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Mathematical reasoning may be regarded
rather schematically as the exercise of a
combination of two facilities, which we may
call intuition and ingenuity.

Alan Turing'

! The purpose of ordinal logics (from Systems of Logic Based on Ordinals), Proceedings of the
London Mathematical Society, series 2, vol. 45, 1939.



Preface

The origins of this book lie their roots on more than 15 years of teaching a course on
formal semantics to graduate Computer Science to students in Pisa, originally called
Fondamenti dell’ Informatica: Semantica (Foundations of Computer Science: Seman-
tics) and covering models for imperative, functional and concurrent programming. It
later evolved to Tecniche di Specifica e Dimostrazione (Techniques for Specifications
and Proofs) and finally to the currently running Models of Computation, where
additional material on probabilistic models is included.

The objective of this book, as well as of the above courses, is to present different
models of computation and their basic programming paradigms, together with their
mathematical descriptions, both concrete and abstract. Each model is accompanied by
some relevant formal techniques for reasoning on it and for proving some properties.

To this aim, we follow a rigorous approach to the definition of the synfax, the
typing discipline and the semantics of the paradigms we present, i.e., the way in which
well-formed programs are written, ill-typed programs are discarded and the way in
which the meaning of well-typed programs is unambiguously defined, respectively.
In doing so, we focus on basic proof techniques and do not address more advanced
topics in detail, for which classical references to the literature are given instead.

After the introductory material (Part I), where we fix some notation and present
some basic concepts such as term signatures, proof systems with axioms and inference
rules, Horn clauses, unification and goal-driven derivations, the book is divided in
four main parts (Parts II-V), according to the different styles of the models we
consider:

IMP: imperative models, where we apply various incarnations of well-founded
induction and introduce A-notation and concepts like structural recursion,
program equivalence, compositionality, completeness and correctness,
and also complete partial orders, continuous functions, fixpoint theory;

HOFL:  ‘higher-order functional models, where we study the role of type systems,
the main concepts from domain theory and the distinction between lazy
and eager evaluation;
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CCS, m:  concurrent, non-deterministic and interactive models, where, starting from
operational semantics based on labelled transition systems, we introduce
the notions of bisimulation equivalences and observational congruences,
and overview some approaches to name mobility, and temporal and modal
logics system specifications;

PEPA: probabilistic/stochastic models, where we exploit the theory of Markov
chains and of probabilistic reactive and generative systems to address
quantitative analysis of, possibly concurrent, systems.

Each of the above models can be studied in separation from the others, but previous
parts introduce a body of notions and techniques that are also applied and extended
in later parts.

Parts I and II cover the essential, classic topics of a course on formal semantics.

Part III introduces some basic material on process algebraic models and temporal
and modal logic for the specification and verification of concurrent and mobile
systems. CCS is presented in good detail, while the theory of temporal and modal
logic, as well as m-calculus, are just overviewed. The material in-Part III can be used
in conjunction with other textbooks, e.g., on model checking or zz-calculus, in the
context of a more advanced course on the formal modelling of distributed systems.

Part I'V outlines the modelling of probabilistic and stochastic systems and their
quantitative analysis with tools like PEPA. It poses the basis for a more advanced
course on quantitative analysis of sequential and interleaving systems.

The diagram that highlights the main dependencies is represented below:

Imperative Functional
Chapter 3 Chapter 7
Chapter 4 structural Chapter 8
recursion 2

Chapter 5 Chapter 9
v
Chapter 6 Chapter 10
<X
CPO and
fixpoint

lambda
notation

B K
¢ LTS and Probabilisti
Chapter 11 | anc N Chapter 11
bisimulation
N
hapter 13

induction
and

The diagram contains a squared box for each chapter / part and a rounded-corner
box for each subject: a line with a filled-circle end joins a subject to the chapter
where it is introduced, while a line with an arrow end links a subject to a chapter or
part where it is used. In short:

Induction and recursion:  various principles of induction and the concept of struc-
tural recursion are introduced in Chapter 4 and used
extensively in all subsequent chapters.
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CPO and fixpoint:

Lambda-notation:

LTS and bisimulation:

HM-logic:

xi

the notion of complete partial order and fixpoint compu-
tation are first presented in Chapter 5. They provide the
basis for defining the denotational semantics of IMP and
HOFL. In the case of HOFL, a general theory of product
and functional domains is also introduced (Chapter 8).
The notion of fixpoint is also used to define a particular
form of equivalence for concurrent and probabilistic sys-
tems, called bisimilarity, and to define the semantics of
modal logic formulas.

A-notation is a useful syntax for managing anonymous
functions. It is introduced in Chapter 6 and used exten-
sively in Part III.

Labelled transition systems are introduced in Chapter 11
to define the operational semantics of CCS in terms of the
interactions performed. They are then extended to deal
with name mobility in Chapter 13 and with probabilities
in Part V. A bisimulation is a relation over the states of an
LTS that is closed under the execution of transitions. The
before mentioned bisimilarity is the coarsest bisimulation
relation. Various forms of bisimulation are studied in Part
IV and V.

Hennessy-Milner logic is the logic counterpart of bisimi-
larity: two state are bisimilar if and only if they satisfy the
same set of HM-logic formulas. In the context of proba-
bilistic system, the approach is extended to Larsen-Skou
logic in Chapter 15.

Each chapter of the book is concluded by a list of exercises that span over the main
techniques introduced in that chapter. Solutions to selected exercises are collected at

the end of the book.

Pisa,
February 2016

Roberto Bruni
Ugo Montanari
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HOFL: a higher-order functional language



This part focuses on models for sequential computations that are associated to HOFL,
a higher-order declarative language that follows the functional style. Chapter 7
presents the syntax, typing and operational semantics of HOFL, while Chapter 9
defines its denotational semantics. The two are related in Chapter 10. Chapter 8
extends the theory presented in Chapter 5 to allow the definition of more complex
domains, as needed by the type-constructors available in HOFL.



Chapter 10

Equivalence between HOFL denotational and
operational semantics

Honest disagreement is often a good sign of progress. (Mahatma
Gandhi)

Abstract In this chapter we address the correspondence between the operational
semantics of HOFL from Chapter 7 and its denotational semantics from Chapter 9.
The situation is not as straightforward as for IMP. A first discrepancy between the
two semantics is that the operational one evaluates only closed (and typable) terms,
while the denotational one can handle terms with variables, thanks to environments.
Apart from this minor issue, the key fact is that the canonical forms arising from the
operational semantics for the terms of type T are more concrete than the mathematical
elements of the corresponding domain (V;) ;. Thus, it is inevitable that terms with
different canonical forms can be assigned the same denotation. Vice versa, we show
that terms with the same canonical form are always assigned the same denotation.
Only for terms of type int we have a full agreement between the two semantics.
On the positive side, a term converges operationally if and only if it converges
denotationally. We conclude the chapter by discussing the equivalences over terms
induced by the two semantics and by presenting an alternative denotational semantics,
called unlifted, which is simpler but less expressive than the one studied in Chapter 9.

10.1 HOFL: Operational Semantics vs Denotational Semantics

As we have done for IMP, now we address the relation between the denotational and
operational semantics of HOFL. One might expect to prove a complete equivalence,
as in the case of IMP:

Vt,c. t—c N Vp. [tlp =[c]p

But, as we are going to show, the situation in the case of HOFL is more complex and
the implication is valid in one direction only, i.e., the operational semantics is correct
but not complete:

t—c=>Vp. fjp=[c]p but Vp.[tJp=[c]p)#t—c

207



208 10 Equivalence between HOFL denotational and operational semantics

Let us consider a very simple example that shows the difference between the denota-
tional and the operational semantics.

Example 10.1. Let ¢) = Ax. x+0 and ¢; = Ax. x be two HOFL terms, where x : int.
Clearly:
[colp=lcilp  but  coAe

In fact, from the denotational semantics we get:
[colp = [Ax. x+0]p = |Ad.d+  [0]] = |Ad. d] = [Ax. x]p = [c1] p

but for the operational semantics we have that both Ax. x and Ax. x+ 0 are already
in canonical form and cg # c;.

The counterexample shows that, at least for the functional type int — int, there are
different canonical forms with the same denotational semantics, namely terms which
compute the same function in [Z, — Z ], . One could think that a refined version
of our operational semantics (e.g., one which could apply an axiom like x+0=10)
would be able to identify exactly all the canonical forms which compute the same
function. However this is not possible on computability grounds: since HOFL is
able to compute all computable functions, the set of canonical terms which compute
the same function is not recursively enumerable, while the set of theorems of every
(finite) inference system is recursively enumerable.

Even if we cannot have a strong correspondence result between the operational and
denotational semantics as it was the case for IMP, we can establish a full agreement
between the two semantics w.r.t. the notion of termination. In particular, by letting
the predicate ¢ | denote the fact that the term ¢ can be reduced to some canonical
form (called operational convergence) and ¢} denote the fact that the term ¢ : T is
assigned a denotation other than Ly ) (called denotational convergence), we have
the perfect match:

tl & t

10.2 Correctness

We are ready to show the correctness of the operational semantics of HOFL w.r.t.
the denotational one. Note that since the operational semantics is defined for closed
terms only, the environment is inessential in the following theorem.

Theorem 10.1 (Correctness). Let t : T be a HOFL closed term and let ¢ : T be a
canonical form. Then we have:

t—c = VpeEw. [tJp=][c]p

Proof. We proceed by rule induction. So we prove

Pt =) Evp. [1]p =[c]p
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for the conclusion ¢ — ¢ of each rule, when the predicate holds for the premises.

C::

Arit.:

Cond.:

The rule for terms in canonical forms (integers, pairs, abstraction) is

c—C

We have to prove P(c — ¢) def Vp. [c]p = [c] p, which is obviously true.
Let us consider the rules for arithmetic operators op € {+,—, x }:

ty —n tHh—np

f1opty — ny 0p ny
We assume the inductive hypotheses:
P(ty —n1) S 9p. [n]p =[m]p=|m]
Pty = m) Evp. ] p =[] p = |2

and we want to prove

def
P(l] opfr — nj %nz) = Vp. [[ll op tzﬂp = [[nl %nz]] pP.
We have:

[tiopt]p =[] p op []p (by definitionof [-])
= |n1] op  [n2] (by inductive hypotheses)
= |n1 opnz] (by definition of op )

= [[nl @ng]] P (by definition of [-]).

In the case of the conditional construct we have two rules to consider. For

t—0 ty—co

if ¢ then ¢ else 1; — ¢g
we can assume

P(t —0) € vp. []p = [0]p = |0}

def
P(tg — co) = p. o] p = [col p
and we want to prove:
P(if 7 then 7 else t; — o) dépr. [if # then 7y else #;] p = [co] p

We have:
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Proj.:

App.:

10 Equivalence between HOFL denotational and operational semantics

[if z then 1y else t;] p = Cond([t] p,[to] p,[t:1] p) (by def. of [-]
— Cond([0),[n]p,[n]p)  (byind. hyp)
= [w]p (by def. of Cond)

= [co] p (by ind. hyp.).

The same procedure holds for the second rule of the conditional operator.
Let us consider the rule for the first projection:

r— (l‘(),tl) o — Cco

fst(r) — co
We can assume
P(t — (t0,11)) = Vp. [r]p = [(10,1)] p
P(to — co) < Vp. [1o] p = [collp

and we want to prove

P(fst(r) — co) & vp. Tfst(t)] p = [co] p-

We have:

[fst()] p = let v <= [t] p. ;v (by def. of [-])
= let v < [(t0,11)] p- 701y (by ind. hyp.)
=letv<|([to] p,[t1]p)]- m1v  (by def. of [-])
= m([r] p, 1] p) (by de-lifting)
= [t] p (by def. of 7y)
= fco] p (by ind. hyp.).

The same procedure holds for the snd operator.
The rule for application is:

h—Ax.t; /)] —c

(t1tg) > ¢
We can assume:
P(ty = Ax. 1) ¥ vp. [n]p = [Ax. 1] p
P[0/ ) Evp. [1[ /] p = el p
and we want to prove
P((11 19) = ¢) € p. [(11 10)] p = [l p-

We have:
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[(r1 10)]p =let @ < [t1] p- @([t0] p) (by definition of [-])
=let ¢ < [Ax. 1] p. o([0] p) (by ind. hypothesis)
=let ¢ < |Ad. [t]]p[?/s]] - @([to] p) (by definition of [-])
— (d. [4]p[/:)) (Iro] p) (by de-lifting)
= [r{] p[lole /] (by application)
= [t/ p (by Subst. Lemma)
= [c]p (by ind. hypothesis).

Rec.: Finally, we consider the rule for recursion:

t[rec X. t/x] S
rec x.r —c¢

We can assume:
P[] = ¢) S vp. i~ /] p =] p
and we want to prove
P(rec x.t —c) dng. [rec x. 1] p = [c]p-
We have:

[rec x. 1] p = [¢] p[Irec * 1P /] (by definition)

= e[ 1/ )] p (by the Substitution Lemma)
=[] p (by inductive hypothesis)
Since there are no more rules to consider, we conclude the thesis holds. O

10.3 Equivalence (on Convergence)

Now we define the concept of convergence (i.e., termination) for the operational and
the denotational semantics.

Definition 10.1 (Operational convergence). Let 7 : T be a closed term of HOFL, we
define the following predicate:

tl & dceCr.t—c.

If ¢ |, then we say that ¢ converges operationally. We say that t diverges, written ¢ T,
if ¢ does not converge operationally.
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A term ¢ converges operationally if the term can be evaluated to a canonical form
c. For the denotational semantics we have that a term ¢ converges if the evaluation
function applied to 7 takes a value different from L .

Definition 10.2 (Denotational convergence). Let 7 be a closed term of HOFL with
type 7, we define the following predicate:

ty & VpeEmIveVi [t]p=|v]
If the predicate holds for ¢ then we say that ¢ converges denotationally.

We aim to prove that the two semantics agree at least on the notion of convergence.
The implication # | = ¢ |} can be readily proved.

Theorem 10.2. Let t : T be a closed typable term of HOFL. Then we have:

td = 1t
Proof. Ift — ¢, then Vp. [t] p = [c] p by Theorem 10.1. But [c] p is a lifted value,
(see Theorem 9.6) and thus it is different than J_(VT) . O

Also the opposite implication ¢ |} = ¢ | holds (for any closed and typable term z,
see Theorem 10.3) but the proof is not straightforward: We cannot simply rely on
structural induction; instead it is necessary to introduce a particular logical relation
between elements of the interpretation domains and HOFL terms. We will only
sketch the proof, but first we show that the standard structural induction does not
help in proving the agreement of semantics about convergence.

Remark 10.1 (On the reason why structural induction fails for proving t || = t ).

def . .
The property P(t) =11l = t | cannot be proved by structural induction on ¢. Here
we give some insights on the reason why it is so. Let us focus on the case of function
application (#] fy). By structural induction, we assume

P(ll)défl‘ll}é llJ, and P(lo) défl‘ol}? l‘()i
and we want to prove P(t; fp) et (tit0) J = (11 10) J
Let us assume the premise (¢ 1p) | (i.e., [(f1 t0)] p # L) of the implication. We
would like to prove that (1, ) |, i.e., that Jc. (t; tp) — ¢. By definition of denotational
semantics we have 71 {}. In fact

[t 10)] p < 1et @ =[] p- @([10] p)

and therefore [(#; #9)] p # L requires [t;] p # L. By the first inductive hypothesis
we then have 71 | and by definition of the operational semantics it must be the case
that r; — Ax. t{ for some x and ti. By correctness (Theorem 10.1), we then have

[nlp = [Ax.A]p = | 2d. [1] pI/]].
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Therefore:

[(t1 70)]p = let @ <= [Ad. [ri]p[?/]] - @([t0] p) ~ (see above)
= (d- [11]p[*/s]) ([l ) (by de-lifting)
=[] p[lole /] (by functional application)
= [l /sllp (by the Substitution Lemma)

So (1 o) |} if and only if 7} [0 /,] {}. We would like to conclude by structural induction
that 7{ [0 /,] | and then prove the theorem by using the rule:

nh—Ax.t; fq0/)]—c

(tl t()) —C

but this is incorrect since 7{ [0 /,] is not a sub-term of (1, 7p) and we are not allowed
to assume that P(z{ [0 /,]) holds.

Theorem 10.3. For any closed typable term t : T we have:

ty = |
Proof. The proof exploits two suitable logical relations, indexed by HOFL types:

e <¢CV; xC; that relates canonical forms to corresponding values in V; and that
is defined by structural induction over types T;

o <.C (V;)L x Ty that relates well-formed (closed) terms to values in (V) and
that is defined by letting:

def
d<et = WweVid=|v|=3ect—cAv<ic

In particular, note that, by definition, we have L) <S¢ forany term¢: 7.
The logical relation on canonical forms is defined as follows

ground type:  we simply let n <§ . n;

~int

product type:  we let (do,d1) S5, (fo,1) iff do Sey to and dy Sy 115

function type:  welet ¢ ¢ 7 Ax. tiff Vdy € (Vy)) 1 and Vo : 7 closed, do Sq, fo
implies ¢{dy) <, 1[0 /..

Then one can show, by structural induction on ¢ : T that:

1. Vd,d' € (Vo) (dC,, dNd Set)=d Sets

2. if {d;}iey is-a chainin (V¢), such that Vi € N. d; S ¢, then | |iendi Sct (e, the
predicate - < 7 is inclusive).

Finally, by structural induction on terms, one can prove that Vz : T with fv(z) C {x :
Thyeoo Xt T by if Vi € [1LA]. di Septithen [t p[@ /xy oo [ Set[M /xys o™ /i )- In
fact, taking 7 : T closed, it follows from the definition of <; thatifz |, i.e., [t]p = |v]
for some v € V¢, then t — ¢ for some canonical form ¢, i.e., t |. O
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10.4 Operational and Denotational Equivalences of Terms

In this chapter introduction we have shown that the denotational semantics is more
abstract than the operational. In order to study the relationship between the oper-
ational and denotational semantics of HOFL we now introduce two equivalence
relations between terms. Operationally two closed terms are equivalent if they both
diverge or have the same canonical form.

Definition 10.3 (Operational equivalence). Let #p and #; be two well-typed terms
of HOFL then we define a binary relation =, as follows:

o=opt1 <= (IQT Nt T)\/(Hc.t()%c/\tlﬁc)
And we say that 7y is operationally equivalent to #; if 7o =, 1+
We have also the denotational counterpart of the definition of equivalence.

Definition 10.4 (Denotational equivalence). Let 75 and #; be two well-typed terms
of HOFL then we define a binary relation =;,,, as follows:

to=anti & Vp.[to]p=[n]p
And we say that # is denotationally equivalent to #; if g =4., 11.

Remark 10.2. Note that the definition of denotational equivalence terms applies also
to non closed terms. Operational equivalence of non closed terms ¢ and ¢’ could also
be defined by taking the closure of the equivalence w.r.t. the embedding of ¢ and ¢’
in any context C[-] such that C[¢] and C[¢'] are also closed, i.e., by requiring that Clt]
and C[t'] are operationally equivalent for any context C|[-].

From Theorem 10.1 it follows that: =,, = = 4.

As pointed out in Example 10.1: =4, A =,p.

So it is in this sense that we can say that the denotational semantics is more
abstract then the operational one, because the former identifies more terms than the
latter. Note that if we assume fy =g4.,, 1 and [[fo] p # L then we can only conclude
that fo — co and #; — ¢; for some canonical forms ¢ and c¢1. We have [co] p = [c1] p»
but nothing ensures that co ='c; (see Example 10.1 at the beginning of this chapter).

Only when we restrict our attention to the terms of HOFL that are typed as integers,
then the corresponding operational and denotational semantics fully agree. This is
because if ¢ and ¢ are canonical forms in Cj,, then it holds that [co] p = [c1] p &
co = c1. It can be proved int is the only type for which the full correspondence holds.

Theorem 10.4. Let ¢ : int be a closed term of HOFL and n € N. Then:
Vp. [tlp=|n] < t—n

Proof. We prove the two implications separately.



10.5 A Simpler Denotational Semantics 215

=) [If[t]p = |n], thent |} and thus 7 | by the soundness of denotational semantics,
namely Jm such that t — m, but then [¢] p = |m] by Theorem 10.1, thus n =m
and r — n.

<) Just Theorem 10.1, because [n] p = |n]. O

10.5 A Simpler Denotational Semantics

We conclude this chapter by presenting a simpler denotational semantics which we
call unlifted, because it does not use the lifted domains. This semantics is simpler but
also less expressive than the lifted one. We define the following new domains:

def def def
Diy =7 Dzysry = Dy X Dy, Dz, 7, = [Drl _>D12]

Now we can let Env’ & Var — U D+ and define the simpler interpretation func-
tion [ : 7]’ : Emv' — D as follows (where p € Emv/):

(exactly as before)
[7]'p = [n]
['p =p(x)
[nopn]'p=[u]'pop, [r]'p
[[if to then 7 else lz]]/p T Cond([[to]] P, [[tl]]/p, ﬂlg]]/p)
[rec x. t]]/p = fixAd. [[t]]'p[d/x]

(updated definitions)
[(t1,2)] p = ([n] p. [2] p)
[fst()]) p = m([1] p)
[snd()]'p = m([¢] p)
[Ax. t]]/p = Ad. [[t]}'p[d/x]
[t )] p = ([n]'p) (2] p)

Note that the “unlifted” semantics differ from the “lifted” one only in the cases
of pairing, projections, abstraction and application. On the one hand the unlifted
denotational semantics is much simpler to read than the lifted one. On the other hand
the unlifted semantics is more abstract than the lifted one and does not express some
interesting properties. For instance, consider the two HOFL terms:

def . . def . .
fp=recx.x:int —int and 1 = Ax.recy.y : int — int
In the lifted semantics we have [t p = Lz, .7 1 and [2] p =Lz, .z )], thus

n{¥ and n{.

In the unlifted semantics [,]"p =[] p = Lz, —z,), thus
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ny and .

Note however that #; 1 while 7, |, thus the property ¢ =t |}’ does not hold, at least
for some ¢ : int — int, since t; | but #, J’. However, the property holds for the unlifted
semantics in the case of integers.

As a concluding remark, we observe that the existence of two different, both
reasonable, denotational semantics for HOFL shows that denotational semantics is,
to some extent, an arbitrary construction, which depends on the properties one wants
to express.

Problems

10.1. Prove that the HOFL terms:

0 rec f2x (A 1) (fx) & 2ax1

have the same type and the same denotational semantics but different canonical
forms.

10.2. Let us consider the HOFL term
map € A f. Ax. ((f fst(x)), (f snd(x)))

from Problem 7.5.

1. Write the denotational semantics of map and of (map'Az. 7).
2. Give two terms 12 int and t, : int such that the terms

((map Az.2)(11,12))  ((map Az. 2)(12,11))
have different canonical forms but the same denotational semantics.
10.3. Consider the HOFL term
t %' rec x. ((Ay. if y then O else 0) x).

from Problem 7.6. Compute its denotational semantics, checking the equivalence
with its operational semantics.

10.4. Consider the HOFL term:
t ¥ rec S Ax. if fst(x) x snd(x) then x else (f (f x)).

Derive the type, the canonical form and the denotational semantics of 7. Finally show
another term #' with the same denotational semantics as ¢ but with different canonical
form.
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10.5. Consider the HOFL term:
t ¥ rec f- Ax. if fst(x) —snd(x) then x else (f x).

Derive the type, the canonical form and the denotational semantics of ¢. Finally show
another term ¢’ with the same denotational semantics as ¢ but with different canonical
form.

10.6. Consider the HOFL term:
t ¥ rec F. Af. An. if (f n) then O else ((F f) n).

Derive the type, the canonical form and the denotational semantics of 7. Finally show
another term #' with the same denotational semantics as ¢ but with different canonical
form.

10.7. Consider the HOFL term:

t < rec f- Ax. if (fst(x) snd(x)) then x else (f x).
Derive the type, the canonical form and the denotational semantics of ¢. Finally show
another term 7’ with the same denotational semantics as ¢ but with different canonical
form.

10.8. Modify the ordinary HOFL semantics by defining the denotational semantics
of the conditional construct as follows

[if 7 then 7y else t,] p = Condd([] p, [to] P, [t:1] P)

where
70 ifz=10] V z0 =2z
Condd(z,20,21) =< z1 ifz=|n] An#0
. otherwise

Assume that fy,1; : int.

1. Prove that Condd is a monotonic, continuous function.

2. Show a HOFL term with a different semantics than the ordinary, and explain how
the relation between operational and denotational semantics of HOFL is actually
changed.

10.9. Modify the semantics of HOFL assuming the following operational semantics
for the conditional command:

to—=0 HH—c bh—o to—n n;«éO HhH—c bhh—c

if 7o then #; else 1, — ¢ if 7o then #; else 1, — ¢ '

1. Exibit the corresponding denotational semantics.
2. Prove that also for the modified semantics it holds that t — ¢ implies [¢] = [c].
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3. Finally, compute the operational and the denotational semantics of (fact 0), with

fact &l rec f-Ax. if x then 1 else x x (f (x—1))
and check if they coincide.
10.10. Suppose the operational semantics of projections is changed

t—(t1,i) 1 —c t— (t1,h) tH—c h—c
from to
fst(r) — ¢ fst(t) — c

and analogously for snd, without changing the denotational semantics.

1. Prove that the property t — ¢ = [t] p = [¢] p is still valid.

2. Exhibit a counterexample showing that the property [f]p # L =t — ¢ is no
longer valid.

3. Finally, modify the denotational semantics to recover the above property and
illustrate its validity for the counterexample previously proposed.

10.11. Modify the operational semantics of HOFL by taking the following rules for
conditionals:

t—0 ftg—co H —c t—n I’l;éo fo—>co 11 — C1
if ¢ then 1 else 1; — co if ¢ then 1y else 1 = ¢

without changing the denotational semantics. Prove that:

1. for any term ¢ and canonical form ¢, we havet — ¢ = Vp. [t]p = [c] p;
2. in general f |} # ¢ | (and exhibit a counterexample).

10.12. Suppose we extend HOFL with the inference rule:

tH—0
tHXth —0

as in Problem, 7.12.

1. Exhibit a counterexample showing that the property
Vi,e. t—c = Vp. [tlp=][c]p

is no longer valid.

2. Modity the denotational semantics so that the above correspondence is obtained,
and prove that this is the case.

3. Repeat the exercise adding also the inference rule:

th —0
t1><l2—>0.

10.13. Prove formally that
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if x¢fv(t) then rec x.7isequivalenttot
employing both the operational and the denotational semantics.

10.14. Assume that the HOFL term #( has ¢y as canonical form.

1. Exploit the Substitution Lemma (Theorem 9.4) to prove that for every term ¢ we

have
[[ti [to/xm p = [[ti [CO/X]H p.
2. Prove that if 7] : int and fv(¢]) C {x}, then #{[0/,] =,, 1[0 /.].
3. Conclude that if we replace the lazy evaluation rule

n—Ax.t] t{fto/x] = ¢
(tl I()) — C

with the eager rule

f = Ax.t] ty—co ti[co/x] = ¢
(tito) = c

then, if (¢ 79) — ¢ in the eager semantics, then (¢, fp) — ¢ in the lazy semantics.
4. Exhibit a simple counterexample such that Jc. (#; #)) — ¢ according to the lazy
semantics but not to the eager one.
5. Finally, exhibit another counterexample where the type of #] is not int and the
properties at points 2 and 3 do not hold.

10.15. Extend the operational semantics of HOFL to non-closed terms, by allowing
canonical forms that are not closed but otherwise keeping the same inference rules.
Show an example of reduction to canonical form for a non closed term ¢. Then, prove
that the following properties are still valid:

1. subject reduction: ¢ : T and t — ¢ implies c: T;

2.t — c implies [t] p = [¢] p (remind that the Substitution Lemma holds for any
terms, also not closed ones);

3.t | implies 7 };

St int — cp, by vint — ¢ and [# ] = [£2] imply ¢; = ¢2;

5.t — c implies [¢[*€ = 2/, ]]p = [c[* = */:]] p-
Hint: Exploit property 2 above and the Substitution Lemma.

N

10.16. Modify the denotational semantics of HOFL by restricting the use of the
lifting domain construction only to integers, namely V;,; = Z but V¢, .q, = Vg, X V5,
and similarly for functions.

1. List all the modified clauses of the denotational semantics.
2. Prove that t — ¢ implies [t] p = [¢] p-

3. Finally, prove that it is not true that  — ¢ implies [¢t] p # L.

Hint: consider the HOFL term r & rec f-Ax. (fx) @ int — int.
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