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DRAFTMathematical reasoning may be regarded
rather schematically as the exercise of a
combination of two facilities, which we may
call intuition and ingenuity.

Alan Turing1

1 The purpose of ordinal logics (from Systems of Logic Based on Ordinals), Proceedings of the
London Mathematical Society, series 2, vol. 45, 1939.
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Preface

The origins of this book lie their roots on more than 15 years of teaching a course on
formal semantics to graduate Computer Science to students in Pisa, originally called
Fondamenti dell’Informatica: Semantica (Foundations of Computer Science: Seman-
tics) and covering models for imperative, functional and concurrent programming. It
later evolved to Tecniche di Specifica e Dimostrazione (Techniques for Specifications
and Proofs) and finally to the currently running Models of Computation, where
additional material on probabilistic models is included.

The objective of this book, as well as of the above courses, is to present different
models of computation and their basic programming paradigms, together with their
mathematical descriptions, both concrete and abstract. Each model is accompanied by
some relevant formal techniques for reasoning on it and for proving some properties.

To this aim, we follow a rigorous approach to the definition of the syntax, the
typing discipline and the semantics of the paradigms we present, i.e., the way in which
well-formed programs are written, ill-typed programs are discarded and the way in
which the meaning of well-typed programs is unambiguously defined, respectively.
In doing so, we focus on basic proof techniques and do not address more advanced
topics in detail, for which classical references to the literature are given instead.

After the introductory material (Part I), where we fix some notation and present
some basic concepts such as term signatures, proof systems with axioms and inference
rules, Horn clauses, unification and goal-driven derivations, the book is divided in
four main parts (Parts II-V), according to the different styles of the models we
consider:

IMP: imperative models, where we apply various incarnations of well-founded
induction and introduce l -notation and concepts like structural recursion,
program equivalence, compositionality, completeness and correctness,
and also complete partial orders, continuous functions, fixpoint theory;

HOFL: higher-order functional models, where we study the role of type systems,
the main concepts from domain theory and the distinction between lazy
and eager evaluation;

ix
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CCS, p: concurrent, non-deterministic and interactive models, where, starting from
operational semantics based on labelled transition systems, we introduce
the notions of bisimulation equivalences and observational congruences,
and overview some approaches to name mobility, and temporal and modal
logics system specifications;

PEPA: probabilistic/stochastic models, where we exploit the theory of Markov
chains and of probabilistic reactive and generative systems to address
quantitative analysis of, possibly concurrent, systems.

Each of the above models can be studied in separation from the others, but previous
parts introduce a body of notions and techniques that are also applied and extended
in later parts.

Parts I and II cover the essential, classic topics of a course on formal semantics.
Part III introduces some basic material on process algebraic models and temporal

and modal logic for the specification and verification of concurrent and mobile
systems. CCS is presented in good detail, while the theory of temporal and modal
logic, as well as p-calculus, are just overviewed. The material in Part III can be used
in conjunction with other textbooks, e.g., on model checking or p-calculus, in the
context of a more advanced course on the formal modelling of distributed systems.

Part IV outlines the modelling of probabilistic and stochastic systems and their
quantitative analysis with tools like PEPA. It poses the basis for a more advanced
course on quantitative analysis of sequential and interleaving systems.

The diagram that highlights the main dependencies is represented below:
Imperative

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Functional
Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Concurrent
Chapter 11

Chapter 12

Chapter 13

Chapter 11

Chapter 12

Chapter 13

Probabilistic
Chapter 11

Chapter 12

Chapter 13

lambda 
notation

induction 
and 

structural 
recursion

CPO and
fixpoint

LTS and 
bisimulation

HM logic

The diagram contains a squared box for each chapter / part and a rounded-corner
box for each subject: a line with a filled-circle end joins a subject to the chapter
where it is introduced, while a line with an arrow end links a subject to a chapter or
part where it is used. In short:

Induction and recursion: various principles of induction and the concept of struc-
tural recursion are introduced in Chapter 4 and used
extensively in all subsequent chapters.



DRAFT

Preface xi

CPO and fixpoint: the notion of complete partial order and fixpoint compu-
tation are first presented in Chapter 5. They provide the
basis for defining the denotational semantics of IMP and
HOFL. In the case of HOFL, a general theory of product
and functional domains is also introduced (Chapter 8).
The notion of fixpoint is also used to define a particular
form of equivalence for concurrent and probabilistic sys-
tems, called bisimilarity, and to define the semantics of
modal logic formulas.

Lambda-notation: l -notation is a useful syntax for managing anonymous
functions. It is introduced in Chapter 6 and used exten-
sively in Part III.

LTS and bisimulation: Labelled transition systems are introduced in Chapter 11
to define the operational semantics of CCS in terms of the
interactions performed. They are then extended to deal
with name mobility in Chapter 13 and with probabilities
in Part V. A bisimulation is a relation over the states of an
LTS that is closed under the execution of transitions. The
before mentioned bisimilarity is the coarsest bisimulation
relation. Various forms of bisimulation are studied in Part
IV and V.

HM-logic: Hennessy-Milner logic is the logic counterpart of bisimi-
larity: two state are bisimilar if and only if they satisfy the
same set of HM-logic formulas. In the context of proba-
bilistic system, the approach is extended to Larsen-Skou
logic in Chapter 15.

Each chapter of the book is concluded by a list of exercises that span over the main
techniques introduced in that chapter. Solutions to selected exercises are collected at
the end of the book.

Pisa, Roberto Bruni
February 2016 Ugo Montanari
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This part focuses on models and logics for probabilistic and stochastic systems.
Chapter 14 presents the theory of random processes and Markov chains. Chapter 15
studies (reactive and generative) probabilistic models of computation with observ-
able actions and sources of non-determinism together with a specification logic.
Chapter 16 defines the syntax, operational and abstract semantics of PEPA, a well-
known high-level language for the specification and analysis of stochastic, interactive
systems.
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Chapter 16
PEPA - Performance Evaluation Process
Algebra

He who is slowest in making a promise is most faithful in its
performance. (Jean Jacques Rousseau)

Abstract The probabilistic and stochastic models we have presented in previous
chapters represent system behaviour but not its structure, i.e., they take a monolithic
view and do not make explicit how the system is composed and what are the inter-
acting components of which it is made. In this last chapter we introduce a language,
called PEPA (Performance Evaluation Process Algebra), for composing stochastic
processes and carry out their quantitative analysis. PEPA builds on CSP (Calculus for
Sequential Processes), a process algebra similar to CCS but with slightly different
primitives. In particular, it relies on multiway communication instead of binary (i/o)
one. PEPA actions are labelled with rates and a CTMC can be derived from the LTS
of a PEPA process without much efforts to evaluate quantitative properties of the
modelled system. The advantage is that the PEPA description of the CTMC remains
as a blueprint of the system and allows direct re-use of processes.

16.1 From Qualitative to Quantitative Analysis

To understand the differences between qualitative analysis and quantitative analysis,
we remark that qualitative questions like:

• Will the system reach a particular state?
• Does the system implementation match its specification?
• Does a given property f hold within the system?

are replaced by quantitative questions like:

• How long will the system take on average to reach a particular state?
• With what probability does the system implementation match its specification?
• Does a given property f hold within the system within time t with probability p?

Jane Hillston defined the PEPA language in 1994. PEPA has been developed
as a high-level language for the description of continuous time Markov chains.
Over the years PEPA has been shown to provide an expressive formal language for

343
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modelling distributed systems. PEPA models are obtained as the structure assembly
of components that perform individual activities at certain rates and can cooperate
on shared actions. The most important features of PEPA w.r.t. other approaches to
performance modelling are:

compositionality: the ability to model a system as the interaction of subsys-
tems, as opposed to poorly modular approaches;

formality: a rigorous semantics giving a precise meaning to all terms
in the language and solving any ambiguities;

abstraction: the ability to build up complex models from components,
disregarding the details when it is appropriate to do so;

separation of concerns: the ability to model the components and the interaction
separately;

structure: the ability to impose a clear structure to models, which
makes them more understandable and easier to maintain;

refinement: the ability to construct models systematically by refining
their specifications;

reusability: the ability to maintain a library of model components.

For example, queueing networks offer compositionality but not formality; stochas-
tic extensions of Petri nets offer formality but not compositionality; neither offer
abstraction mechanisms.

PEPA was obtained by extending CSP (Calculus for Sequential Processes) with
probabilities. We start with a brief introduction to CSP, then we will conclude with
the presentation of the syntax and operational semantics of PEPA.

16.2 CSP

Communicating Sequential Processes (CSP) is a process algebra introduced by Tony
Hoare in 1978 and is a very powerful tool for systems specification and verification.
Contrary to CCS, CSP actions have no dual counterpart and the synchronisation
between two or more processes is possible when they all perform the same action a
(in which case the observable label of the synchronisation is still a). Since during
communication the joint action remains visible to the environment, it can be used to
interact with other (more than two) processes, realising multiway synchronisation.

16.2.1 Syntax of CSP

We assume that a set L of actions a is given. The syntax of CSP processes is defined
the below, where L ✓ L is any set of actions:

P,Q ::= nil | a.P | P+Q | P ⇤�
L

Q | P/L | C
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We briefly comment on each operator:

nil: is the inactive process;
a.P: is a process which can perform an action a and then behaves like P;
P+Q: is a process which can choose to behave like P or like Q;
P/L: is the hiding operator; if P performs an action a 2 L then P/L performs

an unobservable silent action t;
P ⇤�

L
Q: is a synchronisation operator, also called cooperation combinator. More

precisely, it denotes an indexed family of operators, one for each possible
set of actions L. The set L is called cooperation set and fixes the set of
shared actions between P and Q. Processes P and Q can use the actions
in L to synchronise each other. The actions not included in L are called
individual activities and can be performed separately by P and Q. As a
special case, if L = ? then all the actions of P and Q are just interleaved.

C: is the name, called constant, of a recursively defined process that we
assume given in a separate set D = {Ci

def
= Pi}i2I of declarations.

16.2.2 Operational Semantics of CSP

Now we present the semantics of CSP. As we have done for CCS and p-calculus, we
define the operational semantics of CSP as an LTS derived by a set of inference rules.
As usual, theorems take the form P a�! P0, meaning that the process P in one step
evolves to the process P0 by executing the action a .

16.2.2.1 Inactive Process

There is no rule for the inactive process nil.

16.2.2.2 Action Prefix and Choice

The rules for action prefix and choice operators are the same as in CCS.

a.P a�! P
P a�! P0

P+Q a�! P0

Q a�! Q0

P+Q a�! Q0

16.2.2.3 Hiding

The hiding operator should not be confused with the restriction operator of CCS:
first, hiding takes a set L of labels as a parameter, while restriction takes a single
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action; second, when P a�! P0 with a 2 L we have that P/L t�! P0/L, while P\a
blocks the action. Instead, P/L and P\a behaves similarly w.r.t. actions not included
in L[{a}.

P a�! P0 a /2 L

P/L a�! P0/L

P a�! P0 a 2 L

P/L t�! P0/L

16.2.2.4 Cooperation Combinator

There are three rules for the cooperation combinator ⇤�
L

: the first two rules allow
the interleaving of actions not in L, while the third rule forces the synchronisation of
the two processes when performing actions in L. Differently from CCS, when two
processes synchronises on a the observed label is still a and not t .

P a�! P0 a /2 L

P ⇤�
L

Q a�! P0 ⇤�
L

Q

Q a�! Q0 a /2 L

P ⇤�
L

Q a�! P ⇤�
L

Q0

P a�! P0 Q a�! Q0 a 2 L

P ⇤�
L

Q a�! P0 ⇤�
L

Q0

Note that the cooperation combinator is not associative. For example

(a.b .nil ⇤�
{a}

nil)⇤�
?

a.nil 6= (a.b .nil)⇤�
{a}

(nil ⇤�
?

a.nil).

In fact the leftmost process can perform only an action a

(a.b .nil ⇤�
{a}

nil)⇤�
?

a.nil a�! (a.b .nil ⇤�
{a}

nil)⇤�
?

nil

after which it is deadlock, whereas the rightmost process can perform a synchronisa-
tion on a and then it can perform another action b

(a.b .nil)⇤�
{a}

(nil ⇤�
?

a.nil) a�! (b .nil)⇤�
{a}

(nil ⇤�
?

nil) b�! nil ⇤�
{a}

(nil ⇤�
?

nil).

16.2.2.5 Constants

Finally, the rule for constants unfolds the recursive definition C def
= P, so that C has

all transitions that P has.

(C def
= P) 2 D P a�! P0

C a�! P0
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16.3 PEPA

As we said, PEPA is obtained by adding probabilities to the execution of actions.
As we will see, PEPA processes are stochastic: there are not explicit probabilistic
operators in PEPA, but the probabilistic behaviour is obtained by associating an
exponentially distributed continuous random variable to each action prefix; this
random variable represents the time needed to execute the action. These random
variables lead to a clear relationship between the process algebra model and a CTMC.
Via this underlying Markov process, performance measures can then be extracted
from the model.

16.3.1 Syntax of PEPA

In PEPA an action is a pair (a,r), where a is the action type and r is the rate of the
continuous random variable associated with the action. The rate r can be any positive
real number. The grammar for PEPA process is given below:

P,Q ::= nil | (a,r).P | P+Q | P ⇤�
L

Q | P/L | C

(a,r).P: is a process which can perform an action a and then behaves like P.
In this case the rate r is used to define the exponential variable which
describes the duration of the action. A component may have a purely
sequential behaviour, repeatedly undertaking one activity after another
and possibly returning to its initial state. As a simple example, consider a
web server in a distributed system that can serve one request at a time:

WS def
= (request,>).(serve,µ).(respond,>).WS

In some cases, as here, the rate of an action falls out of the control
of this component: such actions are carried out jointly with another
component, with the current component playing some sort of passive
role. For example, the web server is passive with respect to the request
and respond actions, as it cannot influence the rate at which applications
execute these actions. This is recorded by using the distinguished rate >
which we can assume to represent an extremely high value that cannot
influence the rate of interacting components.

P+Q: has the same meaning of the CSP operator for choice. For example, we
can consider an application in a distributed system that can either access
a locally available method (with probability p1) or access to a remote
web service (with probability p2 = 1 � p1). The decision is taken by
performing a think action which is parametric to the rate l :
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Appl def
= (think, p1 ·l ).(local,m).Appl
+ (think, p2 ·l ).(request,rq).(respond,rp).Appl

P ⇤�
L

Q: has the same meaning of the CSP operator. In the web service example,
we can assume that the application and the web server interact over the
set of shared actions L = {request,respond}:

Sys def
= (Appl ⇤�

?
Appl)⇤�

L
WS

During the interaction, the resulting action will have the same type of the
shared action and a rate reflecting the rate of the slowest action.

P/L: is the same as the CSP hiding operator: the duration of the action is
unaffected, but its type becomes t . In our running example, we may want
to hide the local computation of Appl to the environment:

Appl0 def
= Appl/{local}

C: is the name of a recursively defined process such as C def
= P that we as-

sume given in a separate set D of declarations. Using recursive definitions
as the ones given above for Appl and WS, we are able to describe compo-
nents with infinite behaviour without introducing an explicit recursion or
replication operator.

Usually we are interested only in those agents which have an ergodic underlying
Markov process, since we want to apply the steady state analysis. It has been shown
that it is possible to ensure ergodicity by using syntactic restrictions on the agents.
In particular, the class of PEPA terms which satisfy these syntactic conditions are
called cyclic components and they can be described by the following grammar:

P,Q ::= S | P ⇤�
L

Q | P/L
S,T ::= (a,r).S | S +T | C

where sequential processes S,T can be distinguished from general processes P,Q and
it is required that each recursive process C is sequential, i.e., it must be (C def

= S) 2 D
for some sequential process S.

16.3.2 Operational Semantics of PEPA

PEPA operational semantics is defined by a rule system similar to the one for CSP.

In the case of PEPA, well formed formulas have the form P
(a,r)���! Q for suitable

PEPA processes P and Q, activity a and rate r. We assume a set D of declarations is
available.
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16.3.2.1 Inactive Process

As usual, there is no rule for the inactive process nil.

16.3.2.2 Action Prefix and Choice

The rules for action prefix and choice are essentially the same as the ones for CSP:
the only difference is that the rate r is recorded in the label of transitions.

(a,r).P
(a,r)���! P

P
(a,r)���! P0

P+Q
(a,r)���! P0

Q
(a,r)���! Q0

P+Q
(a,r)���! Q0

16.3.2.3 Constants

The rule for constants is the same as that of CSP, except for the fact transition labels
carry also the rate.

(C def
= P) 2 D P

(a,r)���! P0

C
(a,r)���! P0

16.3.2.4 Hiding

Also the rules for hiding resemble the ones for CSP. Note that when P
(a,r)���! P0 with

a 2 L, the rate r is associated with t in P/L
(t,r)��! P0/L.

P
(a,r)���! P0 a /2 L

P/L
(a,r)���! P0/L

P
(a,r)���! P0 a 2 L

P/L
(t,r)��! P0/L

16.3.2.5 Cooperation Combinator

As for CSP, we have three rules for the cooperation combinator. The first two rules
are for action interleaving and deserve no further comment.
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P
(a,r)���! P0 a /2 L

P ⇤�
L

Q
(a,r)���! P0 ⇤�

L
Q

Q
(a,r)���! Q0 a /2 L

P ⇤�
L

Q
(a,r)���! P ⇤�

L
Q0

The third rule, called cooperation rule (see below), is the most interesting one,
because it deals with synchronisation and with the need to combine rates. The
cooperation rule exploits the so-called apparent rate of action a in P, written ra(P),
which is defined by structural recursion as follows:

ra(nil) def
= 0

ra((b ,r).P)
def
=

⇢
r if a = b
0 if a 6= b

ra(P+Q)
def
= ra(P)+ ra(Q)

ra(P/L)
def
=

⇢
ra(P) if a 62 L
0 if a 2 L

ra(P ⇤�
L

Q)
def
=

⇢
min(ra(P),ra(Q)) if a 2 L
ra(P)+ ra(Q) if a 62 L

ra(C)
def
= ra(P) if (C def

= P) 2 D

Roughly, the apparent rate ra(S) is the sum of the rates of all distinct actions a
that can be performed by S, thus ra(S) expresses the overall rate of a in S (because of
the property of rates of exponentially distributed variables in Theorem 14.2). Notably,
in the case of shared actions P ⇤�

L
Q the apparent rate is the slowest of the apparent

rates of P and Q. The cooperation rule is:

P
(a,r1)���! P0 Q

(a,r2)���! Q0 a 2 L

P ⇤�
L

Q
(a,r)���! P0 ⇤�

L
Q0

where r = ra(P ⇤�
L

Q)⇥ r1

ra(P)
⇥ r2

ra(Q)

Let us now explain the calculation

r = ra(P ⇤�
L

Q)⇥ r1

ra(P)
⇥ r2

ra(Q)

that appears in the cooperation rule. The best way to resolve what should be the rate
of the shared action has been a topic of some debate. The definition of cooperation
in PEPA is based on the assumption that a component cannot be made to exceed its
bounded capacity for carrying out the shared actions, where the bounded capacity
consists of the apparent rate of the action. The underlying assumption is that the
choice of a specific action (with rate ri) to carry on the shared activity occurs
independently in the two cooperating components P and Q. Now, the probability that
a specific action (a,ri) is chosen by P is (see Theorem 14.3)
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ri

ra(P)
.

Then, from the choice independence we obtain the combined probability

r1

ra(P)
⇥ r2

ra(Q)
.

Finally, the resulting rate is the product of the apparent rate

ra(P ⇤�
L

Q) = min(ra(P),ra(Q))

and the above probability. Notice that if we sum up the rates of all possible synchro-
nisations on a of P ⇤�

L
Q we just get min(ra(P),ra(Q)) (see the example below).

Example 16.1. Let us define two PEPA agents as follows:

P def
= (a,r).P1 + . . .+(a,r).Pn Q def

= (a,r).Q1 + . . .+(a,r).Qm

for some n  m. So we have the the following apparent rates:

ra(P)
def
= n⇥ r

ra(Q)
def
= m⇥ r

ra(P ⇤�
{a}

Q)
def
= min(ra(P),ra(Q)) = n⇥ r

By the rules for action prefix and choice, we have transitions:

P
(a,r)���! Pi for i 2 [1,n] Q

(a,r)���! Q j for j 2 [1,m]

Then we have m⇥n possible ways of synchronising P and Q, :

P ⇤�
{a}

Q
(a,r0)���! Pi ⇤�{a}

Q j for i 2 [1,n] and j 2 [1,m]

where
r0 = (n⇥ r)⇥ r

n⇥ r
⇥ r

m⇥ r
=

r
m

.

So we have m ⇥ n transitions with rate r/m and, in fact, the apparent rate of the
synchronisation is:

m⇥n⇥ r
m

= n⇥ r = ra(P ⇤�
{a}

Q).

Remark 16.1. The selection of the exponential distribution as the governing distri-
bution for action durations in PEPA has profound consequences. In terms of the
underlying stochastic process, it is the only choice which gives rise to a Markov
process. This is due to the memoryless properties of the exponential distribution: the
time until the next event is independent of the time since the last event, because the



DRAFT

352 16 PEPA - Performance Evaluation Process Algebra

exponential distribution forgets how long it has already waited. For instance, if we
consider the process (a,r).nil ⇤�

?
(b ,s).nil and the system performs the action a ,

the time needed to complete b from nil ⇤�
?

(b ,s).nil does not need to consider the
time already taken to carry out the action a .

The underlying CTMC is obtained from the LTS by associating a (global) state
with each process, and the transitions between states are derived from the transi-
tions of the LTS. Since all activity durations are exponentially distributed, the total
transition rate between two states will be the sum of the activity rates labelling arcs
connecting the corresponding nodes in the LTS.

The PEPA language is supported by a range of tools and by a wide community of
users. PEPA application areas span the subject areas of informatics and engineering
including, e.g., cellular telephone networks, database systems, diagnostic expert
systems, multiprocessor access-contention protocols, protocols for fault-tolerant
systems, software architectures. Additional information and a PEPA Eclipse Plug-in
are freely available at http://www.dcs.ed.ac.uk/pepa/.

We conclude this section by showing an example of modelling with PEPA.

Example 16.2 (Roland the gunman). We want to model a Far West duel. We have
two main characters: Roland the gunman and his enemies. Upon its travels Roland
will encounter some enemies with whom he will have no choice but to fight back. For
simplicity we assume that Roland has two guns with one bullet in each and that each
hit is fatal. We also assume that a sense of honour prevents an enemy from attacking
Roland if he is already involved in a gun fight. We model the behaviour of Roland
as follows. Normally, Roland is in an idle state Rolandidle, but when he is attacked
(attacks) he moves to state Roland2, where he has two bullets available in his gun:

Rolandidle
def
= (attack,>).Roland2

In front of his enemies, Roland can act in three ways: if he hits them then he reloads
his gun and returns idle; if he misses the enemies he tries a second attack (see
Roland1); finally if an enemy hits him, Roland dies.

Roland2
def
= (hit,rhit).(reload,rreload).Rolandidle

+(miss,rmiss).Roland1
+(e-hit,>).Rolanddead

The second attempt to shoot by Roland is analogous to the first one, but this time it is
the last bullet in Rolands gun and if the enemy is missed no further shot is possible
in Rolandempty until the gun is reloaded.

Roland1
def
= (hit,rhit).(reload,rreload).Rolandidle

+(miss,rmiss).Rolandempty
+(e-hit,>).Rolanddead

Rolandempty
def
= (reload,rreload).Roland2

+(e-hit,>).Rolanddead
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Finally if Roland is dead he cannot perform any action.

Rolanddead
def
= nil

We describe enemies behaviour as follows. If the enemies are idle they can try to
attack Roland:

Enemiesidle
def
= (attack,rattack).Enemiesattack

Enemies shoot once and either get hit or they hit Roland.

Enemiesattack
def
= (e-hit,re-hit).Enemiesidle

+(hit,>).Enemiesidle

The rates involved in the model are measured in seconds, so a rate of 1.0 would
indicate that the action is expected to occur once every second. We define the
following rates:

> = about •
rfire = 1 one shot per second

rhit-success = 0.8 80% of success
rhit = 0.8 rfire ⇥ rhit-success

rmiss = 0.2 rfire ⇥ (1� rhit-success)
rreload = 0.3 3 seconds to reload
rattack = 0.01 Roland is attacked once every 100 seconds
re-hit = 0.02 Enemies can hit once every 50 seconds

So we model the duel as follows:

Duel def
= Rolandidle ⇤�

{hit,attack,e�hit}
Enemiesidle

We can perform various types of analysis of the system by using standard methods.
Using the steady state analysis, that we have seen in the previous chapters, we can
prove that Roland will always die and the system will deadlock, because there is an
infinite supply of enemies (so the system is not ergodic). Moreover we can answer
many other questions by using the following techniques:

• Transient analysis: we can ask for the probability that Roland is dead after 1 hour,
or the probability that Roland will have killed some enemy within 30 minutes.

• Passage time analysis: we can ask for the probability of passing at least 10 seconds
from the first attack to Roland to the time it has hit 3 enemies, or the probability
that 1 minute after he is attacked Roland has killed his attacker (i.e., the probability
that the model performs a hit action within 1 minute after having performed an
attack action).
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Problems

16.1. We have defined CTMC bisimilarity in the case of unlabeled transition systems,
while PEPA transition system is labeled. Extend the definition of bisimilarity to the
labeled version.

16.2. Consider a simple system in which a process repeatedly carries out some task.
In order to complete its task the process needs access to a resource for part, but not
all, of the time. We want to model the process and the resource as two separate PEPA
agents: Process and Resource, respectively. The Process will undertake two activities
consecutively: get with some rate rg, in cooperation with the Resource, and task at
rate rt, representing the remainder of its processing task. Similarly the Resource will
engage in two activities consecutively: get, at a rate rg0 > 2rg and update, at rate ru.

1. Give the PEPA specification of a system composed with two Processes that
compete for one shared Resource.

2. What is the apparent rate of action get in the initial state of the system?
3. Draw the complete LTS (eight states) of the system and list all its transitions.

16.3. In a multiprocessor system with shared memory, processes must compete to
use the memory bus. Consider the case of two identical processes. Each process
has cyclic behaviour: it performs some local activity (local action think), accesses
the bus (synchronization action get), operates on the memory (local action use) and
then releases the bus (synchronization action rel). The bus has cyclic behavior with
actions get and rel. Define a PEPA program representing the system and derive the
corresponding CTMC (with actions). Find the bisimilar states according to the notion
of bisimilarity in Problem 16.1 and draw the minimal CTMC.

16.4. Consider the taxi driver scenario from Problem 14.3, but this time represented as
the CTMC in the Figure below, where rates are defined in 1/minutes, e.g., costumers
show up every 10 minutes (rate 0.1/min) and rides last 20 minutes (rate 0.05/min) .

s1

�0.2/min
↵↵

0.1/min
  

0.1/min

~~
s3

�0.05/min

KK

0.05/min
33

s2

�1.1/min

SS1/min
oo

Assuming a unique label l for all the transitions, and disregarding self loops, define
a PEPA agent for the system, and show that all states are different in terms of
bisimilarity. Finally, to study the steady state behaviour of the system, introduce the
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self loops,1 and write and solve a system of linear equations similar to the one seen
for DTMC: p Q = 0 and Âi pi = 1. The equations express the fact that, for every state
si, the probability flow from the other states to state si is the same as the probability
flow from state si to the other states.

16.5. Consider the taxi driver scenario from Problem 16.4, but this time with the
option of going back to state s1 (parking) from state s2 (moving slowly looking for
costumers) as in the figure below.

s1

�0.2/min
↵↵

0.1/min
  

0.1/min

~~
s3

�0.05/min

KK

0.05/min
33

s2

�1.1/min

SS1/min
oo

0.1/min
kk

Assuming a unique label l for all the transitions, and disregarding self loops, define
a PEPA agent for the system, and show that all states are different in terms of
bisimilarity. Finally, to study the steady state behaviour of the system, introduce
the self loops, decorated with suitable negative rates, and write and solve a system
of linear equations similar to the one seen for DTMC: p Q = 0 and Âi pi = 1. The
equations express the fact that, for every state si, the probability flow from the other
states to state si is the same as the probability flow from state si to the other states
(see Section 14.4.5).

16.6. Let the (infinitely many) PEPA processes {Aa ,Bb }, indexed by strings a,b 2
{0,1}⇤ be defined as:

Aa
def
= (a,l ).Ba0 +(a,l ).Ba1 Bb

def
= (b,l ).Ab0 +(b,l ).Ab1.

Consider the (sequential) PEPA program P def
= Ae , for e the empty string:

1. draw (at least in part) the transition system of P;
2. find the states reachable from P;
3. determine the bisimilar states;
4. finally, find the smallest PEPA program bisimilar to P.

16.7. Let the (infinitely many) PEPA processes Aa , indexed by strings a 2 {0,1}⇤

be defined as:
Aa

def
= (a,l ).Aa0 +(a,l ).Aa1

Consider the (sequential) PEPA program P def
= Ae , for e the empty string:

1 Remind that, in the infinitesimal generator matrix of a CTMC, self loops are decorated with
negative rates which are negated apparent rates, namely the negated sums of all the outgoing rates.
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1. draw (at least in part) the transition system of P;
2. find the states reachable from P;
3. determine the bisimilar states;
4. finally, find the smallest PEPA program bisimilar to P.

16.8. Consider the PEPA process A with

A def
= (a,l ).B+(a,l ).C B def

= (a,l ).A+(a,l ).C C def
= (a,l ).A.

and derive the corresponding finite state CTMC.

1. What is the probability distribution of staying in B?
2. If l = 0.1 sec�1, what it the probability that the system be still in B after 10

seconds?
3. Are there bisimilar states?
4. Finally, to study the steady state behaviour of the system, introduce the self loops,

decorated with suitable negative rates, show that the system is ergodic and write
and solve a system of linear equations similar to the one seen for DTMC.

16.9. Consider n transmitters T0,T1, . . . ,Tn�1 connected by a token ring. At any
moment, a transmitter i can be ready to transmit or not ready. It becomes ready with
a private action arrive and a rate l . Once ready, it stays ready until it transmits, and
then it becomes not ready with an action servei and rate µ . To resolve conflicts, only
the transmitter with the token can operate. There is only one token K, which at any
moment is located at some transmitter Ti. If transmitter Ti is not ready, the token
synchronises with it with an action walkoni and rate w moving from transmitter Ti to
transmitter Ti+1 (mod n) . If transmitter Ti is ready, the token synchronises with it with
action servei and rate µ and stays at transmitter Ti.

Write a PEPA process modelling the above system as follows:

1. define recursively all the states of Ti, for i 2 [0,n�1] and of K;
2. define the whole system by choosing the initial state where all transmitters are not

ready and the token in at T0 and composing in parallel all of them with ⇤�
L

, with
L being the set of synchronised actions.

3. Then draw the transition system corresponding to n = 2, and compute the bisimi-
larity relation.

4. Finally define a function f such that f (n) is the number of (reachable) states for
the system with n transmitters.
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