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Mathematical reasoning may be regarded
rather schematically as the exercise of a
combination of two facilities, which we may
call intuition and ingenuity.

Alan Turing'

! The purpose of ordinal logics (from Systems of Logic Based on Ordinals), Proceedings of the
London Mathematical Society, series 2, vol. 45, 1939.



Preface

The origins of this book lie their roots on more than 15 years of teaching a course on
formal semantics to graduate Computer Science to students in Pisa, originally called
Fondamenti dell’ Informatica: Semantica (Foundations of Computer Science: Seman-
tics) and covering models for imperative, functional and concurrent programming. It
later evolved to Tecniche di Specifica e Dimostrazione (Techniques for Specifications
and Proofs) and finally to the currently running Models of Computation, where
additional material on probabilistic models is included.

The objective of this book, as well as of the above courses, is to present different
models of computation and their basic programming paradigms, together with their
mathematical descriptions, both concrete and abstract. Each model is accompanied by
some relevant formal techniques for reasoning on it and for proving some properties.

To this aim, we follow a rigorous approach to the definition of the synfax, the
typing discipline and the semantics of the paradigms we present, i.e., the way in which
well-formed programs are written, ill-typed programs are discarded and the way in
which the meaning of well-typed programs is unambiguously defined, respectively.
In doing so, we focus on basic proof techniques and do not address more advanced
topics in detail, for which classical references to the literature are given instead.

After the introductory material (Part I), where we fix some notation and present
some basic concepts such as term signatures, proof systems with axioms and inference
rules, Horn clauses, unification and goal-driven derivations, the book is divided in
four main parts (Parts II-V), according to the different styles of the models we
consider:

IMP: imperative models, where we apply various incarnations of well-founded
induction and introduce A-notation and concepts like structural recursion,
program equivalence, compositionality, completeness and correctness,
and also complete partial orders, continuous functions, fixpoint theory;

HOFL:  ‘higher-order functional models, where we study the role of type systems,
the main concepts from domain theory and the distinction between lazy
and eager evaluation;
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CCS, m:  concurrent, non-deterministic and interactive models, where, starting from
operational semantics based on labelled transition systems, we introduce
the notions of bisimulation equivalences and observational congruences,
and overview some approaches to name mobility, and temporal and modal
logics system specifications;

PEPA: probabilistic/stochastic models, where we exploit the theory of Markov
chains and of probabilistic reactive and generative systems to address
quantitative analysis of, possibly concurrent, systems.

Each of the above models can be studied in separation from the others, but previous
parts introduce a body of notions and techniques that are also applied and extended
in later parts.

Parts I and II cover the essential, classic topics of a course on formal semantics.

Part III introduces some basic material on process algebraic models and temporal
and modal logic for the specification and verification of concurrent and mobile
systems. CCS is presented in good detail, while the theory of temporal and modal
logic, as well as m-calculus, are just overviewed. The material in-Part III can be used
in conjunction with other textbooks, e.g., on model checking or zz-calculus, in the
context of a more advanced course on the formal modelling of distributed systems.

Part I'V outlines the modelling of probabilistic and stochastic systems and their
quantitative analysis with tools like PEPA. It poses the basis for a more advanced
course on quantitative analysis of sequential and interleaving systems.

The diagram that highlights the main dependencies is represented below:

Imperative Functional
Chapter 3 Chapter 7
Chapter 4 structural Chapter 8
recursion 2

Chapter 5 Chapter 9
v
Chapter 6 Chapter 10
<X
CPO and
fixpoint

lambda
notation

B K
¢ LTS and Probabilisti
Chapter 11 | anc N Chapter 11
bisimulation
N
hapter 13

induction
and

The diagram contains a squared box for each chapter / part and a rounded-corner
box for each subject: a line with a filled-circle end joins a subject to the chapter
where it is introduced, while a line with an arrow end links a subject to a chapter or
part where it is used. In short:

Induction and recursion:  various principles of induction and the concept of struc-
tural recursion are introduced in Chapter 4 and used
extensively in all subsequent chapters.
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CPO and fixpoint:

Lambda-notation:

LTS and bisimulation:

HM-logic:

xi

the notion of complete partial order and fixpoint compu-
tation are first presented in Chapter 5. They provide the
basis for defining the denotational semantics of IMP and
HOFL. In the case of HOFL, a general theory of product
and functional domains is also introduced (Chapter 8).
The notion of fixpoint is also used to define a particular
form of equivalence for concurrent and probabilistic sys-
tems, called bisimilarity, and to define the semantics of
modal logic formulas.

A-notation is a useful syntax for managing anonymous
functions. It is introduced in Chapter 6 and used exten-
sively in Part III.

Labelled transition systems are introduced in Chapter 11
to define the operational semantics of CCS in terms of the
interactions performed. They are then extended to deal
with name mobility in Chapter 13 and with probabilities
in Part V. A bisimulation is a relation over the states of an
LTS that is closed under the execution of transitions. The
before mentioned bisimilarity is the coarsest bisimulation
relation. Various forms of bisimulation are studied in Part
IV and V.

Hennessy-Milner logic is the logic counterpart of bisimi-
larity: two state are bisimilar if and only if they satisfy the
same set of HM-logic formulas. In the context of proba-
bilistic system, the approach is extended to Larsen-Skou
logic in Chapter 15.

Each chapter of the book is concluded by a list of exercises that span over the main
techniques introduced in that chapter. Solutions to selected exercises are collected at

the end of the book.

Pisa,
February 2016

Roberto Bruni
Ugo Montanari
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This part focuses on models and logics for probabilistic and stochastic systems.
Chapter 14 presents the theory of random processes and Markov chains. Chapter 15
studies (reactive and generative) probabilistic models of computation with observ-
able actions and sources of non-determinism together with a specification logic.
Chapter 16 defines the syntax, operational and abstract semantics of PEPA, a well-
known high-level language for the specification and analysis of stochastic, interactive
systems.



Chapter 15

Discrete Time Markov Chains with Actions and
Non-determinism

A reasonable probability is the only certainty. (E.-W. Howe)

Abstract In this chapter we introduce some advanced probabilistic models that can
be defined by enriching the transition functions of PTSs.’As we have seen for Markov
chains, the transition system representation is very useful since it comes with a notion
of bisimilarity. In fact, using the advanced, categorical notion of coalgebra, which
however we will not develop further, there is a standard method to define bisimilarity
just according to the type of the transition function. Also a corresponding notion of
Hennessy-Milner logic can be defined accordingly. First we will see two different
ways to add observable actions to our probabilistic models, then we will present
extensions which combine non-determinism, actions and probabilities.

15.1 Discrete Markov Chains With Actions

In this section we show how it is possible to change the transition function of PTSs
in order to extend Markov chains with labels that represent actions performed by the
system. There are two main cases to consider, called reactive models and generative
models, respectively:

Reactive: In the first case we add actions that are used by the controller to stimu-
late the system. When we want the system to change its state we give
an input action to it which could affect its future state (its reaction).
This is the reason why this type of models is called “reactive”. For-
mally, we have that a reactive probabilistic transition system (also
called Markov decision process) is determined by a transition function
of the form:!

o :S—L— (D(S)+1)

! The subscript r stands for “reactive”.

333
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Fig. 15.1: A reactive PTS which represents a coffee maker

where we recall that S is the set of states, 1 = {«} is a singleton used
to represent the deadlock states, and that D(S) is the set of discrete
probability distributions over S.

Generative:  In the second case the actions represent the outcomes of the system,
this means that whenever the system changes its state it shows an
action, whence the terminology “generative”. Formally we have that a
generative probabilistic transition system is determined by a transition
function of the form:?

Og:S= (D(LxS)+1)
Remark 15.1. We have that in a reactive system, for any s € S and for any ¢ € L:

Z o sls' =1

s'es

Instead, in a generative system, for any s € S:

Y os(ts)=1

(L,s")eLxS

This means that in reactive systems, fixed the source state and the action, the next
state probabilities must sum to 1, while in a generative system, fixed the source state,
the distribution of all transitions must sum to 1 (i.e., given an action ¢ the sum of
probabilities to reach any state is less or equal to 1).

15.1.1 Reactive DTMC

Let us illustrate how a reactive probabilistic system works by using a simple example.

2 The subscript g stands for “generative”.
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Example 15.1 (Random coffee maker). Let us consider a system which we call ran-
dom coffee maker, in which the user can insert a coin (1 or 2 euros) then, the
coffee maker, based on the value of the input, makes a coffee or a cappuccino with
larger or smaller probabilities. The system is represented in Figure 15.1(a). Note
that, since we want to allow the system to take input from the environment we
have chosen a reactive system to represent the coffee maker. The set of labels is
L = {1€,2€, coffee, cappuccino} and the corresponding transitions are represented
as dashed arrows. There are three states sy, s, and s3, represented with black-filled
circles. If the input 1€ is received in state s1, then we can reach state s with prob-
ability 2/3 or s3 with probability 1/3, as illustrated by the solid arrows departing
from the white-filled circle associated with the distribution. Vice versa, if the input
2€ is received in state s;, then we can reach state s, with probability 1/3 or s3
with probability 2/3. From state s, there is only one transition available, with label
coffee, that leads to s; with probability 1. Figure 15.1(b) shows a more compact
representation of the random coffee maker where the white-filled circle is omitted
because the probability distribution is trivial. Similarly, from state s3 there is only
one transition available, with label cappucino, that leads to s; with probability 1.

As we have shown in the previous chapter, using LTSs we have a standard method
to define bisimilarity between probabilistic systems. In the following, we shall abuse
the notation by writing ¢, s £ I in place of ¥ ¢; ¢t s £ 5, i.e., by extending o to deal
with equivalence classes / of states.

Definition 15.1 (Bisimulation in reactive systems). Let o, : S — L — (D(S) + 1)
be a reactive probabilistic system. A relation R C S X § is a bisimulation if for all
s1,52 € § we have:

siRsy = WELIES/ . opsillI=0rs2l]

where [ ranges over the equivalence classes induced by R. Two states are said to be
bisimilar if there exists a bisimulation in which they are related.

Note that any two bisimilar states s; and s, must have, for each action, the same
probability to reach the states in any other equivalence class.

15.1.1.1 Larsen-Skou Logic

Now we will present a probabilistic version of Hennessy-Milner logic. This logic
has been introduced by Larsen and Skou, and provides a new version of the modal
operator. As usual we start from the syntax of Larsen-Skou logic formulas

Definition 15.2 (Larsen-Skou logic). The formulas of Larsen-Skou logic are gener-
ated by the following grammar:

¢ = true | oA | o | (0,0
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We let . denote the set of Larsen-Skou logic formulas. The novelty resides in
the new modal operator (¢) o ¢ that takes three parameters: a formula ¢, an action l
and a real number g < 1. It corresponds to a refined variant of the usual HM-logic
diamond operator ¢;. Informally, the formula (¢) 4 @ requires the ability to reach a
state satisfying the formula ¢ by performing the action ¢ with probability at least g.

As we have done for Hennessy-Milner logic we present the Larsen-Skou logic by
defining a satisfaction relation =C S x ..

Definition 15.3 (Satisfaction relation). Let o, : S — L — (D(S) + 1) be a reactive
probabilistic system. We say that the state s € S satisfies the Larsen-Skou formula ¢
and write s |= ¢, if satisfaction can be proved using the (inductively defined) rules:

s |= true

sEQAE ifsEe@andskE= @

sE-o if osi=¢

sE,e ifasle] >qwhere[p] ={s"€S |5 = ¢}

A state s satisfies the formula (¢) o @ if the (sum of the) probability to pass in any
state s that satisfies @ from s with an action labelled £ is greater than or equal to
q. Note that the corresponding modal operator of the HM-logic can be obtained by
setting ¢ = 1, i.e., (£); ¢ means {¢¢ and we write just (£) ¢ when this is the case.

Likewise HM-logic, the equivalence induced by Larsen-Skou logic formulas
coincide with bisimilarity. Moreover, we have an additional, stronger result: It can be
shown that it is enough to consider only the version of the logic without negation.

Theorem 15.1 (Larsen-Skou bisimilarity characterization). Tivo states of a reac-
tive probabilistic system are bisimilar if and only if they satisfy the same formulas of
Larsen-Skou logic without negation.

Example 15.2 (Larsen-Skou logic). Let us consider the reactive system in Figure 15.1.
We would like to prove that:

81 f= (1€)4 5 (coffee) true
By definition of the satisfaction relation, we must check that:
o s 1€0>1/2 where I} & {s €S8 | s = (coffee) true}
Now we have that s = (coffee) true if:
o, scoffee b, > 1 where L% {s€S | skE=true} = {s1,52,53}
Therefore:
L={seS | ascoffeeh, > 1} ={s€S | a s coffee {s1,52,53} > 1} = {52}

Finally:
o, s 1€ {SQ} = 2/3 > 1/2.



15.1 Discrete Markov Chains With Actions 337

di flip 1/2 2 beep S4
o . .
7
-
-~
~ flop 2/3
-
-~
S1 e
~N
~
~ lij 1/2
- p /
~
A
o . .
d2 flop 1/3 53 buzz S5

Fig. 15.2: A Segala automata

15.1.2 DTMC With Non-determinism

In this section we add non-determinism to generative and reactive systems. Corre-
spondingly, we will introduce two classes of models called Segala automata and
simple Segala automata, after the name of Roberto Segala who studied them. In
both cases we use non-determinism to allow the system to choose between different
probability distributions.

15.1.2.1 Segala Automata

Segala automata have been developed by Roberto Segala in 1995. They are generative
systems that combine probability and non-determinism. When the system has to move
from a state to another, first of all it has to choose non-deterministically a probability
distribution, then it uses this information to perform the transition. Formally the
transition function of a Segala automaton is defined as follows:

0:S— Z(D(LxS))

As we can see, to each state it corresponds a set of probability distributions D(L x S)
that are defined on pairs of labels and states. Note that in this case it is not necessary
to have the singleton 1 to model explicitly deadlock states, because we can use the
empty set to the purpose.

Example 15.3 (Segala automata). Let us consider the system in Figure 15.2. We have
an automata with five states, named s; to ss, represented as usual by black-filled
circles. When in the state s, the system can choose non-deterministically (dashed
arrows) between two different distributions d; and d5:

di(flip,s2) =1/2  di(flop,s3) =1/2

O s1={di,do} where ;g Y273 do(flop.sy) = 1/3

(we leave implicit that d; (I,s) = 0 and d» (I, s) = O for all other label-state pairs).
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Fig. 15.3: A Simple Segala automaton

From states s, and s3 there is just one choice available, respectively the trivial
distributions d3 and dj that are omitted from the picture for conciseness of the
representation:

0s 5o = {d3} where dj(beep,ss) =1
Os 53 = {ds} where dy(buzz,ss) =1

Finally, from states s4 and s5 there are simply no choices available, i.e., they are
deadlock states:

Os 54 = Os 55 =

15.1.2.2 Simple Segala Automata

Now we present the reactive version of Segala automata. In this case we have that
the system can react to an external stimulation by using a probability distribution.
Since we can have more than one distribution for each label, the system uses non-
determinism to choose between different distributions for the same label. Formally
the transition function of a simple Segala automaton is defined as follows:

Osims : S — eQZ(L X D(S))

Example 15.4 (A Simple Segala Automata). Let us consider the system in Figure 15.3,
where we assume some suitable probability value € has been given. We have six
states (represented by black-filled circles, as usual): the state s; has two possible
inputs, a and ¢, moreover the label a has associated two different distributions d; and
dsz, while ¢ has associated a unique distribution d,. All the other states are deadlock.
Formally the system is defined by letting:
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Osims S1 = {((l,d]), (C,dz), (a,d3)} where
d](Sz) :dl(S3) = 1/2
dz(S4) = 1/3 d2(S5) = 2/3
(s1) =

d; (s € d3(s6):178

OlsimS $2 = OsimS 3 = OsimS $4 = OsimS 5 = OsimS S¢ = &

15.1.2.3 Non-determinism, Probability and Actions

As we saw, there are many ways to combine probability, non-determinism and actions.
We conclude this chapter by mentioning two other interesting models which can be
obtained by redefining the transition function of a PTS.

The first class of systems is that of alternating transition systems. In this case we
allow the system to perform two types of transition: one using probability distribu-
tions and one using non-determinism. An alternating system can be defined formally
by a transition function of the form:

0 : S — (D(S)+ Z(LxS))

So in this kind of systems we can alternate probabilistic and non-deterministic
choices and can partition the states accordingly. (Again, a state s is deadlock when
oy s = D).

The second type of systems that we present is that of bundle transition systems. In
this case the system associates a distribution to subsets of non-deterministic choices.
Formally, the transition function has the form:

oS — D(P(LxS))

So when a bundle transition system has to perform a transition, first of all it chooses
by using a probability distribution a set of possible choices, then non-deterministically
it picks one of these.

Problems

15.1. In which sense is a Segala automaton the most general model?

1. Show in which way a generative LTS, a reactive LTS and a simple Segala automa-
ton can be interpreted as (generative) Segala automata.

2. Explain the difficulties in representing a generative LTS as a simple Segala
automaton.

15.2. Consider the following three reactive LTSs. For every pair of systems, check
whether their initial states are bisimilar. If they are, describe the bisimulation, if they
are not, find a formula of the Larsen-Skou logic that distinguishes them.
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coffee

coffee

15.3. Define formally the notion of bisimulation/bisimilarity for simple Segala au-
tomata. Then apply the partition refinement algorithm to the automata below to check
which are the bisimilar states.

1/2

b b
o<-—-—e ®— —>0

2/3
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15.4. Let a non-stopping, reactive, probabilistic labelled transition systems (PLTS)
be the reactive PLTS with o : S — L — D(S) (rather than o : S — L — (D(S) + 1)).

1. Prove that all the states of a non-stopping, reactive PLTS are bisimilar.

2. Then give the definition of bisimilarity also for generative PLTS.

3. Furthermore, consider the non-stopping subclass of generative PLTS and show an
example where some states are not bisimilar.

4. Moreover, give the definition of bisimilarity also for Segala PLTS, and show that
Segala bisimilarity reduces to generative PLTS bisimilarity in the deterministic
case (namely when, for every state s, o(s) is a singleton).
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