(d, d).["'1p'1%/y]
is continuous. Then curry(A(d,d).[']p’[?/,]) is continuous since
curry is continuous, and we conclude by noting that

curry (A(d.d).[/1p'[* y)) = Ad. Ad. [']p'[/,]
= Ad.[Ay.1']p".

We leave the remaining cases as an exercise.
2. To prove the second proposition we note that

fix Ad.[r]p["/x]

is the application of a continuous function (i.e., the function fix, by Theorem 8.10)
to a continuous argument (i.e., Ad.[t]p[¢/.], continuous by the first part of this
theorem) so it is continuous by Theorem 8.8. a

We conclude this section by recalling that the definition of denotational semantics
is consistent with the typing.

Theorem 9.3 (Type Consistency). If : T then t] p € (V¢) ..

Proof. The proof is by structural induction on ¢ and it has been outlined when giving
the structurally recursive definition of the denotational semantics (where we have
also relied on the previous continuity theorems). a

9.4 Substitution Lemma and Other Properties

We conclude this chapter by stating some useful theorems. The most important is the
Substitution Lemma which states that the substitution operator commutes with the
interpretation function.

Theorem 9.4 (Substitution Lemma). Let x,t : T andt' : ©'. We have

[“/d] p = [T p1MP /4]

Proof. By Theorem 7.1 we know that #'[' /] : 7. The proof is by structural induction
on ¢’ and left as an exercise (see Problem 9.13). O

In words, replacing a variable x with a term ¢ in a term ¢’ returns a term ¢'[' /,]
whose denotational semantics [t'[' /.]] p = [¢'] p[I'1° /.] depends only on the denota-
tional semantics [#] p of 7.

Remark 9.1 (Compositionality). The substitution lemma is an important result, as it
implies the compositionality of denotational semantics, namely for all terms #;,#,
and environment p we have:

[nlp=lnlp = [:"/J]p=1[?/d]p

9.4 Substitution Lemma and Other Properties 203

Theorem 9.5. Let t be a well-defined term of HOFL. Let p,p’ € Env such that
Vx € fv(r). p(x) = p'(x) then:

[1p =[1p’

Proof. The proof is by structural induction on ¢ and left as an exercise (see Prob-
lem 9.16). O

Theorem 9.6. Let ¢ € C; be a closed term in canonical form of type T. Then we
have:

VY p € Env. [[C]]p #* J‘(VTM

Proof. Immediate, by inspection of the clauses for terms in canonical forms. a

Problems

9.1. Consider the HOFL term:

1 < rec f- Ax. if x then 0 else (f(x) X f(x))
Derive the type, the canonical form and the denotational semantics of ¢.
9.2. Consider the HOFL term:

t % rec - Ax. Ay. if x x'y then x else (fx)((fx)y)

Derive the type, the canonical form and the denotational semantics of ¢.
9.3. Consider the HOFL term:

t L gst((Ax. x) (1, ((reef. Ay. (fy))2))).
Derive the type, the canonical form and the denotational semantics of ¢.
9.4. Consider the HOFL term

t ©rec £. Ax. if x then 1 else (g (f (x—1)))

1. Derive the type of ¢ and the denotational semantics of [¢] p by assuming that
pg = |k for some suitable .

2. Compute the canonical form of the term (((Ag.) Ax. x) 1). Would it be possible
to compute the canonical form of ¢?

9.5. Let us consider the following recursive definition:

flx) i x =0 then 1 else 2x f(x—1).

204 9 Denotational Semantics of HOFL

1. Define a well-formed, closed HOFL term ¢ that corresponds to the above definition
and determine its type.
2. Compute its denotational semantics [¢] p and prove that

n>0 = letop<][t]p.on=|2"].
Hint: Prove that the n-th fixpoint approximation is
dy = | Ad.Cond(|0] < d < | [n], |27], 1)]
9.6. Let us consider the following recursive definition:

F(x) & x =0 then 0 else f(f(x—1))

1. Define a well-formed, closed HOFL term ¢ that corresponds to the above definition
and determine its type, its canonical form and its denotational semantics.
2. Define the set of fixpoints that satisfy the recursive definition.

9.7. Consider the HOFL term

t ¥ rec f- Ax. if x then O else f (x—x)

1. Determine the type of ¢ and its denotational semantics [t]p = fix L.

2. Is fix I' the unique fixpoint of I"'?
Hint: Consider the elements greater than fix I" in the order and check if they are
fixpoints for I'.

9.8. Consider the Fibonacci sequence already found in Problem 4.14 and the corre-
sponding term ¢ from Problem 7.8:

FOE1T FO)Y1 Fu+2) ¥ Fn+1)+F(n)s.

where n € N.

1. Compute the suitable transformation I" such that [¢] p = fix I

2. Prove that the denotational semantics [¢] p satisfies the above equations, to con-
clude that the given implementation of Fibonacci numbers is correct.
Hint: Compute [[(z 0)] p, [[(1)] p and [(r n+2)] p exploiting the equality [¢] =
INIE

9.9. Assuming that #; has type 7, let us consider the term 7, & x. (11 x).

1. Do both terms have the same type?
2. Do both terms have the same lazy denotational semantics?

9.10. Let us consider the terms
H &f 2x. rec yy+1
1 % rec yoAx. (yx)+2

9.4 Substitution Lemma and Other Properties 205

1. Do both terms have the same type?
2. Do both terms have the same lazy denotational semantics?

9.11. Given a monotone function f : Z, — Z, prove that f 17 = f(fLz). Then,
let ¢ : int — int be a closed term of HOFL and consider the term

n Erec f.Ax. (1 (fx))
1. Determine the most general type of #;.
2. Exploit the above result to prove that [#;] p = [2] p, where

t &l rec f-Ax. (t rec y. y)

9.12. Let us extend the syntax of (lazy) HOFL by adding the construct for sequential
composition #1;#, that, informally, represents the function obtained by applying the
function #; to the argument and then the function #, to the result. Define, for the new
construct ;:

1. the typing rule;
2. the (big-step) operational semantics;
3. the denotational semantics.

Then prove that for every closed term #, both terms (¢1;#, ¢) and (# (#; t)) have the
same type and are equivalent according to the denotational semantics.

9.13. Complete the proof of the Substitution Lemma (Theorem 9.4).

9.14. Let 11,1, be well-formed HOFL terms and p an environment.

1. Prove that

[n]p = l[elp. = 16Xl = [(2x)]p ©.1)

2. Prove that the reversed implication is generally not valid by giving a counterex-
ample. Then, find the conditions under which also the reversed implication holds.

3. Exploit the Substitution Lemma (Theorem 9.4) to prove that for all ¢ and x ¢
fv(r) Ufv(tp):

e = [ulp = [iln/Alp = [e/xlp ©.2)

4. Observe that the implication 9.1 is just a special case of the latter equality 9.2 and
explain how:

9.15. Is it possible to modify the denotational semantics of HOFL assigning to the
construct
if ¢ then ¢, else 1,

e the semantics of 7, if the semantics of 7 is Ly, and

206 9 Denotational Semantics of HOFL

o the semantics of 7 otherwise? (If not, why?)

9.16. Complete the proof of Theorem 9.5.

s
&

	Part I Preliminaries
	Introduction
	Structure and Meaning
	Syntax, Types and Pragmatics
	Semantics
	Mathematical Models of Computation

	A Taste of Semantics Methods: Numerical Expressions
	Applications of Semantics
	Key Topics and Techniques
	Induction and Recursion
	Semantic Domains
	Bisimulation
	Temporal and Modal Logics
	Probabilistic Systems

	Chapters Contents and Reading Guide
	Further Reading
	References

	Preliminaries
	Notation
	Basic Notation
	Signatures and Terms
	Substitutions
	Unification Problem

	Inference Rules and Logical Systems
	Logic Programming
	Problems

	Part II IMP: a simple imperative language
	Operational Semantics of IMP
	Syntax of IMP
	Arithmetic Expressions
	Boolean Expressions
	Commands
	Abstract Syntax

	Operational Semantics of IMP
	Memory State
	Inference Rules
	Examples

	Abstract Semantics: Equivalence of Expressions and Commands
	Examples: Simple Equivalence Proofs
	Examples: Parametric Equivalence Proofs
	Examples: Inequality Proofs
	Examples: Diverging Computations

	Problems

	Induction and Recursion
	Noether Principle of Well-founded Induction
	Well-founded Relations
	Noether Induction
	Weak Mathematical Induction
	Strong Mathematical Induction
	Structural Induction
	Induction on Derivations
	Rule Induction

	Well-founded Recursion
	Problems

	Partial Orders and Fixpoints
	Orders and Continuous Functions
	Orders
	Hasse Diagrams
	Chains
	Complete Partial Orders

	Continuity and Fixpoints
	Monotone and Continuous Functions
	Fixpoints

	Immediate Consequence Operator
	The Operator R"0362R
	Fixpoint of R"0362R

	Problems

	Denotational Semantics of IMP
	-Notation
	-Notation: Main Ideas
	Alpha-Conversion, Beta-Rule and Capture-Avoiding Substitution

	Denotational Semantics of IMP
	Denotational Semantics of Arithmetic Expressions: The Function A
	Denotational Semantics of Boolean Expressions: The Function B
	Denotational Semantics of Commands: The Function C

	Equivalence Between Operational and Denotational Semantics
	Equivalence Proofs For Expressions
	Equivalence Proof for Commands

	Computational Induction
	Problems

	Part III HOFL: a higher-order functional language
	Operational Semantics of HOFL
	Syntax of HOFL
	Typed Terms
	Typability and Typechecking

	Operational Semantics of HOFL
	Problems

	Domain Theory
	The Flat Domain of Integer Numbers Z
	Cartesian Product of Two Domains
	Functional Domains
	Lifting
	Function's Continuity Theorems
	Apply, Curry and Fix
	Problems

	Denotational Semantics of HOFL
	HOFL Semantic Domains
	HOFL Interpretation Function
	Constants
	Variables
	Arithmetic Operators
	Conditional
	Pairing
	Projections
	Lambda Abstraction
	Function Application
	Recursion
	Examples

	Continuity of Meta-language's Functions
	Substitution Lemma and Other Properties
	Problems

	Equivalence between HOFL denotational and operational semantics
	HOFL: Operational Semantics vs Denotational Semantics
	Correctness
	Equivalence (on Convergence)
	Operational and Denotational Equivalences of Terms
	A Simpler Denotational Semantics
	Problems

	Part IV Concurrent Systems
	CCS, the Calculus for Communicating Systems
	From Sequential to Concurrent Systems
	Syntax of CCS
	Operational Semantics of CCS
	Action Prefix
	Restriction
	Relabelling
	Choice
	Parallel Composition
	Recursion
	CCS with Value Passing
	Recursive Declarations and the Recursion Operator

	Abstract Semantics of CCS
	Graph Isomorphism
	Trace Equivalence
	Bisimilarity

	Compositionality
	Bisimilarity is Preserved by Choice

	A Logical View to Bisimilarity: Hennessy-Milner Logic
	Axioms for Strong Bisimilarity
	Weak Semantics of CCS
	Weak Bisimilarity
	Weak Observational Congruence
	Dynamic Bisimilarity

	Problems

	Temporal Logic and -Calculus
	Temporal Logic
	Linear Temporal Logic
	Computation Tree Logic

	-Calculus
	Model Checking
	Problems

	 -Calculus
	Name Mobility
	Syntax of the -calculus
	Operational Semantics of the -calculus
	Action Prefix
	Choice
	Name Matching
	Parallel Composition
	Restriction
	Scope Extrusion
	Replication
	A Sample Derivation

	Structural Equivalence of -calculus
	Reduction semantics

	Abstract Semantics of the -calculus
	Strong Early Ground Bisimulations
	Strong Late Ground Bisimulations
	Strong Full Bisimilarities
	Weak Early and Late Ground Bisimulations

	Problems

	Part V Probabilistic Systems
	Measure Theory and Markov Chains
	Probabilistic and Stochastic Systems
	Measure Theory
	-field
	Constructing a -field
	Continuous Random Variables
	Stochastic Processes

	Markov Chains
	Discrete and Continuous Time Markov Chain
	DTMC as LTS
	DTMC Steady State Distribution
	CTMC as LTS
	Embedded DTMC of a CTMC
	CTMC Bisimilarity
	DTMC Bisimilarity

	Problems

	Markov Chains with Actions and Non-determinism
	Discrete Markov Chains With Actions
	Reactive DTMC
	DTMC With Non-determinism

	Problems

	PEPA - Performance Evaluation Process Algebra
	From Qualitative to Quantitative Analysis
	CSP
	Syntax of CSP
	Operational Semantics of CSP

	PEPA
	Syntax of PEPA
	Operational Semantics of PEPA

	Problems

	Glossary
	Solutions
	Index

